
AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise
Rev. 1 — 27 May 2024 Application note

Document information
Information Content

Keywords Ethernet PHY, ENET_QOS, ENET, Windows 10 IoT Enterprise BSP, Debug, Windows driver,
ACPI table, U-boot, Windbg.

Abstract The document describes the steps needed to configure and debug the Ethernet PHY on Windows
10 IoT BSP on i.MX SoC. It shows configuration in U-Boot, EFI, and in Windows driver on
examples of two PHY chips Realtek RTL8211 and TI DP83867.

https://www.nxp.com

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

1 Introduction

This document describes the steps needed to configure and debug the Ethernet PHY on Windows 10 IoT BSP
on i.MX SoC. Windows 10 IoT BSP supports two Ethernet IP blocks, ENET and ENET_QOS. Both can be found
in i.MX 8M Plus and i.MX 93. ENET can be found in i.MX 8M, i.MX 8MM, i.MX 8MN, and i.MX 8QXP. Places of
concern are the following:

• U-Boot
• EFI
• Windows driver

Configuration is shown on examples of two PHY chips.

• Realtek RTL8211
• TI DP83867

To understand this document, knowledge of these documents is required:

i.MX Windows 10 IoT Quick Start Guide

i.MX Windows 10 IoT User's Guide

i.MX Windows 10 IoT Release Notes

2 Configuration examples

Configuration of PHY is shown on the examples for two PHY.

2.1 U-Boot ENET and ENET_QOS PHY configuration
In U-Boot, support for several PHYs has been implemented.

According to the Openwrt forum, U-Boot (just like Linux) selects the PHY driver by traversing a list of
available drivers and using the driver that first matches a part of the PHY ID (for example, PHY Identifier
Registers #1 and #2 in the datasheet). There is no principal difference in configuring the Ethernet PHY in the U-
Boot for the ENET or ENET_QOS for this reason.

To compile U-Boot with support for specific PHY, its config feature is added to the U-Boot config file. Example 1
shows how a configuration for i.MX 8M Plus can look like. It is in file uboot-imx/configs/imx8mp_evk_nt_
uuu_defconfig.

Example 1

CONFIG_PHY_REALTEK=y
CONFIG_PHY_ATHEROS=y
CONFIG_PHY_TI_DP83867=y

All available PHYs in U-Boot can be found in file uboot-imx/drivers/net/phy/Makefile:

Example 2

obj-$(CONFIG_BITBANGMII) += miiphybb.o
obj-$(CONFIG_B53_SWITCH) += b53.o
...
obj-$(CONFIG_PHY_ATHEROS) += atheros.o
...
obj-$(CONFIG_PHY_REALTEK) += realtek.o
...

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
2 / 15

https://www.nxp.com/doc/IMXWQSG
https://www.nxp.com/doc/IMXWGU
https://www.nxp.com/doc/IMXWNR
https://forum.openwrt.org/t/enabling-a-new-phy-in-u-boot/122993
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

obj-$(CONFIG_PHY_TI_DP83867) += dp83867.o
...

Configuration of PHY reset is in file uboot-imx/arch/arm/dts/imx8mp-evk-u-boot.dtsi.

Example 3

ðphy0 {
 reset-gpios = <&gpio4 22 1>;
 reset-assert-us = <15000>;
 reset-deassert-us = <100000>;
};

&fec {
 phy-reset-gpios = <&gpio4 2 1>;
 phy-reset-duration = <15>;
 phy-reset-post-delay = <100>;
};

For more information on changing PHY in U-Boot, see NXP Community.

2.2 Ethernet MAC (ENET) PHY configuration
This section provides details about Ethernet MAC (ENET) PHY configuration.

2.2.1 EFI ENET PHY Configuration

EFI configures pads and clocks for RGMII and the ACPI table provides information used by the Windows ENET
driver.

2.2.1.1 EFI ENET PHY pads and pin routing

Initialization of pads and clocks for RGMII interface implements the function:

• VOID EnetInit(VOID)

The function is implemented in the file iMX8BoardInit.c for each platform, for example: /mu_platform_
nxp/NXP/MX8M_PLUS_EVK/Library/iMX8BoardLib/iMX8BoardInit.c.

Example 4. Pins mux setting in iMX8BoardInit.c

VOID EnetInit(VOID)
{
// ENET1/2 MDIO bus (both ENETs share one MDIO bus connected to the ENET1
 controller)
IOMUXC_SW_MUX_CTL_PAD_SAI1_RXD2 = IOMUXC_MUX_ALT4; // ENET1_MDC -> PAD_SAI1_RXD2
IOMUXC_SW_MUX_CTL_PAD_SAI1_RXD3 = IOMUXC_MUX_ALT4; // ENET1_MDIO ->
 ENET1_MDIO_SELECT_INPUT
…

2.2.1.2 ENET ACPI table configuration

For the Enet driver type of PHY and register values are set in the file Dsdt-Enet.asl, for example: mu_
platform_nxp/NXP/MX93_11X11_EVK/AcpiTables/Dsdt-Enet.asl.

Available commands for registry setting:

• MII_REG_WR – write

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
3 / 15

https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Porting-KSZ9031on-the-imx7DPorting-KSZ9031on-the-imx7D/ta-p/1112888
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

• MII_REG_RMW – read, modify, write

2.2.1.3 RTL8211 ACPI table setting

Example 5. Setting RTL8211 for Enet in ACPI table Dsdt-Enet.asl

 Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 Package () { // RTL8211FDI-VD-CG
 Package (2) {"MDIOBusController_InputClk_kHz", 266000},
 Package (2) {"PhyAddress", 0x00},
 Package (2) {"PhyInterafceType", 0x00}, // RGMII, default
 value
 Package (2) {"PhyMaxMDIOBusClock_kHz", 15000},
 Package (2) {"PhyMinSTAHoldTime_ns", 10},
 Package (2) {"PhyDisablePreamble", 0},
 Package (2) {"ConfigCmds", Package () {
 MII_REG_WR (0x1F, 0x0d08), // Select page
 MII_REG_RMW(0x11, 0x0000, 0x0100), // Enable Tx-delay
 MII_REG_RMW(0x15, 0x0000, 0x0008), // Enable Rx-delay
 MII_REG_WR (0x1F, 0x0d04), // Select page
 MII_REG_WR (0x10, 0x617F), // Set green LED for
 Link, yellow LED for Active
 MII_REG_WR (0x1F, 0x0000), // Set default page
 ENET_MII_END}}
 }
 })

2.2.1.4 DP83867 table ACPI setting

Example 6. Setting DP83867 for Enet in ACPI table Dsdt-Enet.asl

 Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
 Package () { // RTL8211FDI-VD-CG
 Package (2) {"MDIOBusController_InputClk_kHz", 266000},
 Package (2) {"PhyAddress", 0x00},
 Package (2) {"PhyInterafceType", 0x00}, // RGMII, default
 value
 Package (2) {"PhyMaxMDIOBusClock_kHz", 15000},
 Package (2) {"PhyMinSTAHoldTime_ns", 10},
 Package (2) {"PhyDisablePreamble", 0},
 Package (2) {"ConfigCmds", Package () {
 MII_REG_RMW(0x1F, 0x0000, 0x8000), // 3 Global Software
 Reset 3 Global Software Reset 3 Global Software ResetGlobal Software Reset
 (CTRLCTRL)
 MII_REG_RMW(0x32, 0x0000, 0x0003), // Enable Shift mode for
 both Rx/Tx (RGMIICTL)
 MII_REG_WR (0x86, 0x0077), // 2.0ns for Tx/Rx-delay
 (RGMIIDCTL)
 MII_REG_RMW(0x1F, 0x0000, 0x4000), // 3 Global Software
 Reset 3 Global Software Reset 3 Global Software ResetGlobal Software Restart
 MII_REG_WR (0x18, 0x5032), // 1000BT, Link,
 Receive, Transmit
 ENET_MII_END}}
 }

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
4 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

 })

2.2.2 Windows driver

The ENET Windows driver reads all PHY registry settings from the ACPI table as shown above, therefore it
does not need to be changed when different PHY is used.

2.3 Ethernet quality of service (ENET_QOS) PHY configuration
This section provides details about the Ethernet QOS (ENET_QOS) PHY configuration.

2.3.1 EFI ENET_QOS PHY configuration

EFI configures pads and clocks for RGMII and the ACPI table provides information used by the Windows
ENET_QOS driver but not PHY registry settings.

2.3.1.1 EFI ENET_QOS PHY pads and pin routing

The initialization of pads and clocks for the RGMII interface implements the function:

• VOID EnetQosInit()

The function is implemented in the file iMX8BoardInit.c for each platform, for example: /mu_platform_
nxp/NXP/MX8M_PLUS_EVK/Library/iMX8BoardLib/iMX8BoardInit.c.

Example 7. Pins mux setting for ENET_QOS in iMX8BoardInit.c

VOID EnetQosInit()
{
…
 /* Tx pads */
 IOMUXC_SW_MUX_CTL_PAD_ENET_TD0 = IOMUXC_MUX_ALT0;
 IOMUXC_SW_PAD_CTL_PAD_ENET_TD0 = IOMUXC_SW_PAD_CTL_PAD_FSEL_MASK |
 IOMUXC_SW_PAD_CTL_PAD_DSE(0x03);

2.3.1.2 ENET_QOS ACPI table configuration

The registry setting for ENET_QOS PHY is hardcoded in its Windows driver and must be adapted there.

2.3.2 ENET_QOS Windows Driver

The PHY register setting is hardcoded in the Windows driver for the ENET_QOS Ethernet. For RTL
8211 the setting is in the function MII_Rtl8211fInit. Detection of connected PHY is done by the
MII_PhySpecificInit function. If other PHY must be detected, vendor end model switches must be
extended with new PHY identification and a new function, for example, MII_DP83867fInit must be
implemented. Code examples can be found in Section 5.

3 Common issues

This section provides a list of solutions for common issues that may arise while PHYs are debugged.

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
5 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

3.1 MAC address missing
When the MAC address is not written in fuses, it can be set in U-Boot, ACPI or via Windows registers for
development purposes.

3.1.1 Windows registers MAC address setting

With the ipconfig /all command, the MAC address for the Ethernet interface can be checked.

If there is an invalid physical address, for example "00-00-00-00-00-00", set the address by either registry
editor or command-line command.

3.1.1.1 Entering MAC address with Regedit

1. Open the register editor and find HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
\Class\{4D36E972-E325-11CE-BFC1-08002BE10318}\xxxx

2. Check the folders, for example, 0000, 0001... and find your wanted interface (DriverDesc = i.MX Ethernet
adapter).

3. Add the new variable NetworkAddress as a string with the format xx-xx-xx-xx-xx-xx. It has to be a locally
administered address (LAA). For details, see MAC address.

4. Restart the board.

3.1.1.2 Entering MAC address with REG cmd

In the Command Prompt window enter:

REG ADD "HKLM\SYSTEM\CurrentControlSet\Control\Class\{4d36e972-e325-11ce-
bfc1-08002be10318}\0000" /V NetworkAddress /T REG_SZ /D xx-xx-xx-xx-xx-xx /F

Find the correct folder 0000, 0001… the same way as in the previous case, you must identify the interface for
which you want to set the MAC address.

There is a batch script for setting the MAC address via the registry available at http://lallouslab.net/2016/06/20/
batchography-change-mac-address-batch-script/.

3.1.2 U-Boot MAC address setting

In U-Boot MAC address can be set either manually in the shell (the Windows Ethernet driver will not use the
MAC address from U-Boot), or the usage of a random MAC address in case of a missing setting, it can be
enabled in configuration.

3.1.2.1 MAC address setting manually by U-Boot variables

Put these commands in the U-Boot shell:

setenv ethaddr xx:xx:xx:xx -> for ENET

setenv eth1addr xx:xx:xx:xx -> for ENET_QOS

saveenv

3.1.2.2 Enabling random MAC address

Put CONFIG_NET_RANDOM_ETHADDR=y in the board defconfig file.

If neither SROM nor the environment contain a MAC address, an error is raised. If
CONFIG_NET_RANDOM_ETHADDR is defined, a random, locally assigned MAC is used.

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
6 / 15

https://en.wikipedia.org/wiki/MAC_address
http://lallouslab.net/2016/06/20/batchography-change-mac-address-batch-script/
http://lallouslab.net/2016/06/20/batchography-change-mac-address-batch-script/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

Further details can be found on NXP Community.

3.1.3 ACPI MAC address setting

The Windows driver uses the _DSM method to obtain the MAC address from the ACPI table. The _DSM method
uses defines MC1X and MC2X from the Dsdt-Platform.asl file describing where MAC bytes are stored in
fuses:

OperationRegion(FUSE, SystemMemory,0x30350400,0x900) // 0x3035_0D00
Field(FUSE, AnyAcc, Nolock, Preserve)
{
 Offset(0x240),
 MC15, 8, // 0x640 NET1 MAC address bytes 5
 MC14, 8, // 0x641 NET1 MAC address bytes 4
 MC13, 8, // 0x642 NET1 MAC address bytes 3
 MC12, 8, // 0x643 NET1 MAC address bytes 2
 Offset(0x250),
 MC11, 8, // 0x650 NET1 MAC address bytes 1
 MC10, 8, // 0x651 NET1 MAC address bytes 0
 MC25, 8, // 0x652 NET2 MAC address bytes 5
 MC24, 8, // 0x653 NET2 MAC address bytes 4
 Offset(0x260),
 MC23, 8, // 0x660 NET2 MAC address bytes 3
 MC22, 8, // 0x661 NET2 MAC address bytes 2
 MC21, 8, // 0x662 NET2 MAC address bytes 1
 MC20, 8, // 0x663 NET2 MAC address bytes 0
}

Then _DSM method in Dsdt-Enet.asl can return those values when asked:

// Function 1: Return Mac Address
case (1) {
 Store (MC10, MAC0)
 Store (MC11, MAC1)
 Store (MC12, MAC2)
 Store (MC13, MAC3)
 Store (MC14, MAC4)
 Store (MC15, MAC5)
 Return (MAC)
}

MC2X values are used for a second Ethernet interface (see Dsdt-Enet_QoS.asl).

In case the MAC was stored in the fuses in the wrong order, it can be patched here.

3.2 Tx/Rx delay
For the ENET driver, the delay setting can be set in the ACPI table, for ENET_QOS it must be changed in the
Windows driver code.

3.2.1 ENET TX delay setting example

Example of setting for i.MX 8M Nano in ACPI: mu_platform_nxp/NXP/MX8M_NANO_EVK/AcpiTables/
Dsdt-Enet.asl

Name (_DSD, Package () {
 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
7 / 15

https://community.nxp.com/t5/QorIQ/Configure-mac-Addresses-in-U-boot/m-p/447549
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

 Package () { // ATHEROS AR8031>
 Package (2) {"MDIOBusController_InputClk_kHz", 266000},
 Package (2) {"PhyAddress", 0x00},
 Package (2) {"PhyInterafceType", 0x00}, // RGMII, default value
 Package (2) {"PhyMaxMDIOBusClock_kHz", 15000},
 Package (2) {"PhyMinSTAHoldTime_ns", 10},
 Package (2) {"PhyDisablePreamble", 0},
 Package (2) {"ConfigCmds", Package () {
 // Enable GTX_CLK delay
 MII_WRITE_COMMAND(MII_REG_AR8031_DP_ADDR, 0x0005),// Choose SerDes Test
 and System Mode Control
 MII_WRITE_COMMAND(MII_REG_AR8031_DP_RW, 0x0100),// Select 1 - RGMII Tx
 Clock Delay Enable
 /// Specific
 MII_WRITE_COMMAND(MII_REG_AR8031_SS, 0x000C),// Smart speed off
 ENET_MII_END}}
 }
})

3.2.2 Example of TX delay setting ENET_QOS in driver

Setting of TX/RX delay is located in function MII_Rtl8211fInit.

// Enable TX-delay for rgmii-id and rgmii-txid
 Val = MII_Read(pAdapter, PhyAddr, 0x11);
 if (pAdapter->MiiCfg.MiiInterfaceType == RGMII) {
 // RGMII config
 Val |= 0x0100;
 } else {
 Val &= ~0x0100;
 }
 MII_Write(pAdapter, PhyAddr, 0x11, Val);
 // Enable RX-delay for rgmii-id and rgmii-rxid
 Val = MII_Read(pAdapter, PhyAddr, 0x15);
 if (pAdapter->MiiCfg.MiiInterfaceType == RGMII) {
 // RGMII config
 Val |= 0x0008;
 } else {
 Val &= ~0x0008;
 }
 MII_Write(pAdapter, PhyAddr, 0x15, Val);

4 Debugging

This section provides help on the PHY debugging on the target board.

4.1 How to start kernel debugging on target board
Serial debug must be used when the Ethernet is not yet working. To start kernel debugging over serial port:

1. Enable kernel debug on your target/development board by these commands in the elevated cmd window:
bcdedit /debug on
bcdedit /dbgsettings serial debugport:3 baudrate:921600
Use the port number appropriate for your board design. The baudrate must match the value of
CONFIG_BAUDRATE in the U-Boot defconfig file.

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
8 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

2. Start WinDBG by typing this command in the elevated cmd window on the development PC:
"C:\Program Files (x86)\Windows Kits\10\Debuggers\x64\windbg.exe" -k
com:port=COM3,baud=921600

4.2 How to show the debug messages in WinDbg
To see debug messages from the Ethernet driver in the WinDbg window, they must be uncommented in the
driver source code and the WinDbg debug print filter must be set up.

4.2.1 Enable debug messages In Windows driver

For enabling debug messages:

1. Open the iMXPlatform project.
2. Open the file imxnetmini->header files->mp_dbg.h. Enable/disable desired log output by un/

comment defines, for example , //#define DBG_MDIO_DEV

Example 8. Suggested candidates for PHY debug

// ENET PHY device-specific macros - uncomment next line for message printing
//#define DBG_PHY_DEV
// MDIO bus-specific macros - uncomment next line for message printing
//#define DBG_MDIO_BUS
// MDIO device-specific macros - uncomment next line for message printing
//#define DBG_MDIO_DEV
// MDIO device command-specific macros - uncomment next line for message
 printing
//#define DBG_MDIO_DEV_CMD

4.2.2 Enable debug messages in WinDbg

Debug messages can be enabled for the current debug session by putting the command in WinDbg:

ed nt!Kd_IHVDRIVER_Mask 0xFFFFFFFF

Or it can be set permanently in Windows registers by this command:

REG ADD "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Debug Print
Filter" /v IHVDRIVER /t REG_DWORD /d 0xFFFFFFFF

5 Code examples

Windows driver function extended with TI DP83867 detection

NTSTATUS MII_PhySpecificInit(PMP_ADAPTER pAdapter)
{
 NTSTATUS Status = STATUS_SUCCESS;
 switch (pAdapter->ENETDev_PHYDevice.PhyVendor) {
 case REALTEK:
 switch (pAdapter->ENETDev_PHYDevice.PhyModel) {
 case RTL8211F:
 case RTL8211F_VD_CG:
 DBG_PHY_DEV_PRINT_INFO("Detected Realtek RTL8211F");
 MII_Rtl8211fInit(pAdapter);
 break;

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
9 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

 default:
 DBG_PHY_DEV_PRINT_WARNING("Unknown Realtek PHY Model: 0x
%02X", pAdapter->ENETDev_PHYDevice.PhyModel);
 break;
 }
 break;
 case TEXAS_INSTRUMENTS:
 switch (pAdapter->ENETDev_PHYDevice.PhyModel) {
 case DP83867:
 DBG_PHY_DEV_PRINT_INFO("Detected TI DP83867");
 MII_DP83867fInit(pAdapter);
 break;
 default:
 DBG_PHY_DEV_PRINT_WARNING("Unknown TI PHY Model: 0x%02X",
 pAdapter->ENETDev_PHYDevice.PhyModel);
 break;
 }
 break;
 default:
 DBG_PHY_DEV_PRINT_WARNING("Unknown PHY vendor: 0x%02X", pAdapter-
>ENETDev_PHYDevice.PhyVendor);
 break;
 }
 return Status;
}

Windows driver init function for RTL8211

NTSTATUS MII_Rtl8211fInit(PMP_ADAPTER pAdapter)
{
 NTSTATUS Status = STATUS_SUCCESS;
 UINT16 Val;
 UINT8 PhyAddr = pAdapter->MiiCfg.PhyAddr;
 // Select Page 0x0d08*/
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0d08);
 // Enable TX-delay for rgmii-id and rgmii-txid
 Val = MII_Read(pAdapter, PhyAddr, 0x11);
 if (pAdapter->MiiCfg.MiiInterfaceType == RGMII) {
 // RGMII config
 Val |= 0x0100;
 } else {
 Val &= ~0x0100;
 }
 MII_Write(pAdapter, PhyAddr, 0x11, Val);
 // Enable RX-delay for rgmii-id and rgmii-rxid
 Val = MII_Read(pAdapter, PhyAddr, 0x15);
 if (pAdapter->MiiCfg.MiiInterfaceType == RGMII) {
 // RGMII config
 Val |= 0x0008;
 } else {
 Val &= ~0x0008;
 }
 MII_Write(pAdapter, PhyAddr, 0x15, Val);
 // Restore to default page 0
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0000);
 // Set green LED for Link, yellow LED for Active
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0D04);
 MII_Write(pAdapter, PhyAddr, 0x10, 0x617F);
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0000);

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
10 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

 return Status;
}

Windows driver init function for TI DP83867

NTSTATUS MII_DP83867fInit(PMP_ADAPTER pAdapter)
{
 NTSTATUS Status = STATUS_SUCCESS;
 UINT16 Val;
 UINT8 PhyAddr = pAdapter->MiiCfg.PhyAddr;
 // Select Page 0x0d08*/
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0d08);
 // Enable TX-delay for rgmii-id and rgmii-txid
 Val = MII_Read(pAdapter, PhyAddr, 0x11);
 if (pAdapter->MiiCfg.MiiInterfaceType == RGMII) {
 // RGMII config
 Val |= 0x0100;
 } else {
 Val &= ~0x0100;
 }
 MII_Write(pAdapter, PhyAddr, 0x11, Val);
 // Enable RX-delay for rgmii-id and rgmii-rxid
 Val = MII_Read(pAdapter, PhyAddr, 0x15);
 if (pAdapter->MiiCfg.MiiInterfaceType == RGMII) {
 // RGMII config
 Val |= 0x0008;
 } else {
 Val &= ~0x0008;
 }
 MII_Write(pAdapter, PhyAddr, 0x15, Val);
 // Restore to default page 0
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0000);
 // Set green LED for Link, yellow LED for Active
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0D04);
 MII_Write(pAdapter, PhyAddr, 0x10, 0x617F);
 MII_Write(pAdapter, PhyAddr, 0x1F, 0x0000);
 return Status;
}

6 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
11 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7 Revision history

Document ID Release date Description

AN14188 v.1.0 27 May 2024 Initial version

Table 1. Revision history

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
12 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
13 / 15

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Freescale — is a trademark of NXP B.V.
i.MX — is a trademark of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14188 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 27 May 2024 Document feedback
14 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14188
Ethernet PHY Configuration For Win10 IoT Enterprise

Contents
1 Introduction .. 2
2 Configuration examples2
2.1 U-Boot ENET and ENET_QOS PHY

configuration .. 2
2.2 Ethernet MAC (ENET) PHY configuration 3
2.2.1 EFI ENET PHY Configuration3
2.2.1.1 EFI ENET PHY pads and pin routing 3
2.2.1.2 ENET ACPI table configuration 3
2.2.1.3 RTL8211 ACPI table setting 4
2.2.1.4 DP83867 table ACPI setting4
2.2.2 Windows driver .. 5
2.3 Ethernet quality of service (ENET_QOS)

PHY configuration ..5
2.3.1 EFI ENET_QOS PHY configuration5
2.3.1.1 EFI ENET_QOS PHY pads and pin routing5
2.3.1.2 ENET_QOS ACPI table configuration5
2.3.2 ENET_QOS Windows Driver5
3 Common issues ...5
3.1 MAC address missing ..6
3.1.1 Windows registers MAC address setting 6
3.1.1.1 Entering MAC address with Regedit6
3.1.1.2 Entering MAC address with REG cmd6
3.1.2 U-Boot MAC address setting6
3.1.2.1 MAC address setting manually by U-Boot

variables ...6
3.1.2.2 Enabling random MAC address6
3.1.3 ACPI MAC address setting7
3.2 Tx/Rx delay ..7
3.2.1 ENET TX delay setting example7
3.2.2 Example of TX delay setting ENET_QOS in

driver ..8
4 Debugging .. 8
4.1 How to start kernel debugging on target

board ..8
4.2 How to show the debug messages in

WinDbg .. 9
4.2.1 Enable debug messages In Windows driver9
4.2.2 Enable debug messages in WinDbg9
5 Code examples .. 9
6 Note about the source code in the

document ..11
7 Revision history ...12

Legal information ...13

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 27 May 2024
Document identifier: AN14188

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	2 Configuration examples
	2.1 U-Boot ENET and ENET_QOS PHY configuration
	2.2 Ethernet MAC (ENET) PHY configuration
	2.2.1 EFI ENET PHY Configuration
	2.2.1.1 EFI ENET PHY pads and pin routing
	2.2.1.2 ENET ACPI table configuration
	2.2.1.3 RTL8211 ACPI table setting
	2.2.1.4 DP83867 table ACPI setting

	2.2.2 Windows driver

	2.3 Ethernet quality of service (ENET_QOS) PHY configuration
	2.3.1 EFI ENET_QOS PHY configuration
	2.3.1.1 EFI ENET_QOS PHY pads and pin routing
	2.3.1.2 ENET_QOS ACPI table configuration

	2.3.2 ENET_QOS Windows Driver

	3 Common issues
	3.1 MAC address missing
	3.1.1 Windows registers MAC address setting
	3.1.1.1 Entering MAC address with Regedit
	3.1.1.2 Entering MAC address with REG cmd

	3.1.2 U-Boot MAC address setting
	3.1.2.1 MAC address setting manually by U-Boot variables
	3.1.2.2 Enabling random MAC address

	3.1.3 ACPI MAC address setting

	3.2 Tx/Rx delay
	3.2.1 ENET TX delay setting example
	3.2.2 Example of TX delay setting ENET_QOS in driver

	4 Debugging
	4.1 How to start kernel debugging on target board
	4.2 How to show the debug messages in WinDbg
	4.2.1 Enable debug messages In Windows driver
	4.2.2 Enable debug messages in WinDbg

	5 Code examples
	6 Note about the source code in the document
	7 Revision history
	Legal information
	Contents

