AN14282 RF Test Mode on FreeRTOS Rev. 1.0 — 7 February 2025

Application note

Document information

Information	Content
Keywords	RF test mode, production firmware, regulatory, compliance, Wi-Fi, Bluetooth, Bluetooth LE, 802.15.4
Abstract	Describes how to enable and use RF test mode for Wi-Fi, Bluetooth, Bluetooth LE, and 802.15.4 on FreeRTOS.

1 Introduction

This document provides an overview of how to enable and use the RF test mode on an RTOS-based host. Using RF test mode feature, the users can easily set RF parameters such as the operating channel, TX power, and channel bandwidth for regulatory compliance testing.

RF test mode is compatible with Wi-Fi, Bluetooth, and 802.15.4 radios. This document assumes that you have successfully brought up the radios on your device using the production firmware. For more information on device bring-up and importing, building, and flashing applications, refer to [1] and [2].

1.1 Supported devices

- 88W8987 [3]
- IW416 [4]
- IW611 [5]
- IW612 [6]
- RW610 [7]
- RW612 [8]

Note: Refer to the software release notes of your device for more information on software compatibility.

2 RF test mode for Wi-Fi

This section describes the commands to use Wi-Fi RF test mode.

The *wifi_test_mode* application enables RF testing to set RF parameters, measure the transmit power, and transmit/receive standard 802.11 packets.

2.1 Enable RF test mode

Command to enable RF test mode:

```
# wlan-set-rf-test-mode
RF Test Mode configuration successful
```

2.2 Set/get RF frequency band

Command to set the RF frequency band:

```
# wlan-set-rf-band <band>
```

Table 1. Command parameters

Parameter	Description
band	RF frequency band 0 = 2.4 GHz 1 = 5 GHz

Example – Set the RF frequency band to 2.4 GHz:

wlan-set-rf-band 0

Command to get the RF frequency band:

```
# wlan-get-rf-band
```

Example – Get the RF frequency band:

```
# wlan-get-rf-band
Configured RF Band is: 2.4G
```

2.3 Set/get the RF channel

Command to set the RF channel:

wlan-set-rf-channel <channel>

Table 2. Command parameters

Parameter	Description
channel	Wi-Fi channel

Example – Set the RF channel to 6:

wlan-set-rf-channel 6

Command to get the RF channel:

wlan-get-rf-channel

Example – Get the RF channel:

wlan-get-rf-channel
Configured channel is: 6

2.4 Set/get the channel bandwidth

Command to set the channel bandwidth:

wlan-set-rf-bandwidth <bandwidth>

Table 3. Command parameters

Parameter	Description
bandwidth	RF channel bandwidth
	0 = 20 MHz
	1 = 40 MHz
	4 = 80 MHz

Example – Set the channel bandwidth to 20 MHz:

wlan-set-rf-bandwidth 0

Command to get the channel bandwidth:

wlan-get-rf-bandwidth

Example – Get the RF channel bandwidth:

```
# wlan-get-rf-bandwidth
Configured RF bandwidth is: 20MHz
```

2.5 Set/get the radio mode

Command to set the radio mode:

wlan-set-rf-radio-mode <radio_mode>

Table 4. Command parameters

Parameter	Description
radio_mode	Radio mode
	0: set the radio in power down mode
	3: sets the radio in 5GHz band, 1x1 mode (RF path A)
	4: sets the radio in 5GHz band, 1x1 mode (RF path B)
	11: sets the radio in 2.4GHz band, 1x1 mode (RF path A)
	14: sets the radio in 2.4GHz band, 1x1 mode (RF path B)

Example – Set the radio mode to 5 GHz 1x1 mode:

wlan-set-rf-radio-mode 3

Command to get the radio mode:

```
# wlan-get-rf-radio-mode
```

Example – Get the radio mode:

```
# wlan-get-rf-radio-mode
Configured radio mode is: 3
```

RF Test Mode on FreeRTOS

2.6 Display and clear the received Wi-Fi packet count

Command to clear the received packet count and display the received multi-cast and error packet counts:

wlan-get-and-reset-rf-per

Example of command output:

```
# PER is as below:
Total Rx Packet Count : 20
Total Rx Multicast/Broadcast Packet Count: 20
Total Rx Packets with FCS error : 9
```

2.7 Set/get the antenna configuration

Command to set the TX antenna configuration:

wlan-set-rf-tx-antenna <antenna>

Table 5. Command parameters

Parameter	Description
antenna	TX antenna
	1 = Main
	2 = Aux

Example – Set the TX antenna configuration to the main antenna:

wlan-set-rf-tx-antenna 1

Command to get the TX antenna configuration:

wlan-get-rf-tx-antenna

Example – Get the TX antenna configuration:

```
# wlan-get-rf-tx-antenna
Configured Tx antenna is: Main
```

Command to set the RX antenna configuration:

wlan-set-rf-rx-antenna <antenna>

Table 6. Command parameters

Parameter	Description
antenna	RX antenna 1 = Main 2 = Aux

Example – Set the RX antenna configuration to the main antenna:

wlan-set-rf-rx-antenna 1

Command to get the RX antenna configuration:

wlan-get-rf-rx-antenna

Example – Get the RX antenna configuration:

```
# wlan-get-rf-rx-antenna
Configured Tx antenna is: Main
```

2.8 Set TX power

Command to set the TX power:

wlan-set-rf-tx-power <tx_power> <modulation> <path_id>

Table 7. Command parameters

Parameter	Description
tx_power	TX power in dBm
modulation	Modulation 0 = CCK 1 = OFDM 2 = MCS
path_id	Path 0 = RF path A 1 = RF path B

Example – Set the TX power to 8 dBm with OFDM modulation on Path B:

```
# wlan-set-rf-tx-power 8 1 1
Tx Power configuration successful Power : 8 dBm Modulation : OFDM
Path ID : PathB
```

RF Test Mode on FreeRTOS

2.9 Set Wi-Fi transmitter in continuous carrier wave (CW) mode

Command to set the Wi-Fi transmitter into CW mode:

```
# wlan-set-rf-tx-cont-mode <enable_tx> <cw_mode> <payload_pattern> <cs_mode> <act_sub_ch> <tx_rate>
```

Parameter	Description
enable_tx	Enable TX 0 = disable 1 = enable
cw_mode	Carrier wave mode Set to 1
payload_pattern	Payload pattern (0 to 0xFFFFFFF) (Enter hexadecimal value)
cs_mode	Carrier suppression (CS) mode Set to 0
act_sub_ch	Active sub channel 0 = lower 1 = upper 3 = both
tx_rate	TX rate index Set to 0

Table 8. Command parameters

Example – Enable CW transmit:

```
# wlan-set-rf-tx-cont-mode 1 1 7FFFFFFF 0 3 0
Tx continuous configuration successful
Enable : enable
Continuous Wave Mode : enable Payload Pattern : 0x7FFFFFFF
CS Mode : disable Active SubChannel : both
Tx Data Rate : 0
```

Command to disable CW mode (issue both commands below sequentially):

```
# wlan-set-rf-tx-cont-mode 0 1 0 0 0 0
Tx continuous configuration successful
Enable : disable
Continuous Wave Mode : enable Payload Pattern : 0x0000000
CS Mode : disable Active SubChannel : both
Tx Data Rate : 0
# wlan-set-rf-tx-cont-mode 0
Tx continuous configuration successful
Enable : disable
Continuous Wave Mode : disable
Payload Pattern : 0x0000000
CS Mode : disable
Active SubChannel : both
Tx Data Rate : 0
```

2.10 Transmit 802.11 packets

Command to transmit packets continuously with an adjustable time gap of 0 to 255 microseconds between packets:

```
# wlan-set-rf-tx-frame <start> <data_rate> <frame_pattern> <frame_len>
        <adjust_burst_sifs>
        <burst_sifs_in_us> <short_preamble> <act_sub_ch> <short_gi> <adv_coding> <tx_bf>
        <gf_mode> <stbc> <bssid>
```

Parameter	Description
start	Enable TX 0 = disable 1 = enable
data_rate	Rate index (in hexadecimal) corresponding to legacy/HT/VHT rates Refer to Table 1 & 2 for the data rates
frame_pattern	Payload pattern (0 to 0xFFFFFFF) (Enter hexadecimal value)
frame_len	Payload length (1 to 0x400) (Enter hexadecimal value)
adjust_burst_sifs	Adjust burst SIFS3 gap 0 = disable 1 = enable
burst_sifs_in_us	Burst SIFS3 in us (0 to 255us)
short_preamble	Short preamble 0 = disable 1 = enable
act_sub_ch	Active sub channel 0 = lower 1 = upper 3 = both
short_gi	Short guard interval 0 = disable 1 = enable
adv_coding	Advanced coding 0 = disable 1 = enable
tx_bf	Beamforming 0 = disable 1 = enable
gf_mode	GreenField mode 0 = disable 1 = enable

Table 9. Command parameters

```
AN14282
Application note
```

Table 9. Command parameterscommand	
Parameter	Description
stbc	STBC
	0 = disable
	1 = enable
bssid	BSSID
	(xx:xx:xx:xx:xx)

Table 9. Command parameters...continued

Example – Enable TX frame:

```
# wlan-set-rf-tx-frame 1 1100 2730 256 0 0 0 3 0 0 0 0 38:E6:0A:C6:1A:EC
Tx Frame configuration successful Enable : enable
Tx Data Rate : 4352
Payload Pattern : 0x2730
Payload Length : 0x256 Adjust Burst SIFS3 Gap : disable Burst SIFS in us : 0 us
Short Preamble : disable
Active SubChannel : both
Short GI : disable
Adv Coding : disable
Beamforming : disable
GreenField Mode : disable
STBC : disable
BSSID : 38:E6:0A:C6:1A:EC
```

Command to disable TX frame:

wlan-set-rf-tx-frame 0
Tx Frame configuration successful

RF Test Mode on FreeRTOS

2.11 Data rates

Data rate index	Data rate
0x1	1Mbits/sec
0x2	2Mbits/sec
0x3	5.5Mbits/sec
0x4	11Mbits/sec
0x5	Reserved
0x6	6Mbits/sec
0x7	9Mbits/sec
0x8	12Mbits/sec
0x9	18Mbits/sec
0xA	24Mbits/sec
0xB	36Mbits/sec
0xC	48Mbits/sec
0xD	54Mbits/sec
0xE	Reserved
0xF	HT_MCS 0
0x10	HT_MCS 1
0x11	HT_MCS 2
0x12	HT_MCS 3
0x13	HT_MCS 4
0x14	HT_MCS 5
0x15	HT_MCS 6
0x16	HT_MCS 7
0x17	HT_MCS 8
0x18	HT_MCS 9
0x19	HT_MCS 10
0x1A	HT_MCS 11
0x1B	HT_MCS 12
0x1C	HT_MCS 13
0x1D	HT_MCS 14
0x1E	HT_MCS 15

RF Test Mode on FreeRTOS

Data rate index	Data rate	
0x1100	VHT_SS1_MCS0	
0x1101	VHT_SS1_MCS1	
0x1102	VHT_SS1_MCS2	
0x1103	VHT_SS1_MCS3	
0x1104	VHT_SS1_MCS4	
0x1105	VHT_SS1_MCS5	
0x1106	VHT_SS1_MCS6	
0x1107	VHT_SS1_MCS7	
0x1108	VHT_SS1_MCS8	
0x1109	VHT_SS1_MCS9	
0x1200	VHT_SS2_MCS0	
0x1201	VHT_SS2_MCS1	
0x1202	VHT_SS2_MCS2	
0x1203	VHT_SS2_MCS3	
0x1204	VHT_SS2_MCS4	
0x1205	VHT_SS2_MCS5	
0x1206	VHT_SS2_MCS6	
0x1207	VHT_SS2_MCS7	
0x1208	VHT_SS2_MCS8	
0x1209	VHT_SS2_MCS9	
0x2100	HE_SS1_MCS0	
0x2101	HE_SS1_MCS1	
0x2102	HE_SS1_MCS2	
0x2103	HE_SS1_MCS3	
0x2104	HE_SS1_MCS4	
0x2105	HE_SS1_MCS5	
0x2106	HE_SS1_MCS6	
0x2107	HE_SS1_MCS7	
0x2108	HE_SS1_MCS8	
0x2109	HE_SS1_MCS9	
0x2110	HE_SS1_MCS10	
0x2111	HE_SS1_MCS11	
0x2200	HE_SS2_MCS0	
0x2201	HE_SS2_MCS1	
0x2202	HE_SS2_MCS2	
0x2203	HE_SS2_MCS3	
AN14282	All information provided in this document is subject to legal disclaimers.	© 2025 NXP B.V. All rights reserved.

Table 11. 802.11ac/802.11ax data rate index

Application note

AN14282

RF Test Mode on FreeRTOS

Data rate index	Data rate
0x2204	HE_SS2_MCS4
0x2205	HE_SS2_MCS5
0x2206	HE_SS2_MCS6
0x2207	HE_SS2_MCS7
0x2208	HE_SS2_MCS8
0x2209	HE_SS2_MCS9
0x2210	HE_SS2_MCS10
0x2211	HE_SS2_MCS11

Table 11. 802.11ac/802.11ax data rate index...continued

2.12 Testing 802.11ax uplink-OFDMA transmit

This section shows how to run uplink-OFDMA (UL-OFDMA) test using Wi-Fi RF test mode commands. In the standard test setup, two boards are required to accomplish the test. One board known as the golden unit is used to transmit the trigger frame to the DUT. The other board is the DUT which responds to the trigger frame sent by the golden unit.

Note: This section is for the devices that support 5GHz Wi-Fi 6.

2.12.1 Test setup

<u>Figure 1</u> shows the standard setup for the UL-OFDMA test in the test lab. One radio (Golden Unit) is used to send a trigger frame and a second radio (DUT) is used to respond to the trigger frame with a UL-OFDMA signal. A horn antenna receives the UL-OFDMA signal from the DUT and the signal is analyzed with a test receiver.

Note: A standalone test setup with only one board (DUT) to test UL-OFDMA transmit can also be used.

2.12.2 Configure the golden unit and DUT for UL-OFDMA transmission

Command to set the trigger frame parameters on the golden unit:

wlan-set-rf-trigger-frame-cfg <enable_TX> <standalone_hetb> <frame ctrl type> <frame ctrl subtype> <frame duration> <trigger type> <UlLen> <MoreTF> <CSRequired> <UlBw> <LTFType> <LTFMode> <LTFSymbol> <UlSTBC> <LdpcESS> <ApTXPwr> <PreFecPadFct> <PeDisambig> <SpatialReuse> <Doppler> <HeSig2> <AID12> <RUAllocReg> <RUAlloc> <UlCodingType> <ULMCS> <UlDCM> <SSAlloc> <UlTargetRSSI> <MPDU_MU_SF> <TID_AL> <AC_PL> <Pref_AC>

Parameter	Definition
enable_TX	Enable transmit 0 = disable 1 = enable
standalone_hetb	Enable standalone UL-OFDMA 0 = disable 1 = Trigger-based UL-OFDMA 2 = Standalone UL-OFDMA
frame ctrl type	Set to 1
frame ctrl subtype	Set to 2
frame duration	Set to 5484
trigger type	Set to 0
UlLen	Set to 1000
MoreTF	Set to 0
CSRequired	Set to 0
UlBw	Channel bandwidth 0 = 20 MHz 1 = 40 MHz 2 = 80 MHz
LTFType	Set to 1
LTFMode	Set to 0
LTFSymbol	Select the long training field symbol (LTFS) 0 = 1xHELTF for 1SS 1 = 2xHELTF for 2SS
UlstbC	Set to 0
LdpcESS	Set to 1
ApTXPwr	Set to 0
PreFecPadFct	Set to 1
PeDisambig	Set to 0
SpatialReuse	Set to 65535
Doppler	Set to 0
HeSig2	Set to 511
AID12	Set to 5

Table 12. Command parameters

AN14282 Application note

Parameter	Definition
RUAllocReg	Set to 0
RUAlloc	RU index. The RU index value for 20 MHz, 40 MHz, and 80 MHz channel bandwidths are shown in <u>Figure 2</u> , <u>Figure 3</u> , and <u>Figure 4</u> respectively.
UlCodingType	Set to 1
UIMCS	MCS rate Range of 0 to 11
UldCM	Set to 0
SSAlloc	Select the spatial stream 0 = 1SS 1 = 2SS
UlTargetRSSI	Set to 90
MPDU_MU_SF	Set to 0
TID_AL	Set to 0
AC_PL	Set to 0
Pref_AC	Set to 0

 Table 12. Command parameters...continued

Note: The DUT transmits UL-OFDMA for each trigger frame it receives. Modify the transmit duty cycle by adjusting the TX time gap of the trigger frames on the golden unit. The RU index and MCS data rate of the UL-OFDMA transmission are based on the received trigger frame.

<u>Table 13</u> lists the example steps and commands for HE-trigger frame generation on the golden unit under the following conditions:

- 5 GHz path A
- Channel 36 and 20 MHz channel bandwidth

Table 13.	Steps 1	for HE-trigger	frame generation	on the golden unit
-----------	---------	----------------	------------------	--------------------

Step	Operation	Command
1	Enable RF test mode	# wlan-set-rf-test-mode
2	Set radio mode to 5 GHz (1x1 mode)	# wlan-set-rf-radio-mode 3
3	Set band to 5 GHz	# wlan-set-rf-band 1
4	Set bandwidth to 20 MHz	# wlan-set-rf-bandwidth 0
5	Set channel to 36	# wlan-set-rf-channel 36
6	Set trigger frame TX power to 20 dBm	<pre># wlan-set-rf-tx-power 20 1 0</pre>
7	Configure trigger frame with RU index 0 and MCS2 data rate	<pre># wlan-set-rf-trigger-frame-cfg 1 1 1 2 5484 0 1000 0 0 0 1 0 0 0 1 0 1 0 65535 0 511 5 0 0 1 2 0 0 90 0 0 0 0</pre>
8	Enable the trigger frame	<pre># wlan-set-rf-tx-frame 1 0x2100 0xabababab 0x200 1 20 0 0 0 0 0 0 0 00:00:00:00:00</pre>

RF Test Mode on FreeRTOS

Command to set the trigger frame response parameters on the DUT

wlan-set-rf-he-tb-tx <enable/exit> <Qnum> <AID> <AXQ0_MU_Timer> <TXPwr>

Parameter	Definition
enable/exit	Enter/exit trigger frame response mode 0 = exit trigger frame response mode (default) 1 = enter trigger frame response mode
Qnum	Transmit queue number that holds the trigger-based response packets. 1 = trigger-based test (default)
AID	Station ID Value set to 5.
AXQ0_MU_Timer	Arbitrary timer value to ensure SU packets are not transmitted. Units are in 8 ms. Set the value to be larger than the trigger frame interval. It is suggested to set the value to 400 (400 *8 = 3200 ms)
TXPwr	Transmit power in dBm.

Table 14. Command parameters

Table 15 lists the steps and RF test mode commands for HE-Trigger response frame generation on the DUT.

Table 1E	Ctopp for UE trigger	roopono fromo	a a naration a	m the DUIT
Table 15.	Sleps for HE-Iridger	response frame	deneration of	n ine du i
			3	

Step	Operation	Command
1	Enable RF test mode	<pre># wlan-set-rf-test-mode</pre>
2	Set radio mode to 5 GHz (1x1 mode)	<pre># wlan-set-rf-radio-mode 3</pre>
3	Set band to 5 GHz	# wlan-set-rf-band 1
4	Set bandwidth to 20 MHz	# wlan-set-rf-bandwidth 0
5	Set channel to 36	# wlan-set-rf-channel 36
6	Start HE TB-TX with TX power set to 9 dBm.	# wlan-set-rf-he-tb-tx 1 1 5 400 9
7	Measure the TX power value and	EVM for the HE trigger response frame using an RF tester
8	Stop the HE TB-TX	# wlan-set-rf-he-tb-tx 0 1 5 400 9

2.12.3 Testing standalone UL-OFDMA

A UL-OFDMA test can be performed with the DUT only and without the golden unit.

In the standalone OFDMA test:

- The DUT sends UL-OFDMA signals directly without the golden unit.
- The parameter <standalone hetb> is set to 2 for wlan-set-rf-trigger-frame-cfg command.

Note: This test setup is not used as much as the standard setup at the test lab. Consult with your test lab to determine if this test setup can be used for regulatory compliance testing.

Table 16 lists the steps and Wi-Fi RF test mode commands for standalone UL-OFDMA on the DUT.

Step	Operation	Command
1	Enable RF test mode	# wlan-set-rf-test-mode
2	Set the radio mode in 5 GHz (1x1 mode)	# wlan-set-rf-radio-mode 3
3	Set the band to 5 GHz	# wlan-set-rf-band 1
4	Set the bandwidth to 20 MHz	# wlan-set-rf-bandwidth 0
5	Set the channel to 36	# wlan-set-rf-channel 36
6	Set the TX power of the response frame to 20 dBm	# wlan-set-rf-tx-power 20 1 0
7	Configure the response frame with RU index 0, data rate MCS2	<pre># wlan-set-rf-trigger-frame-cfg 1 2 1 2 5484 0 1000 0 0 0 1 0 0 0 1 0 1 0 65535 0 511 5 0 8 1 2 0 0 90 0 0 0 0 </pre>
8	Start transmitting the response frame	<pre># wlan-set-rf-tx-frame 1 0x2100 0xabababab 0x200 1 20 0 0 0 0 0 0 00:00:00:00:00</pre>
9	Measure the TX power value and	d EVM for the HE trigger response frame using an RF tester
10	Stop transmitting the response frame	<pre># wlan-set-rf-tx-frame 0 0x2100 0xabababab 0x200 1 20 0 0 0 0 0 0 00:00:00:00:00:00</pre>
1	1	

Table 16. Steps for standalone UL-OFDMA test .

RF Test Mode on FreeRTOS

2.12.4 UL-OFDMA RU index

Bandwidth	20 MHz									
RU Index	0	1	2	3	4	5	6	7	8	
RU Tone	26	26	26	26	26	26	26	26	26	
RU Index	3	7	3	8		3	9	40		
RU Tone	5	52	5	52		5	2	52		
RU Index		5	3			54				
RU Tone		10	06				10	06		
RU Index		61								
RU Tone	242									
igure 2 Dilindex y	voluee for		onnol hon	المراجع المراجع						

Figure 2. RU index values for 20 MHz channel bandwidth

Bandwidth		40 MHz																
RU Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
RU Tone	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
RU Index	3	57	3	8		39 4		4	0	4	1	4	2		43		44	
RU Tone	5	52	5	2		5	2	52		5	52 52			5	52 5		2	
RU Index		5	3				5	64		55				56				
RU Tone		1	06				1	06		106 106								
RU Index					61					62								
RU Tone	242								242									
RU Index		65																
RU Tone										484								

Figure 3. RU index values for 40 MHz channel bandwidth

Bandwidth																		80	M	Hz																
RU Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 2	20	21	22	23	24	25	26	27	28	29	30	31	32	33 3	43	5 36
RU Tone	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26 2	26	26	26	26	26	26	26	26	26	26	26	26	26	26 2	6 2	6 26
RU Index	3	7	3	8		3	9	4	0	4	1	4	2		4	3	4	4		45		4	6		4	7	48		49	9	5	0		51		52
RU Tone	5	2	5	2		5	2	5	2	5	2	5	2		5	2	5	2		52		5	2		5	2	52		52	2	5	2		52		52
RU Index		5	53 54				55				56				5	7				5	8			5	9				60							
RU Tone		10	06				10	06		106			106				106				106			106			106									
RU Index					61									62						63 64																
RU Tone					242									242										242				Τ					242	2		
RU Index									6	5										66																
RU Tone	484																48	4																		
RU Index		67																																		
RU Tone		996																																		

Figure 4. RU index values for 80 MHz channel bandwidth

2.13 Examples of RF test mode command sequences

2.13.1 Command sequence for 2.4 GHz TX

TX configured for 2.4 GHz, RF channel 6, 20 MHz bandwidth, 15 dBm target power with OFDM modulation.

Step	Operation	Command
1	Enable the RF test mode	# wlan-set-rf-test-mode
2	Set the radio mode	# wlan-set-rf-radio-mode 11
3	Set RF band to 2.4 GHz	# wlan-set-rf-band 0
4	Set channel to 6	# wlan-set-rf-channel 6
5	Set 20 MHz bandwidth	# wlan-set-rf-bandwidth 0
6	Set TX power to 15 dBm OFDM on Path A	# wlan-set-rf-tx-power 15 1 0
7	Enable TX frames	<pre># wlan-set-rf-tx-frame 1 7 2730 256 0 0 0 0 0 0 0 0 0 11:22:33:44:55:66</pre>
8	Stop TX	# wlan-set-rf-tx-frame 0

Table 17. Command sequence using TX_continuous for 2.4 GHz TX

2.13.2 Command sequence for 5 GHz RX

RX configured for 5 GHz, RF channel 36, 20 MHz bandwidth.

Table	18.	Command	sequence	for 5	GHz RX	

Step	Operation	Command			
1	Enable the RF test mode	# wlan-set-rf-test-mode			
2	Set RF band to 5 GHz	# wlan-set-rf-band 1			
3	Set channel to 36	# wlan-set-rf-channel 36			
4	Set 20 MHz bandwidth	# wlan-set-rf-bandwidth 0			
5	Reset the packet error rate	# wlan-get-and-reset-rf-per			
6	Send a number of packets to the DUT				
7	Get and reset the packet error rate	# wlan-get-and-reset-rf-per			

3 RF test mode for Bluetooth

This section describes the commands to use Bluetooth RF test mode.

The *edgefast_bluetooth_shell* application demonstrates the interactive shell mode of Bluetooth commands and APIs, and provides direct access to the host command interface (HCI).

3.1 Initialize the Bluetooth interface

Before using any RF test mode commands, issue the command to enable the Bluetooth interface:

@bt> bt.init

3.2 RF test mode for Bluetooth BDR/EDR

This section describes RF test mode commands, and the usage of Bluetooth BR/EDR RF test mode feature.

3.2.1 Enable Bluetooth BDR/EDR TX test

Command to enable a Bluetooth BDR/EDR TX test:

@bt> bt_test.tx_test <TestScenario> <HoppingMode> <TxChannel> <RxChannel> <TxTestInterval> <PacketType> <Length> <Whitening> <Number of Test Packets> <TX Power>

Name	Length (byte)	Description
TestScenario	1	Test scenario 0x01 = PATTERN_00 (data pattern: 0x00) 0x02 = PATTERN_FF (data pattern: 0xFF) 0x03 = PATTERN_55 (data pattern: 0x55) 0x04 = PATTERN_PRBS (data pattern: 0xFE) 0x09 = PATTERN_0F (data pattern: 0x0F) 0xFF = exit test
HoppingMode	1	Hopping mode 0x00 = fixed frequency 0x01 = hopping set
TxChannel	1	TX channel Transmit frequency = (2402+k) MHz, where k is the value of TxChannel
RxChannel	1	RX channel Receive frequency = (2402+k) MHz, where k is the value of RxChannel
TxTestInterval	1	Poll interval for each frame in units of 1.25 ms
PacketType	1	Transmit packet type 0x03 = DM1 0x04 = DH1 0x0A = DM3 0x0B = DH3 0x0E = DM5 0x0F = DH5 0x14 = 2-DH1 0x1A = 2-DH3 0x1B = 3-DH3 0x1E = 2-DH5 0x1F = 3-DH5
Length	2	Length of test data
Whitening	1	Whitening 0x00 = disabled 0x01 = enabled
Number of Test Packets	4	Number of test packets 0 = infinite (default)

Table 19. Command parameters

Table 19. Command parameters...continued

Name	Length (byte)	Description
Tx Power	1	Signed value of TX power (dBm) Range = -20 dBm to 12 dBm (default = 4 dBm)

Example – Enable a transmit test with DM1 packets on channel 1 at 4 dBm

@bt> bt_test.tx_test 01 00 01 01 0D 03 0F 00 00 00 00 00 04
@bt> HCI Command Response : 00

Use the command below to stop the transmit test:

```
@bt> bt_test.tx_test FF 00 01 01 0D 03 0F 00 00 00 00 00 04
@bt> HCI Command Response : 00
```

3.2.2 Enable Bluetooth BDR/EDR RX test

Command to enable a Bluetooth BDR/EDR TX test:

```
@bt> bt_test.rx_test <TestScenario> <TxChannel> <RxChannel> <TestPacketType> <Expected
Number of Packets> <Length of Test Data> <TX AM Address> <TX BD Address> <Report Error
Packets>
```

Name	Length (byte)	Description
TestScenario	1	Test scenario 0x01 = receiver test, 0-pattern 0x02 = receiver test, 1-pattern 0x03 = receiver test, 1010-pattern 0x04 = receiver test, PRBS-pattern 0x09 = receiver test, 1111 0000-pattern 0xFF = abort test
TxChannel	1	TX channel Transmit frequency = (2402+k) MHz, where k is the value of TxChannel
RxChannel	1	RX channel Receive frequency = (2402+k) MHz, where k is the value of RxChannel
TestPacketType	1	Test packet type 0x03 = DM1 0x04 = DH1 0x0A = DM3 0x0B = DH3 0x0E = DM5 0x0F = DH5 0x14 = 2-DH1 0x18 = 3-DH1 0x18 = 3-DH3 0x1E = 2-DH3 0x1F = 3-DH5 5
Expected Number of Packets	4	Expected number of packets
Length of Test Data	2	Length of test data Should not be longer than the maximum size of the specified test packet type
Tx AM Address	1	TX AM Address Default = 0x01
Transmitter BD Address	6	BD address ff the transmitter This is used to derive the access code
Report Error Packets	1	Report error packets 0x00 = none (default) 0x01 to 0xFE = number of packets to report

Table 20 Command parameters

AN14282

RF Test Mode on FreeRTOS

Example – Enable a receive test on with DM1 packets on channel 1, from transmitter BD address 20:4E:F6:EC:1F:26

@bt> bt_test.rx_test 01 01 01 03 10 00 00 00 0F 00 20 4E F6 EC 1F 26 00
@bt> HCI Command Response : 00

Command to stop the receive test:

@bt> bt_test.rx_test FF 01 01 03 10 00 00 00 0F 00 20 4E F6 EC 1F 26 00 @bt> HCI Command Response : 00

3.3 RF test mode for Bluetooth LE

This section describes RF test mode commands for Bluetooth LE.

3.3.1 Set Bluetooth LE TX power

Command to set the BLE TX power:

@bt> le_test.set_tx_power <TX power>

Table 21. Command parameters

Parameter	Description
TX power	Bluetooth LE TX power (dBm) in hex

Example – Set the Bluetooth LE TX power to 4 dBm.

@bt> le_test.set_tx_power 4
tx_power= 4
@bt> HCI Command Response : 00

3.3.2 Enable Bluetooth LE TX Test

Command to enable a Bluetooth LE TX test:

@bt> le_test.tx_test <channel> <data_len> <pkt_payload> <phy>

Table 22. Command parameters

Parameter	Description
channel	Bluetooth LE Channel in hex Input = (frequency-2402) / 2 Range: 0x00 to 0x27 Frequency range: 2402 MHz to 2480 MHz
data_len	Length in bytes of payload data in each packet 0x00 to 0xFF
pkt_payload	Payload Pattern 0x00 PRBS9 sequence '1111111100000111101' 0x01 Repeated '11110000' sequence 0x02 Repeated '10101010' sequence 0x03 PRBS15 sequence 0x04 Repeated '11111111' sequence 0x05 Repeated '00000000' sequence 0x06 Repeated '00001111' sequence 0x07 Repeated '01010101' sequence
phy	Phy rate 1 = LE 1M 2 = LE 2M 3 = S=8 data coding 4 = S=2 data coding

Example – Enable a transmit test on channel 1, data length of 255 bytes, payload pattern of PRBS9, and Bluetooth LE 1M PHY:

```
@bt> le_test.tx_test 01 FF 00 01
@bt> HCI Command Response : 00
```

Use the command below to stop the transmit test:

```
@bt> le_test.end_test
@bt> HCI Command Response : 00
```

3.3.3 Enable Bluetooth LE RX test

Command to enable a Bluetooth LE RX test:

@bt> le_test.rx_test <channel> <phy> <modulation_index>

Table 23. Command parameters

Parameter	Description
channel	Bluetooth LE channel in hex
	Input = (frequency-2402) / 2
	Range: 0x00 to 0x27
	Frequency range: 2402 MHz to 2480 MHz
phy	Phy rate
	01 = LE 1M
	02 = LE 2M
	03 = Coded PHY
modulation_index	Modulation index
	0 = standard modulation index
	1 = stable modulation index

Example – Enable a receive test on channel 0 LE 2M PHY with standard modulation.

```
@bt> le_test.rx_test 00 01 00
@bt> HCI Command Response : 00
```

Command to stop the receive test:

```
@bt> le_test.end_test
@bt> HCI Command Response : 00
```

3.4 Examples of RF test mode command sequences

3.4.1 Command sequence for Bluetooth Classic TX

TX test with DM1 packets on channel 1 at 4 dBm.

Table 24.	Command	sequence for	or Bluetooth	Classic TX
	oommana	009401100 1	or braccooth	0100010 170

Step	Operation	Command
1	Initialize Bluetooth	@bt> bt.init
2	Transmit 4 dBm DM1 packets at 2404 MHz with data pattern 0x00	@bt> bt_test.tx_test 01 00 01 01 0D 03 0F 00 00 00 00 00 00 00 04
3	End transmit	@bt> bt_test.tx_test FF 00 01 01 0D 03 0F 00 00 00 00 00 00 00 04

3.4.2 Command sequence for Bluetooth Classic RX

RX test with DM1 packets on RF channel 1.

Table 25.	Command	sequence	for	Bluetooth	Classic	RX
-----------	---------	----------	-----	-----------	---------	----

Step	Operation	Command	
1	Initialize Bluetooth	@bt> bt.init	
2	Enable receive at 2404MHz for DM1 packets from TX device 20:4 E:F6:EC:1F:26	@bt> bt test.rx test 01 01 01 03 10 00 00 00 0F 00 20 4E F6 EC 1F 26 00	
3	Transmit packets to the DUT with an RF tester		
4	End receive test and get packet count	@bt> bt_test.rx_test FF 01 01 03 10 00 00 00 0F 00 20 4E F6 EC 1F 26 00	
5	Check packet count in HCI log		

3.4.3 Command sequence for Bluetooth LE TX

TX test with 1M LE packets on RF channel 0 at 4 dBm.

Table 26	Command	sequence	for	Bluetooth	I E	тх
	. oommanu	Sequence	101	Diactooth		IA

Step	Operation	Command
1	Initialize Bluetooth	@bt> bt.init
2	Set TX power to 4 dBm	<pre>@bt> le_test.set_tx_power 4</pre>
3	Transmit LE 1M packets on 2402 MHz	<pre>@bt> le_test.tx_test 00 FF 00 01</pre>
4	End transmit	<pre>@bt> le_test.end_test</pre>

3.4.4 Command sequence for Bluetooth LE RX

RX test with 1M LE packets on RF channel 0.

Table 27. Command sequence for Bluetooth LE RX

Step	Operation	Command	
1	Initialize Bluetooth	@bt> bt.init	
2	Enable receive for LE 1M packets on 2402 MHz	<pre>@bt> le_test.rx_test 00 01 00</pre>	
3	Transmit packets to the DUT with an RF tester		
4	End receive test	<pre>@bt> le_test.end_test</pre>	
5	Check packet count in HCI log		

4 RF test mode for 802.15.4

This section describes the commands for 802.15.4 RF test mode.

The *ot-cli* application demonstrates OpenThread features and can be used to configure the radio for 802.15.4 RF parameters. The application is based on the open source OpenThread CLI application and uses additional vendor-specific commands.

4.1 Initialize the 802.15.4 interface

Command to enable the 802.15.4 interface:

> ifconfig up

4.2 Enable/disable 802.15.4 RF test mode

Command to enable 802.15.4 RF test mode:

> radio_nxp mfgcmd 1

Command to disable 802.15.4 RF test mode:

> radio_nxp mfgcmd 0

4.3 Set the channel

Command to set 802.15.4 channel:

> radio nxp mfgcmd 12 <Channel>

Table 28. Command parameters			
Parameter	Description		
Channel	RF Channel		
	Input integer range of 11 (default) to 26		

Example - Set the channel to 13:

> radio_nxp mfgcmd 12 13

4.4 Get the channel

Command to get 802.15.4 current channel:

> radio_nxp mfgcmd 11

Example – Get the channel:

> radio_nxp mfgcmd 11
13

AN14282 Application note

4.5 Set TX power

Command to set the TX power:

> radio nxp mfgcmd 16 <TX power>

Table 29. Command parameters

Parameter	Description
TX power	TX power in dBm

Example - Set the TX power to 10 dBm:

```
> radio_nxp mfgcmd 16 10
```

4.6 Get TX power

Command to get the TX power:

> radio_nxp mfgcmd 15

Example - Get the TX power:

```
> radio_nxp mfgcmd 15
10
```

4.7 Set TX payload size

Command to set the TX payload size.

```
> radio_nxp mfgcmd 21 <payload>
```

Table 30. Command parameters

Parameter	Description
payload	TX payload in bytes Input integer range of 17 to 116

Example - Set the TX payload to 17 bytes:

> radio_nxp mfgcmd 21 17

4.8 Get TX payload size

Command to get the TX payload size in bytes:

> radio_nxp mfgcmd 20

Example – Command to get the payload size:

```
> radio_nxp mfgcmd 20
17
```

AN14282 Application note

4.9 Start RX test

Command to start an RX test and receive frames:

```
> radio_nxp mfgcmd 32
```

4.10 Get RX test results

Command to get the RX test results:

> radio_nxp mfgcmd 31

Example - Get the RX test results:

```
> radio_nxp mfgcmd 31
status : 0
rx_pkt_count : 500
total_pkt_count : 500
rssi : -32
lqi : 0
```

4.11 Enable/disable TX continuous

Command to start a continuous transmission:

```
> radio_nxp mfgcmd 17 <enable/disable>
```

Table 31. Command parameters

Description			
Enable or disable continuous TX			
0 = disable			
1 = enable			

Example – Enable continuous TX:

> radio_nxp mfgcmd 17 1

Example - Disable continuous TX:

> radio_nxp mfgcmd 17 0

4.12 Start burst TX test

Command to start a burst TX test and send a number of frames:

> radio_nxp mfgcmd 33 <mode> <packet gap>

Table 32. Command parameters

Parameter	Description
mode	Number of packets to send
	0=1
	1=25
	2=100
	3=500
	4=1000
	5=2000
	6=5000
	7=10000
Packet gap	Packet gap in milliseconds (ms)
	Must be >5ms

Example – Enable a 500 packet burst TX with a 10ms packet gap:

```
> radio_nxp mfgcmd 33 3 10
```

4.13 Enable/disable TX with duty cycle

Command to start a transmission with a duty cycle of ~27%:

```
> radio_nxp mfgcmd 35 <enable/disable>
```

Table 33. Command parameters

Parameter	Description
enable/disable	Enable or disable TX with duty cycle
	0 = disable
	1 = enable

Example - Enable TX with duty cycle:

> radio_nxp mfgcmd 35 1

Example – Disable TX with duty cycle:

> radio_nxp mfgcmd 35 0

4.14 Examples of RF test mode command sequences

4.14.1 Command sequence for 802.15.4 TX

Continuous TX test with on channel 11 at 10 dBm.

Table 34	Continuous	TX test	command	sequence
	Continuous	IV ICOI	commania	Sequence

Step	Operation	Command
1	Initialize 802.15.4 interface	> ifconfig up
2	Enable RF test mode	<pre>> radio_nxp mfgcmd 1</pre>
3	Set RF channel to channel 11	<pre>> radio_nxp mfgcmd 12 11</pre>
4	Set TX power to 10 dBm	<pre>> radio_nxp mfgcmd 16 10</pre>
5	Enable continuous TX	<pre>> radio_nxp mfgcmd 17 1</pre>
6	Disable continuous TX	> radio_nxp mfgcmd 17 0

4.14.2 Command sequence for 802.15.4 RX

RX test with on channel 11.

Table 35. Continuous RX test command sequence

Step	Operation	Command
1	Initialize 802.15.4 interface	> ifconfig up
2	Enable RF test mode	<pre>> radio_nxp mfgcmd 1</pre>
3	Set RF channel to channel 11	<pre>> radio_nxp mfgcmd 12 11</pre>
4	Start RX test	<pre>> radio_nxp mfgcmd 32</pre>
5	Get RX test results	<pre>> radio_nxp mfgcmd 31</pre>

AN14282

RF Test Mode on FreeRTOS

5 Abbreviations

Table 36. Abbreviations		
Abbreviation	Definition	
CS	Carrier suppression	
CW	Carrier wave	
DUT	Device under test	
FW	Firmware	
HCI	Host command interface	
RF	Radio frequency	
RX	Receive	
ТХ	Transmit	
UL-OFDMA	Uplink OFDMA	

6 References

- User manual UM11441: Getting Started with NXP-based Wireless Modules on i.MX Platforms Running FreeRTOS (<u>link</u>)
- [2] User manual UM11798: Getting Started with Wireless on RW61x Evaluation Board Running RTOS (link)
- [3] Webpage 88W8987: 2.4 GHz/5 GHz Dual-band 1x1 Wi-Fi[®] 5 (802.11ac) + Bluetooth[®] Solution (link)
- [4] Webpage IW416: 2.4 GHz/5 GHz Dual-band 1x1 Wi-Fi[®] 4 (802.11n) + Bluetooth[®] Solution (<u>link</u>)
- [5] Webpage IW611: 2.4 GHz/5 GHz Dual-band 1x1 Wi-Fi[®] 6 (802.11ax) + Bluetooth[®] Solution (link)
- [6] Webpage IW612: 2.4 GHz/5 GHz Dual-band 1x1 Wi-Fi[®] 6 (802.11ax) + Bluetooth[®] + 802.15.4 Tri-Radio Solution (<u>link</u>)
- [7] Webpage RW610: Wireless MCU with Integrated Radio: 1x1 Wi-Fi[®] 6 + Bluetooth[®] Low Energy Radios (link)
- [8] Webpage RW612: Wireless MCU with Integrated Tri-radio: 1x1 Wi-Fi[®] 6 + Bluetooth[®] Low Energy / 802.15.4 (<u>link</u>)

7 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials must be provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

AN14282

8 Revision history

Document ID	Release date	Description
AN14282 v.1.0	7 February 2025	Initial version

AN14282

RF Test Mode on FreeRTOS

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

 $\ensuremath{\mathsf{NXP}}\xspace$ B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

AN14282

RF Test Mode on FreeRTOS

Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS — are trademarks of Amazon.com, Inc. or its affiliates.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license.

Tables

Tab. 1.	Command parameters	
Tab. 2.	Command parameters4	
Tab. 3.	Command parameters5	
Tab. 4.	Command parameters6	
Tab. 5.	Command parameters8	
Tab. 6.	Command parameters8	
Tab. 7.	Command parameters9	
Tab. 8.	Command parameters10	
Tab. 9.	Command parameters11	
Tab. 10.	802.11n/a/g/b data rate index13	
Tab. 11.	802.11ac/802.11ax data rate index14	
Tab. 12.	Command parameters17	
Tab. 13.	Steps for HE-trigger frame generation on	
	the golden unit	
Tab. 14.	Command parameters19	
Tab. 15.	Steps for HE-trigger response frame	
	generation on the DUT19	
Tab. 16.	Steps for standalone UL-OFDMA test	
Tab. 17.	Command sequence using TX_continuous	
	for 2.4 GHz TX22	
Tab. 18.	Command sequence for 5 GHz RX23	

Tab. 19.	Command parameters	25
Tab. 20.	Command parameters	27
Tab. 21.	Command parameters	29
Tab. 22.	Command parameters	30
Tab. 23.	Command parameters	31
Tab. 24.	Command sequence for Bluetooth Classic	
	ТХ	32
Tab. 25.	Command sequence for Bluetooth Classic	
	RX	32
Tab. 26.	Command sequence for Bluetooth LE TX	33
Tab. 27.	Command sequence for Bluetooth LE RX	33
Tab. 28.	Command parameters	34
Tab. 29.	Command parameters	35
Tab. 30.	Command parameters	35
Tab. 31.	Command parameters	36
Tab. 32.	Command parameters	37
Tab. 33.	Command parameters	37
Tab. 34.	Continuous TX test command sequence	38
Tab. 35.	Continuous RX test command sequence	38
Tab. 36.	Abbreviations	39
Tab. 37.	Revision history	42

Figures

Fig. 1.	Uplink OFDMA test setup	16
Fig. 2.	RU index values for 20 MHz channel	
	bandwidth	21

Fig. 3.	RU index values for 40 MHz channel	
C C	bandwidth	21
Fig. 4.	RU index values for 80 MHz channel	
-	bandwidth	

AN14282

RF Test Mode on FreeRTOS

Contents

1	Introduction2
1.1	Supported devices 2
2	RF test mode for Wi-Fi3
2.1	Enable RF test mode 3
2.2	Set/get RF frequency band
2.3	Set/get the RF channel 4
2.4	Set/get the channel bandwidth5
2.5	Set/get the radio mode
2.6	Display and clear the received Wi-Fi packet
	count
2.7	Set/get the antenna configuration8
2.8	Set TX power
2.9	Set Wi-Fi transmitter in continuous carrier
	wave (CW) mode
2.10	Transmit 802 11 packets 11
2.11	Data rates 13
2 12	Testing 802 11ax uplink-OFDMA transmit 16
2 12 1	Test setun 16
2 12 2	Configure the golden unit and DUT for UI -
	OFDMA transmission
2.12.3	Testing standalone UI -OFDMA 20
2.12.4	UI -OFDMA RU index 21
2.13	Examples of RF test mode command
	sequences
2.13.1	Command sequence for 2.4 GHz TX
2 13 2	Command sequence for 5 GHz RX 23
3	RF test mode for Bluetooth 24
31	Initialize the Bluetooth interface 24
3.2	RE test mode for Bluetooth BDR/EDR 25
321	Enable Bluetooth BDR/EDR TX test 25
322	Enable Bluetooth BDR/EDR RX test 27
3.3	RE test mode for Bluetooth LE 29
331	Set Bluetooth LE TX power 29
332	Enable Bluetooth I E TX Test 30
333	Enable Bluetooth LE RX test
34	Examples of RE test mode command
0.4	sequences 32
341	Command sequence for Bluetooth Classic
0.1.1	TX 32
342	Command sequence for Bluetooth Classic
0.1.2	RX 32
343	Command sequence for Bluetooth LE TX 33
344	Command sequence for Bluetooth LE RX 33
4	RE test mode for 802 15 4 34
ч 41	Initialize the 802 15 4 interface 34
4.1	Enable/disable 802 15 4 RE test mode 34
4.3	Set the channel 34
т .5 Л Л	Cet the channel 34
т. ч 15	Set TY nower 25
т .5 16	Cet TX power 25
+.0 17	Set TX navload size 25
+./ / 8	Get TX payload size
4.0 1 0	Start DV tast
4.9	Start RA lest

4.10	Get RX test results	
4.11	Enable/disable TX continuous	
4.12	Start burst TX test	
4.13	Enable/disable TX with duty cycle	
4.14	Examples of RF test mode command	
	sequences	
4.14.1	Command sequence for 802.15.4 TX	
4.14.2	Command sequence for 802.15.4 RX	38
5	Abbreviations	39
6	References	40
7	Note about the source code in the	
	document	41
8	Revision history	42
	Legal information	43
	-	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2025 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com

Document feedback Date of release: 7 February 2025 Document identifier: AN14282