AN14012 i.MX 93 to i.MX 91 Design Compatibility Guide Rev. 1.0 — 22 November 2024

Application note

Document information

Information	Content
Keywords	AN14012, i.MX 93, i.MX 91, design compatibility
Abstract	Hardware Product Design Focus. This document provides an overview of how to design a product using the i.MX 93 device when the final product utilizes the i.MX 91 device.

1 Introduction

The i.MX 91 is designed as a subset of the i.MX 93. This document provides an overview of how to design a product using the i.MX 93 device when the final product utilizes the i.MX 91 device.

The document focuses on the hardware features and the requirements to ensure a smooth transition between the two application processors.

This can also be expanded to product families that extend new customer features by upgrading from i.MX 91 to i.MX 93, while maintaining production costs by utilizing the same product PCB design within the product family.

2 Feature comparison

<u>Section 2</u> provides a quick feature comparison of the i.MX 93 and i.MX 91 devices. This is intended as a quick introduction to the devices. For detail, see the device-specific data sheet *i.MX 91 Application Processors Data Sheet for Industrial Products* (document <u>IMX91IEC</u>) and *i.MX 93 Application Processors Data Sheet for Industrial Products* (document <u>IMX93IEC</u>).

Feature	i.MX 93 device	i.MX 91 device
Main CPU	 2x Arm Cortex-A55 @ 1.7 GHz Overdrive mode L2 cache 64 kB L3 cache 256 kB 	 1x Arm Cortex-A55 @ 1.4 GHz Nominal mode L2 cache 256 kB
Microcontroller	M33	N/A
On-chip memory	Boot ROM (256 kB) for Cortex-A55 Boot ROM (256 kB) for Cortex-M33 On-chip RAM (640 kB)	 Boot ROM (256 kB) for Cortex-A55 On-chip RAM (384 kB)
DDR	16x LPDDR4/4x-3733 ^[1]	16x LPDDR4-2400 ^{[2][3]}
Memory	 3x SD / SDIO3.0 / eMMC 5.1 FlexSPI flash FlexSPI with XIP 	 3x SD / SDIO3.0 / eMMC 5.1 FlexSPI flash FlexSPI with XIP
Graphics	PXP	N/A
Display	 LCDIF display controller 24-bit parallel RGB 4-lane MIPI DSI 4-lane LVDS 	 LCDIF display controller 24-bit parallel RGB
Camera	8-bit parallel YUV / RGB camera 2-lane MIPI CSI	8-bit parallel YUV / RGB camera
Synchronous Audio Interface (SAI) modules	 3x SAI modules, up to 768 kHz (SAI1) 2 TX and 1 RX (SAI2) 4 TX and 4 RX (SAI3) 1 TX and 1 RX 	 3x SAI modules, up to 384 kHz (SAI1) 2 TX and 1 RX (SAI2) 1 TX and 1 RX^[4] (SAI3) 1 TX and 1 RX
Audio (additional)	S/PDIF 8-channel Pulse Density Modulation (PDM) input	 S/PDIF 8-channel Pulse Density Modulation (PDM) input
Connectivity	• (2x) USB 2.0	• (2x) USB 2.0

Table 1. Feature comparison

Feature	i.MX 93 device	i.MX 91 device
	• (2x) Gigabit Ethernet	• (2x) Gigabit Ethernet
	• (8x) UART	• (8x) UART
	• (2x) I3C	• (2x) I3C
	• (8x) I ² C	• $(8x) I^2 C$
	• (8x) SPI	• (8x) SPI
	• (2x) CAN-FD	• (2x) CAN-FD
	(2x) 32-pin FlexIO	• (4x) ADC
	• (4x) ADC	
Package	• 11 x 11 mm	• 11 x 11 mm
	- 306-pin FCCSP, 0.5 mm pitch	- 306-pin FCCSP, 0.5 mm pitch
	• 9 x 9 mm	• 9 x 9 mm
	– 208-pin FCCSP, 0.5 mm pitch	- 208-pin FCCSP, 0.5 mm pitch

Table 1. Feature comparison...continued

[1] For the i.MX 93 9 x 9 mm package, the maximum rate of LPDDR4x / LPDDR4 is 3200 MT/s.

[2] The i.MX 91 device supports LPDDR4 only.

[3] For the i.MX 91 9 x 9 mm package, the maximum rate of LPDDR4 is also 2400 MT/s.

[4] The i.MX 91 SAI2 only has 1 TX and 1 RX.

3 Key considerations for hardware design

<u>Table 1</u> provides a quick insight into the functional blocks that changed between the i.MX 93 and i.MX 91 devices. The following sections focus on the key considerations between the i.MX 93 and i.MX 91 devices that affect the hardware design. The key features are:

- DDR interface
- Video interfaces
- Audio interfaces
- IOMUX selections
- Power supplies

The following sections provide an in-depth description of how to manage the hardware differences between the i.MX 93 and i.MX 91 devices.

3.1 DDR interface

The LPDDR4 speed of i.MX 91 is up to 2400 MT/s for both 11x11 and 9x9 package, while i.MX 93 11x11 package is up to 3733 MT/s and 9x9 package is up to 3200 MT/s.

The package delays are also different between i.MX 91 and i.MX93. These differences do not impact the board level design compatibility, i.MX 91 can still follow the same PCB layout as i.MX 93, that can highly save the transfer effort from i.MX 93 to i.MX 91.

3.2 Video interfaces

The i.MX 91 device removes the MIPI CSI, MIPI DSI, LVDS interfaces, only leaves the 8-bit parallel YUV/RGB camera and 24-bit parallel RGB display. It is suited for use-cases without high-performance displays.

3.3 Audio interfaces

Both i.MX 93 and i.MX 91 devices have three SAI interfaces, however, i.MX 93 has 4-TX / 4-RX for SAI2, while i.MX 91 only has 1-TX / 1-RX. For compatibility consideration, it is better to design SAI2 as 1-TX / 1-RX.

The sample rate of all three SAI interfaces of i.MX 93 can be up to 768 kHz, while i.MX 91 could be up to 384 kHz. However, that should be enough for most audio applications.

Port	i.MX 93 device	i.MX 91 device	Comments
SAI1	2-TX / 1-RX	2-TX / 1-RX	Same
SAI2	4-TX / 4-RX	1-TX / 1-RX	i.MX 93 has more channels
SAI3	1-TX / 1-RX	1-TX / 1-RX	Same
S/PDIF	1-TX / 1-RX	1-TX / 1-RX	Same
PDM	Up to 8-Mics	Up to 8-Mics	Same

 Table 2. Audio port comparison

3.4 IOMUX selections

For the i.MX devices, the IOMUX refers to the module that multiplexes each I/O pin. This programmable module provides SW selection of multiple I/O features on each of the I/O pins. For detail on IOMUX selections, refer to the device reference manual.

Even though i.MX 91 is a reduced subset of i.MX 93, the IOMUX add new I/O selections to increase design flexibility. Therefore, the i.MX 91 provides new IOMUX options that are not available on the i.MX 93. When designing for dual 9x usage, you must ensure that the I/O features are available on both the i.MX 93 and i.MX 91 devices.

Table 3 highlights these changes:

- The bold text indicates selections, which are deleted on i.MX 91.
- The normal text indicates selections, which are added on i.MX 91, and not available on i.MX 93.

	Table 5. Different IOMOX selections							
I/O pad	Alt2	Alt3	Alt6	Alt7				
GPIO_IO28	can1.TX	-	-	-				
GPIO_IO29	can1.RX	-	-	-				
ENET1_MDC	-	-	i2c1.SCL	-				
ENET1_MDIO	-	-	i2c1.SDA	-				
ENET1_TD3	-	-	i2c2.SCL	-				
ENET1_TD2	-	-	i2c2.SDA	-				
ENET1_TX_CTL	spi2.SCK	-	-	-				
ENET1_TXC	spi2.SIN	-	-	-				
ENET1_RX_CTL	spi2.PCS0	-	-	-				
ENET1_RXC	spi2.SOUT	-	-	-				
ENET2_MDC	-	-	isi.PCLK	-				
ENET2_MDIO	-	-	isi.D[0]	-				
ENET2_TD3	-	-	isi.FRAME_VALID	-				
ENET2_TD2	sai2.RX_DATA[1] ^[1]	-	isi.LINE_VALID	-				
ENET2_TD1	sai2.RX_DATA[2] ^[1]	-	isi.D[1]	-				
ENET2_TD0	sai2.RX_DATA[3] ^[1]	-	isi.D[2]	-				

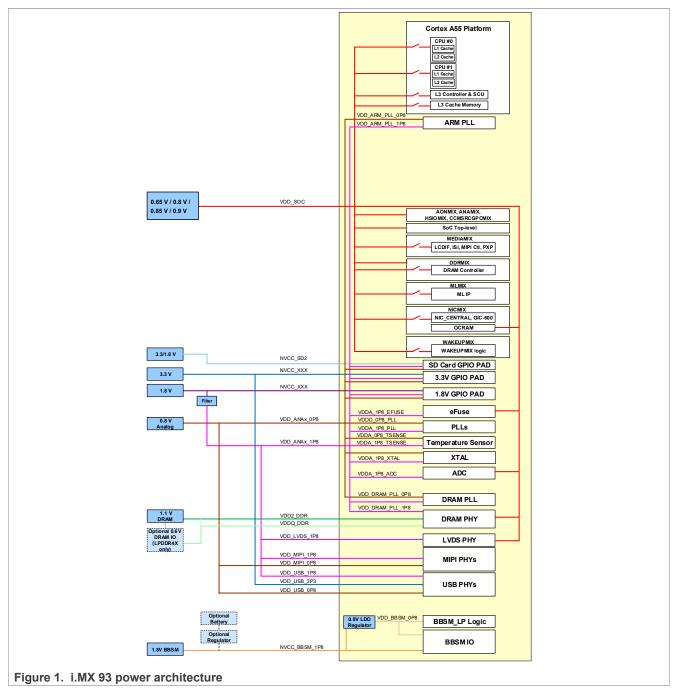
Table 3. Different IOMUX selections

	IOMUX selectionscontin			
I/O pad	Alt2	Alt3	Alt6	Alt7
ENET2_TX_CTL	-	-	isi.D[3]	-
ENET2_TXC	-	-	isi.D[4]	-
ENET2_RX_CTL		-	isi.D[5]	-
ENET2_RXC	sai2.TX_DATA[1] ^[1]	-	isi.D[6]	-
ENET2_RD0	sai2.TX_DATA[2] ^[1]	-	isi.D[7]	-
ENET2_RD1	sai2.TX_DATA[3] ^[1]	-	isi.D[8]	-
ENET2_RD2	-	-	isi.D[9]	-
SD1_CLK	-	spi2.SCK	-	-
SD1_CMD	-	spi2.SIN	-	-
SD1_DATA0	-	spi2.PCS0	-	-
SD1_DATA1	-	spi2.SOUT	-	-
SD1_DATA2	-	spi2.PCS1	-	-
SD1_DATA3	-	spi1.PCS1	-	-
SD1_DATA4	-	spi1.PCS0	-	-
SD1_DATA5	-	spi1.SIN	-	-
SD1_DATA6	-	spi1.SCK	-	-
SD1_DATA7	-	spi1.SOUT	-	-
SD3_CLK	uart1.CTS_B	-	-	-
SD3_CMD	uart1.RTS_B	-	-	-
SD3_DATA0	uart2.CTS_B	-	-	-
SD3_DATA1	uart2.RTS_B	-	-	-
SD3_DATA2	i2c4.SDA	-	-	-
SD3_DATA3	i2c4.SCL	-	-	-
SD2_CD_B	-	i2c1.SCL	-	sai3.TX_SYNC
SD2_CLK	-	i2c1.SDA	-	-
SD2_DATA0	-	uart1.TX	-	-
SD2_DATA1	-	uart1.RX	-	-
SD2_DATA2	-	uart2.TX	-	-
SD2_DATA3	-	uart2.RX	-	-
UART2_TXD	-	-	-	sai3.TX_SYNC
SAI1_TXD0	-	-	sai1.MCLK	-
L		4		

Table 3. Different IOMUX selections...continued

[1] Selection that is deleted on the i.MX 91 device.

3.5 Power supplies


The power supply of the i.MX 91 device has a few differences from the i.MX 93 device, however, both have two same PMICs PCA9451A and PF9453. This section illustrates the power supply differences and design compatibility of the two devices.

3.5.1 Power architecture comparison

Figure 1 and Figure 2 are the power architecture diagrams for i.MX 93 and i.MX 91, respectively.

The main differences between the i.MX 93 and i.MX 91 power architectures are:

- 1. The i.MX 91 device does not have the following power supplies: VDD_MIPI_0P8, VDD_MIPI_1P8, VDD_LVDS_1P8.
- 2. The i.MX 91 device merges the VDDQ_DDR with VDD2_DDR supplies, as it only supports LPDDR4.

NXP Semiconductors

AN14012

i.MX 93 to i.MX 91 Design Compatibility Guide

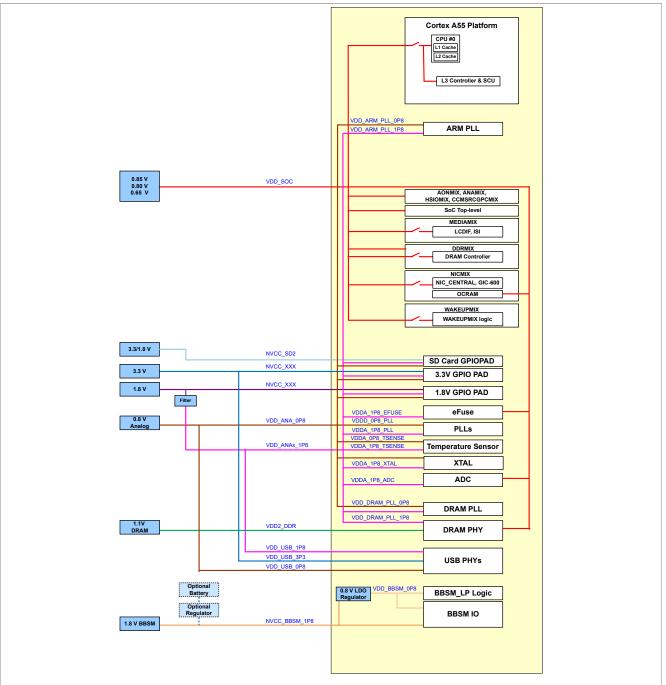


Figure 2. i.MX 91 power architecture

3.5.2 Power operating range

Table 4 and Table 5 illustrate the power operating range differences between i.MX 93 and i.MX 91.

 Table 4. i.MX 93 operating range

Parameter description	Symbol	Min	Тур	Max	Unit	Comment
Power supply for SoC logic and Arm core	VDD_SOC	0.85	0.90	0.95		Power supply for SoC, Overdrive mode ^[1]

Parameter description	Symbol	Min	Тур	Max	Unit	Comment
		0.80	0.85	0.90	V	Power supply for SoC, Nominal mode
		0.76	0.80	0.84	V	Power supply for SoC, Low-drive mode
		0.61	0.65	0.70	V	Power supply for SoC, Suspend mode
Digital supply for PLLs,	VDD_ANA_0P8	0.76	0.80	80 0.84	V	-
temperature sensor, LVCMOS I/O, MIPI, and	VDD_MIPI_0P8 ^[2]					
USB PHYs	VDD_USB_0P8					
1.8 V supply for PLLs,	VDD_ANAx_1P8 ^[3]	1.71	1.80	1.89	V	-
eFuse, temperature sensor, LVCMOS voltage	VDD_LVDS_1P8 ^[2]					
detect reference, ADC, 24	VDD_MIPI_1P8 ^[2]					
MHz Xtal, LVDS, MIPI, and USB PHYs	VDD_USB_1P8					
Voltage supply for DRAM PHY	VDD2_DDR ^[4]	1.06	1.10	1.14	V	-
Voltage supply for DRAM	VDDQ_DDR ^[4]	1.06	1.10	1.14	V	LPDDR4
PHY I/O		0.57	0.60	0.67	V	LPDDR4X

Table 4. i.MX 93 operating range...continued

[1] [2] [3]

The i.MX 93 device can support up to Overdrive mode, 1.7 GHz, i.MX 91 can only support up to Nominal mode, 1.4 GHz. The i.MX 93 device has VDD_MIPI_0P8, VDD_MIPI_1P8, VDD_LVDS_1P8, however, the i.MX 91 device does not have these power supplies. VDD_ANAX_1P8 refers to VDD_ANA0_1P8, VDD_ANA1_1P8, and VDD_ANAVDET_1P8. The i.MX 93 device has separate power supplies for VDD2_DDR and VDDQ_DDR. VDDQ_DDR can be 1.1 V for LPDDR4 and 0.6 V for LPDDR4X. The i.MX 91 device only has one power supply for VDD2_DDR, can only be 1.1 V for LPDDR4. [4]

Table 5. i.MX 91 operating range

Parameter description	Symbol	Min	Тур	Max	Unit	Comment
Power supply for SoC logic and Arm core	VDD_SOC	0.80	0.85	0.90	V	Power supply for SoC, nominal mode ^[1]
		0.76	0.80	0.84	V	Power supply for SoC, Low-drive mode
		0.61	0.65	0.69	V	Power supply for SoC, Suspend mode
Digital supply for PLLs,	VDD_ANA_0P8	0.76	0.80 /	0.90	V	-
temperature sensor, LVCMOS I/O, and USB PHYs	VDD_USB_0P8		0.85			
1.8 V supply for PLLs,	VDD_ANAx_1P8 ^[2]	1.71	1.80	1.89	.89 V	-
eFuse, temperature sensor, LVCMOS voltage detect reference, ADC, 24 MHz Xtal, and USB PHYs	VDD_USB_1P8					
Voltage supply for DRAM PHY and I/O	VDD2_DDR ^[3]	1.06	1.10	1.14	V	LPDDR4 only

[1] The i.MX 93 device can support up to Overdrive mode, 1.7 GHz, i.MX 91 can only support up to Nominal mode, 1.4 GHz.

[2] VDD_ANAx_1P8 refers to VDD_ANA0_1P8, VDD_ANA1_1P8, and VDD_ANAVDET_1P8.

[3] The i.MX 93 device has separate power supplies for VDD2_DDR and VDDQ_DDR. VDDQ_DDR can be 1.1 V for LPDDR4 and 0.6 V for LPDDR4X. The i.MX 91 device only has one power supply for VDD2_DDR, can only be 1.1 V for LPDDR4.

3.5.3 Estimated maximum current

Power consumption is highly dependent on the application. Estimating the maximum supply current required for the power supply design is difficult because the use cases that require maximum supply current are not the realistic cases.

To help illustrate the effect of the application on power consumption, data was collected while running consumer standard benchmarks that are compute and graphic intensive. The results can be used as guidelines for the power supply design.

 Table 6. Maximum supply current for i.MX 93

Power rail	Max current	Unit
VDD_SOC	2700	mA
VDD_ANA_0P8	50	mA
VDD_ANAx_1P8 ^[1]	250	mA
NVCC_BBSM_1P8	2	mA
NVCC_GPIO, NVCC_WAKEUP, NVCC_AON	 Imax = N x C x V x (0.5 x F) Where: N: Number of I/O pins supplied by the power linexternal capacitive load V: I/O voltage (0.5 x F): Data change rate. Up to 0.5 of the cloce In this equation, Imax is in Amps, C in Farads, Hertz 	ock rate (F)
VDDQ_DDR	160	mA
VDD2_DDR	525	mA
VDD_MIPI_0P8 (for MIPI CSI-2 2-lane RX PHY)	18	mA
VDD_MIPI_0P8 (for MIPI-DSI 2-lane TX PHY)	33	mA
VDD_MIPI_1P8 (for MIPI CSI-2 2-lane RX PHY)	2.5	mA
VDD_MIPI_1P8 (for MIPI-DSI 4-lane TX PHY)	9.5	mA
VDD_USB_3P3 (for USB PHY)	25.2	mA
VDD_USB_1P8 (for USB PHY)	36.2	mA
VDD_USB_0P8 (for USB PHY)	22.2	mA
VDD_LVDS_1P8	45	mA

[1] VDD_ANAx_1P8 refers to VDD_ANA0_1P8, VDD_ANA1_1P8, and VDD_ANAVDET_1P8.

Table 7. Maximum supply current for i.MX 91

Power rail	Max current	Unit
VDD_SOC	1500	mA
VDD_ANA_0P8	50	mA
VDD_ANAx_1P8 ^[1]	150	mA
NVCC_BBSM_1P8	2	mA

AN14012

i.MX 93 to i.MX 91 Design Compatibility Guide

Power rail	Max current	Unit			
NVCC_GPIO, NVCC_WAKEUP, NVCC_AON	Imax = N x C x V x (0.5 x F) Where:				
	 N: Number of I/O pins supplied by the power line C—Equivalent external capacitive load 				
	• V: I/O voltage				
	• (0.5 x F): Data change rate. Up to 0.5 of the clock rate (F)				
	 In this equation, Imax is in Amps, C in Farads, V in Vertex 				
VDD2_DDR	400	mA			
VDD_USB_3P3 (for USB PHY)	25.2	mA			
VDD_USB_1P8 (for USB PHY)	36.2	mA			
VDD_USB_0P8 (for USB PHY)	22.2	mA			

Table 7. Maximum supply current for i.MX 91...continued

[1] VDD_ANAx_1P8 refers to VDD_ANA0_1P8, VDD_ANA1_1P8, and VDD_ANAVDET_1P8.

3.5.4 Power sequence

The i.MX 91 device has fewer power supplies than i.MX 93, however, the power sequences are similar in both the devices. For detail on power sequences, see *i.MX 91 Application Processors Data Sheet for Industrial Products* (document <u>IMX91IEC</u>) and *i.MX 93 Application Processors Data Sheet for Industrial Products* (document <u>IMX93IEC</u>).

3.5.5 PMIC

The NXP PMIC PCA9451A and PF9453 can be used for both i.MX 93 and i.MX 91. <u>Table 8</u> and <u>Table 9</u> illustrate the differences of power connections.

SEQ	Regulator	Vol (V)	Max I (mA)	PWR rails	i.MX 93 voltage (V)	i.MX 91 voltage (V)	Comment
т0	LDO1	1.8	10	NVCC_BBSM_1P8	1.8	1.8	-
T1	BUCK1 / BUCK3 ^[1]	0.85	4000	VDD_SOC	0.9 / 0.85 / 0.8 / 0.65	0.85 / 0.8 / 0.65	Dual phase for i.MX 93; Single phase for i.MX 91 to save external components
T2	LDO4	0.8	200	VDD_ANA_0P8VDD_xxx_0P8	0.8	0.8	-
Т3	BUCK5	1.8	2000	NVCC_1P8VDD_ANAx_1P8VDD_xxx_1P8	1.8	1.8	-
T4	BUCK6	1.1	1500	VDD2_DDR VDDQ_DDR ^[2]	1.1	1.1	Combined for LPDDR4
Т5	BUCK2	0.6	2000	VDDQ_DDR ^[3]	0.6 V	Not used	0.6 V for LPDDR4X only
Т6	BUCK4	3.3	3000	NVCC_3P3VDD_USB_3P3	3.3	3.3	-
T7	LDO5	3.3/1.8	150	NVCC_SD2	3.3/1.8	3.3/1.8	-

 Table 8. PCA9451A power connections

i.MX 91 only needs BUCK1 as the maximum current is less than 2A. [1]

[2] [3] The i.MX93 device VDDQ_DDR must be supplied at 1.1 V for LPDDR4, however, the i.MX 91 device does not have VDDQ_DDR.

The i.MX93 device VDDQ_DDR must be supplied at 0.6 V for LPDDR4X, using BUCK2. The i.MX 91 device does not need

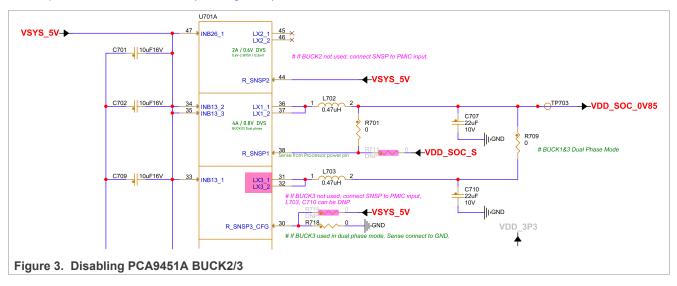

SEQ	Regulator	Vol (V)	Max I (mA)	PWR rails	i.MX 93 voltage (V)	i.MX 91 voltage (V)	Comment
то	LDO_ SNVS	1.8	10	NVCC_BBSM_1P8	1.8	1.8	-
T1	BUCK2 ^[1]	0.85	2000	• VDD_SOC	0.9 / 0.85 / 0.8 / 0.65	0.85 / 0.8 / 0.65	-
T2	LDO2 ^[2]	0.8	200	VDD_ANA_0P8VDD_xxx_0P8	0.8	0.8	Only QFN package has LDO2
Т3	BUCK3	1.8	2000	 NVCC_1P8 VDD_ANAx_1P8 VDD_xxx_1P8 	1.8	1.8	-
T4	BUCK1	1.1	2000	 VDD2_DDR VDDQ_DDR ^[3] 	1.1	1.1	Combined for LPDDR4
Т5	BUCK4	3.3	2500	NVCC_3P3VDD_USB_3P3	3.3	3.3	-
T6	LDO1	3.3 / 1.8	150	NVCC_SD2	3.3 / 1.8	3.3 / 1.8	-

Table 9. PF9453 power connections

The max current of BUCK2 is 2 A. It could only support limited applications of i.MX 93. [1]

Only QFN package has LDO2, WLCSP package must use external LDO to supply VDD_ANA_0P8, or use LDO1 to supply VDD_ANA_0P8. PF9453 only supports LPDDR4, VDD2, and VDDQ must be combined at 1.1 V. [2] [3]

Disabling PCA9451A BUCK2 and BUCK3 can reduce the BOM cost for an i.MX 91 application, the input pins and feedback pins must be connected to the power input, and the LX pins can be left open, external inductors and capacitors are not needed (see Figure 3).

Package and ball map 4

Both, i.MX 93 and i.MX 91, have two packages:

- 1. 11x11 mm package with 0.5 mm pitch and 306 pads.
- 2. 9x9 mm package with 0.5 mm pitch and 208 pads.

For detail on package and ball-map information, see *i.MX* 91 Application Processors Data Sheet for Industrial Products (document <u>IMX91IEC</u>) and *i.MX* 93 Application Processors Data Sheet for Industrial Products (document <u>IMX93IEC</u>).

4.1 11x11 package pin list

Table 10 describes the 11 x 11 package pins that have changed in i.MX 91.

BGA pin number	i.MX 93 pin name	i.MX 91 pin name	Comments
G6	VDDQ_DDR	VDD2_DDR	i.MX 91 only supports LPDDR4, all the
J6	VDDQ_DDR	VDD2_DDR	VDDQ_DDR pins are changed to VDD2_ DDR, and can only supply 1.1 V.
J7	VDDQ_DDR	VDD2_DDR	
L6	VDDQ_DDR	VDD2_DDR	
B3	LVDS_CLK_P	NC	• These pins are not connected (NC) for i.MX
A3	LVDS_CLK_N	NC	91, they are only connected to the solder ball for mechanical stability.
B5	LVDS_D0_P	NC	For the i.MX 91 based design only, these
A5	LVDS_D0_N	NC	pins can be floating.For compatible design with i.MX 93, these
B4	LVDS_D1_P	NC	pins connections can be the same as i.MX
A4	LVDS_D1_N	NC	93.
B2	LVDS_D2_P	NC	
A2	LVDS_D2_N	NC	
C1	LVDS_D3_P	NC	
B1	LVDS_D3_N	NC	
E10	MIPI_CSI1_CLK_P	NC	
D10	MIPI_CSI1_CLK_N	NC	
B11	MIPI_CSI1_D0_P	NC	
A11	MIPI_CSI1_D0_N	NC	
B10	MIPI_CSI1_D1_P	NC	
A10	MIPI_CSI1_D1_N	NC	
E6	MIPI_DSI1_CLK_P	NC	
D6	MIPI_DSI1_CLK_N	NC	
B6	MIPI_DSI1_D0_P	NC	
A6	MIPI_DSI1_D0_N	NC	
B7	MIPI_DSI1_D1_P	NC	
A7	MIPI_DSI1_D1_N	NC	
B8	MIPI_DSI1_D2_P	NC	
A8	MIPI_DSI1_D2_N	NC	

 Table 10.
 11x11 package changed pin list

BGA pin number	i.MX 93 pin name	i.MX 91 pin name	Comments
В9	MIPI_DSI1_D3_P	NC	
A9	MIPI_DSI1_D3_N	NC	
D8	MIPI_REXT	NC	
F6	VDD_LVDS_1P8	NC	
G8	VDD_MIPI_0P8	NC	
F8	VDD_MIPI_1P8	NC	-

Table 10. 11x11 package changed pin list...continued

4.2 9x9 package pin list

Table 11 describes the 9 x 9 package pins that have changed in i.MX 91.

Table 11.	9x9	package	changed	pin list
14010 111		paonago	onangoa	p

BGA Pin number	i.MX 93 pin name	i.MX 91 pin name	Comments
F5	VDDQ_DDR		i.MX 91 only supports LPDDR4, all the VDDQ_
H5	VDDQ_DDR		DDR pins are changed to VDD2_DDR, and can only supply 1.1 V.

5 References

<u>Table 12</u> lists additional documents and resources that can be referred to for more information. Some of the documents listed below may be available only under a non-disclosure agreement (NDA). To request access to these documents, contact your local field applications engineer (FAE) or sales representative.

Table 12.	Related	documentation/resources
-----------	---------	-------------------------

Document	Link/how to access
i.MX 93 Application Processors Data Sheet for Industrial Products	IMX93IEC
i.MX 93 Hardware Design Guide	IMX93HDG
i.MX 91 Application Processors Data Sheet for Industrial Products	IMX91IEC
i.MX 93 Evaluation Kit	i.MX93EVK
i.MX 91 Evaluation Kit	i.MX91EVK

6 Acronyms and abbreviations list

Table 13 defines the acronyms and abbreviations used in this document.

Table 13. Acronyms and abbreviations

Acronym	Definition
ADC	analog-to-digital converter
BGA	ball grid array
BOM	bill of materials

Table 13. Acronyms and abbreviationscontinued Acronym	Definition
CAN	controller area network
CPU	central processing unit
CSI	camera serial interface
DDR	double data rate
DRAM	dynamic random-access memory
DSI	display serial interface
eMMC	embedded multi-media card
FlexIO	flexible input/output
I ² C	inter-integrated circuit
I/O	input/output
IOMUX	input-output multiplexer
LDO	low dropout
LVDS	low voltage differential signaling
MIPI	mobile industry processor interface
MIPI-DSI	mobile industry processor interface-display serial interface
NDA	non-disclosure agreement
PCB	printed-circuit board
РНҮ	physical interface of the OSI model
PMIC	power management integrated circuit
QFN	quad flat no lead
RAM	random-access memory
ROM	read-only memory
SAI	synchronous audio interface
SoC	system-on-chip
S/PDIF	sony/philips digital interconnect format
SPI	serial peripheral interface
SW	software
UART	universal asynchronous receiver/transmitter
USB	universal serial bus
WLCSP	wafer level chip scale package

Table 13. Acronyms and abbreviations...continued

7 Revision history

Table 14 summarizes revisions to this document.

Table 14. Revision history

Revision number	Date	Description
AN14012 v1.0	22 November 2024	Initial public version

i.MX 93 to i.MX 91 Design Compatibility Guide

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

 $\ensuremath{\mathsf{NXP}}\xspace$ B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

i.MX 93 to i.MX 91 Design Compatibility Guide

Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of companies.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

i.MX 93 to i.MX 91 Design Compatibility Guide

Contents

1	Introduction	2
2	Feature comparison	2
3	Key considerations for hardware design	3
3.1	DDR interface	3
3.2	Video interfaces	3
3.3	Audio interfaces	3
3.4	IOMUX selections	4
3.5	Power supplies	5
3.5.1	Power architecture comparison	6
3.5.2	Power operating range	7
3.5.3	Estimated maximum current	9
3.5.4	Power sequence	10
3.5.5	PMIC	10
4	Package and ball map	11
4.1	11x11 package pin list	12
4.2	9x9 package pin list	13
5	References	13
6	Acronyms and abbreviations list	13
7	Revision history	
	Legal information	15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2024 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com

Document feedback Date of release: 22 November 2024 Document identifier: AN14012