
AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller
Rev. 1.0 — 23 September 2024 Application note

Document information
Information Content

Keywords AN14300, eDMA, bus master, DMA, MCX Nx4x

Abstract This application note provides a working knowledge by covering the following topics: introduction
and overview of eDMA controllers, features of the MCX Nx4x eDMA module, interaction between
the eDMA and DMA multiplexer (DMAMUX) and configuration advice for applications along with
examples.

https://www.nxp.com

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

1 Introduction

The MCX Nx4x series microcontrollers combine the Arm Cortex-M33 TrustZone core with a CoolFlux BSP32,
a PowerQuad DSP Co-processor, and multiple high-speed connectivity options running at 150 MHz. It delivers
exceptional processing power and advanced integration, which makes it ideal for demanding applications from
motor control and industrial automation to audio processing and communication systems. However, efficient
data management is crucial for these applications to achieve optimal performance.

Enhanced Direct Memory Access (eDMA) empowers efficient data transfers between memory and peripherals,
alleviating CPU workload and enhancing system performance. MCX Nx4x series microcontrollers offer a
versatile eDMA controller that can be configured to meet a wide range of data transfer requirements. This
application note provides a working knowledge by covering the following topics: introduction and overview
of eDMA controllers, features of the MCX Nx4x eDMA module, interaction between the eDMA and DMA
multiplexer (DMAMUX), and configuration advice for applications. Examples are used throughout this document
to demonstrate increasingly complex eDMA configurations.

1.1 eDMA controller overview
An eDMA controller supports to move data from one memory- mapped location to another without CPU
intervention. Once configured and initiated, the eDMA controller operates in parallel to the Central Processing
Unit (CPU), performing data transfers, that would otherwise have been handled by the CPU. This results in a
reduced CPU loading and a corresponding increase in system performance. Figure 1 illustrates the functionality
provided by a DMA controller.

DMA

Source

0x11112222
0x33334444
0x55556666
0x77778888
0x9999AAA
0xBBBBCC
0xDDDDEE

Destination

0x9999AAA0x9999AAAA

DMA Transfer Request

DMA reads
source data

DMA writes
source data

to the
destination

e.g. RAM

e.g. DSPI TX
Register

Figure 1. eDMA operational overview

1.2 MCX Nx4x eDMA block description
The eDMA module is partitioned into two major modules (Figure 2):

1. The eDMA Engine
2. Local memory containing Transfer Control Descriptors (TCDs) for each of the channel.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
2 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Figure 2. eDMA block diagram

Details of the further partitioned submodules are as below.

1.2.1 Address path

• Implements the primary and secondary channel.
• Responsible for generating source and destination memory addresses for each transfer.
• Allows the data transfer associated with one channel to be pre-empted by a higher priority channel.
• Supports various addressing modes like incrementing, decrementing, fixed, and scatter-gather.
• Allows configuration of transfer size and alignment for optimal performance.

1.2.2 Data path

• Implements the bus master read/write data path.
• Internal read, write data bus are the primary input and output.
• Integrates hardware flow control to prevent data overflows or underflows.

1.2.3 Program/Channel arbitration

• Manages access to the eDMA engine by multiple channels simultaneously.
• Uses priority levels to ensure that the critical data gets processed first.
• Includes round-robin scheduling for fair allocation of resources.

1.2.4 Control

• Orchestrates the entire eDMA control functions, including initiating transfers, managing interrupts, and
handling errors.

• Provides various control registers for configuration and monitoring.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
3 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

1.2.5 TCD

• Each eDMA channel has a dedicated Transfer Control Descriptor (TCD) module of 32 bytes.
• TCD is further partitioned into memory controller and memory array:

– The memory controller manages the access both from the eDMA engine and from the internal peripheral
bus.

– The memory array stores each channel transfer profile like source, destination address, offset, and
attributes. These details are specified in the channel TCD registers.

1.3 MCX Nx4x eDMA controller features
MCX Nx4x devices feature a two 16-channel DMA controller. Each channel can be independently configured
with the details of the transfer sequence that is to be executed. The DMAMUX for MCX Nx4x series allows up to
128 DMA request signals (six unused signals are reserved) to be mapped to each channel.

eDMA transfers can be activated in three ways:

1. Peripheral paced hardware requests.
2. Software initiation.
3. Channel-to-channel linking – On completion of a transfer, one channel activates another.

Each channel can generate interrupts to indicate that it has partially completed or fully completed a transfer.
Interrupts can also be generated to indicate that a transfer error has occurred.

Scatter/Gather processing is supported by each of the 16 channels. This feature allows a channel to self-load
a new TCD when it has performed the transfer for its current configuration. This feature enables extensive
transfer sequences beyond 16 via dynamically defining and employing transfer sequences.

1.4 eDMA architectural integration
To allow the eDMA, CPUs, and other masters to operate simultaneously, a multi-master bus architecture is
implemented. The MCX Nx4x chips feature multiple bus masters: for example, cores, fast Ethernet controller,
and LFAST.

The crossbar switch (XBAR) forms the heart of this multi-master architecture. It links each master to the
required slave device. Many devices in the MCX Nx4x family feature a dual-crossbar architecture. In this
case, data passes from one crossbar to the next if a master requires access to a slave that is not on the
same crossbar as itself. If two or more masters attempt joint access to the same slave, an arbitration scheme
commences, eliminating the risk of bus contention. Both fixed-priority and round-robin arbitration schemes are
available.

The crossbar switch and interaction between bus masters and slave devices is illustrated in a simplified
version in Figure 3. In this example, the eDMA controller is accessing one of the peripherals on the IP bus
while the CPU is concurrently accessing the SRAM memory. The crossbar switch has formed the appropriate
connections for this situation.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
4 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

CPU

Peripheral
Bridge

SRAM

Crossbar

eDMA
Controller

Flash

Bus Masters

Bus Slaves

Figure 3. Multi-master bus architecture

2 eDMA data Flow

The basic flow of data transfer can be partitioned into three segments, which are explained as below:

• Initiating the Transfer
– Requesting Service

As shown in Figure 4, the selected channel requests service by asserting the eDMA peripheral request
signal. This trigger is like the software-initiated flow where the TCDn_CSR[START] field is used.

– Routing the Request
The internal eDMA engine receives the request and routes it through the control module, program
model, and channel arbitration unit.

– Channel Arbitration
In the next cycle, a fixed-priority algorithm, optionally combined with round-robin, chooses the activated
channel.

– Accessing TCD Descriptor
The selected channel number is then used to access and read the corresponding TCD descriptor from the
64-bit wide TCD memory. This descriptor is loaded into primary or secondary channel execution registers of
the address path.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
5 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Figure 4. Initializing the transfer
• Performing the data transfer

– Data movement
As presented in Figure 5, modules like the address path, data path, and control unit work together to
perform the actual data transfer as defined in the TCD.

Figure 5. eDMA data transfer
– Source reads

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
6 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Source reads are initiated, and the fetched data is temporarily stored in the data path block before being
transferred to the destination.

– Destination writes
This source read/destination write cycle continues until all NBYTES of data are transferred.

• Completing the transfer
– TCD updates

As described in Figure 6, after NBYTES are transferred, the address path logic updates specific fields in the
TCD based on the operation, like SADDR, DADDR, and CITER.

– Major iteration completion
If the major iteration count reaches its limit, more operations occur, including final address adjustments and
reloading BITER into CITER.

– Optional interrupt and scatter/gather
An optional interrupt request might be asserted. If the scatter/gather is enabled, a new TCD could be
fetched from memory using the provided pointer.

Figure 6. Completing the eDMA transfer

2.1 Channel activation
• Events occurring within other peripheral modules can be enabled to activate eDMA transfers. In many

modules, event flags can be asserted as either eDMA or interrupt requests. Due to the high number of
sources for those requests, a configurable multiplexer (DMAMUX) is implemented to route peripheral DMA
requests to DMA channels.

• Channels may also be activated by software. The TCDs of the channels provide a START bit that activates
the channel when asserted. This makes it possible to activate each channel in software. The START bit
also provides a useful tool for testing and debugging the TCD, making it possible to assess if the channel
performed the expected transfers each time it is activated.

• Channel linking provides the means for one channel to assert the START bit of another channel. The linked
channel can be activated at stages of the transfer or on completion of the transfer.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
7 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

2.2 Channel arbitration
The peripheral request line for each channel of DMA is driven from a Direct Memory Access Multiplexer
(DMAMUX). This is a flexible configuration that allows the user to select the appropriate peripheral to connect
to each channel of the DMA controller. The DMA multiplexer is used to route the numerous peripheral DMA
sources to individual DMA channels, and it allows up to 128 DMA request signals (six are reserved for future
use). There are two DMA mux instances available, each of which is able to route sources to sixteen DMA
channels.

DMAMUX instance DMA channel

0 0–15

1 0-15

Table 1. eDMA transfer request sources

The DMA multiplexer (DMA_Mux) performs the task of routing the peripheral DMA request sources to the
desired channel.

DMAMUX number DMAMUX0 - DMAMUX1 (Source
descriptor)

DMAMUX0 - DMAMUX1 alias

0 Disabled —

1 Receive event FlexSPI0

2 Transmit event FlexSPI0

3-6 INT0 - INT3 PINT0

7-8 to 15-16 DMAREQ_M0 - DMAREQ_M1 CTIMER0 to CTIMER4

17 Wake up event WUU0

18 FIFO_request MICFIL0

19-20 DMA0-DMA1 SCT0

21-22 FIFO A, FIFO B request ADC0

23-24 FIFO A, FIFO B request ADC1

25-27 FIFO_request DAC0 to DAC2

28-30 DMA_request CMP0 to CMP2

31-32 to 37-38 OUT0A-OUT0B to OUT3A-OUT3B EVTG0

39-42 Req_Capt0 – Req_Capt3 PWM0

43-46 Req_val0 – Req_val3 PWM0

47-50 Req_capt0 – Req_capt3 PWM1

51-54 Req_val0 – Req_val3 PWM1

55, 56 — Reserved

57, 58 Counter match event LPTMR0 to LPTMR1

59, 60 DMA request CAN0 to CAN1

61-68 Shifter(0-7) Status DMA request OR
Timer(0-7) Status DMA request

FlexIO0

69-70 to 87-88 Receive and Transmit request LP_FLEXCOMM0 to LP_FLEXCOMM9

Table 2. Peripheral DMA requests on MCX Nx4x

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
8 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

DMAMUX number DMAMUX0 - DMAMUX1 (Source
descriptor)

DMAMUX0 - DMAMUX1 alias

89, 90 — Reserved

91-92 to 93-94 Receive-Transmit request EVMSIM0 to EVMSIM1

95-96 to 97-98 Receive-Transmit request I3C0 to I3C1

99-100 to 101-102 Receive-Transmit request SAI0 to SAI1

103-107 Ipd_req_sinc[0-4] or ipd_req_alt[0-4] SINC0

108-109 to 118-119 Pin event request 0-Pin event request 1 GPIO0 to GPIO5

120 End of Scan TSI0

121 Out of Range TSI0

Table 2. Peripheral DMA requests on MCX Nx4x...continued

2.3 Modes of operation
The eDMA supports two modes, which are explained as below:

• Debug mode: In this mode, the DMA channel is disabled. Since DMA channels are disabled and enabled
primarily via the DMA configuration registers, this mode is used mainly as the reset state for a DMA channel
in the DMA Channel Mux. It may also be used to temporarily suspend a DMA channel while reconfiguration of
the system takes place.

• Normal mode: In this mode, a DMA source is routed directly to the specified DMA channel. The operation of
the DMA Mux in this mode is completely transparent to the system. A DMA source and a destination (such as
a peripheral result or transmit buffer) requests/triggers the start of a DMA transfer when it is ready to receive
or transfer data.

3 Transfer process

Prior to configuring the eDMA, it is useful to understand how the eDMA performs a transfer.

3.1 Handling multiple transfer requests
Only one channel can actively perform a transfer at a given time. Therefore, to handle multiple pending transfer
requests the eDMA controller offers channel prioritization. Fixed-priority or round-robin prioritization can be
selected.

In the fixed-priority scheme, each channel is assigned a priority level. When multiple requests are pending,
the channel with the highest priority level performs its transfer first. By default, the fixed priority arbitration is
implemented, with each channel being assigned a priority level equal to its channel number. Other priority levels
can be assigned if required. Higher priority channels can preempt lower priority channels. Preemption occurs
when a channel is performing a transfer while a transfer request is asserted to a channel of a higher priority.
In this case, the lower priority channel halts its transfer and allows the channel of higher priority to carry out its
transfer. The lower priority channel then resumes its transfer when the higher priority channel has completed its
transfer. One level of preemption is supported. Preemption is an option and must be enabled on a per-channel
basis if required.

In round-robin mode, the eDMA cycles through the channels in order, checking for a pending request. When
a channel with a pending request is reached, it is allowed to perform its transfer. When the transfer has been
completed, the eDMA continues to cycle through the channels looking for the next pending request.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
9 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

3.2 Major and minor transfer loops
Each time a channel is activated and executes, several bytes, NBYTES, are transferred from the source to the
destination. This is referred to as a minor transfer loop. A major transfer loop consists of a few minor transfer
loops. This number is specified within the TCD. As iterations of the minor loop are completed, the current
iteration (CITER) TCD field is decremented. When the current iteration field has been exhausted, the channel
has completed a major transfer loop.

Figure 7 shows the relationship between major and minor loops. In this example, a channel is configured so that
a major loop consists of three iterations of a minor loop. The minor loop is configured to be a transfer of four
bytes.

1
2
3
4

1
2
3
4

1
2
3
4

DMA Request

DMA Request

DMA Request

CITER
3

CITER
2

CITER
1

M
ajor Loop

Minor
loop

Source Data
transferred

(bytes – n=4)

Ti
m

e

Figure 7. Major and minor transfer loops

The channel performs a selection of tasks upon completion of each minor and major transfer loop.

3.3 Completing a minor transfer loop
On completion of the minor loop, excluding the final minor loop, the eDMA carries out the following tasks:

• Decrementing the current iteration (CITER) counter.
• Updating the source address by adding the current source address to the signed source offset: SADDR =

SADDR + SOFF (source address is updated automatically as transfers are performed. On completion of the
minor loop, the source address contains the source address for the last piece of data that was read in the
minor loop; offset is added to this value).

• Updating the destination address by adding the current destination address to the signed destination offset:
DADDR = DADDR + DOFF.

• Updating channel status bits and requesting (enabled) interrupts.
• Asserting the start bit of the linked channel upon completion of a minor loop, if channel linking is enabled.

3.4 Completing a major transfer loop
On completion of the major/final minor loop, the eDMA performs the following:

• Updating the source address by adding the current source address to the last source address adjustment:
SADDR = SADDR + SLAST

• Updating the destination address by adding the current destination address to the last destination address
adjustment: DADDR = DADDR + DLAST

• Updating the channel status bits and requesting (enabled) interrupts
• Asserting the start bit of the linked channel upon completion of a minor loop, if the channel linking is enabled
• Reloading current iteration (CITER) from the beginning major iteration count (BITER) field

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
10 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Note:

There are two ways to test the minor loop completion:

• Hardware
• Software

The TCD status fields execute the following sequence for a hardware-activated channel:

TCDn_CSR field CHn_CSR fields
Stage

START ACTIVE DONE
State

1 0 0 0 Initiate channel service request via hardware
(peripheral request asserted).

2 0 1 0 The channel is executing.

3a 0 0 0 The channel has completed the minor loop and is
idle.

3b 0 0 1 The channel has completed the major loop and is
idle.

Table 3. TCD status field

The best method to test for minor-loop completion when using hardware-initiated service requests is to read the
TCDn_CITER field and test for a change.

Whereas in software initiated service request the TCDn_CSR[START] field is 1 at Stage 1.

For both activation types, the major-loop-complete status is explicitly indicated via the CHn_CSR[DONE] field.

The TCDn_CSR[START] field is cleared to 0 automatically when the channel begins execution, regardless of
how the channel activates.

3.5 Channel linking
Channel linking (or chaining) is a mechanism in which one channel sets the TCDn_CSR[START] field of another
channel (or itself), thus initiating a service request for that channel. When properly enabled, the eDMA engine
automatically performs this operation at the major or minor loop completion.

4 Dynamic programming

This method is used to change the programming model during channel execution. To follow for changing the
group or channel priority levels, perform the below steps:

• Halt the DMA by writing 1 to the CSR[HALT] field.
• Change the group or channel priorities as wanted.
• Enable normal DMA operations by writing 0 to the CSR[HALT] field.

Use the following coherency model when executing a dynamic channel link request.

1. Write 1 to the TCDn_CSR[MAJORELINK] field.
2. Read back to the TCDn_CSR[MAJORELINK] field.
3. Test the TCDn_CSR[MAJORELINK] request status:

• If TCDn_CSR[MAJORELINK] = 1, the dynamic link attempt was successful.
• If TCDn_CSR[MAJORELINK] = 0, the attempted dynamic link did not succeed (the channel was already

retiring).

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
11 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

4.1 Dynamic scatter/gather
Scatter/gather is the process of automatically loading a new TCD into a channel. It also allows a DMA channel
to use multiple TCDs which:

• Enables using multiple data transfer configurations for a single DMA channel.
• Allows the scattering data to multiple destinations or the gathering data from multiple sources.
• Automatically loads a new transfer configuration (TCD) when the current one finishes.

A coherency model is needed as configuration can be changed during execution

Why Coherency?

• If a user wants to execute a dynamic scatter/gather operation by enabling the TCDn_CSR[ESG] field and
at the same time the eDMA engine is retiring a channel then it is unclear whether the actual scatter/gather
request is honored or not.

Recommended solutions

1. Force Zero on TCDn_CSR[ESG] after the completion:
• Whenever users write to TCDn_CSR, make sure that TCDn_CSR[ESG] is cleared to 0 after the channel

finishes its major loop (CHn_CSR[DONE] = 1).
2. Clear DONE before setting ESG:

• To set ESG, clear the DONE field first.

Benefits

• Enables complex data transfers without needing multiple DMA channels.
• Improves flexibility and efficiency for specific DMA operations.

5 Configuring the eDMA

This section covers some of the important configuration steps and register fields. For full details of all the
register fields, consult the reference manual of the microcontroller.

5.1 Configuration steps
To configure the eDMA, perform the following initialization steps:

1. Program the control register (MP_CSR). This step is necessary only if a configuration other than the default is
required.

2. Configure the channel priority register (CHn_PRI) and group priority level (CHn_GRPRI) This step is
necessary only if a configuration other than the default is required.

3. Enable error interrupts CHn_CSR[EEI]using either the DMAEEI or DMASEEI register. This step is necessary
only if a configuration other than the default is required.

4. Write the transfer control descriptors (eDMA_TCDn) for all channels that are used. Configure TCDs for the
scatter/gather mechanism if required.

5. Configure the appropriate peripheral module and configure the DMAMUX to route the activation signal to
the appropriate channel.

5.2 Transfer Control Descriptors (TCD)
All transfer attributes for a channel are defined in the unique TCD of the channel. Each TCD is stored in the
local SRAM of the eDMA controller. Only the DONE, ACTIVE, and STATUS fields are initialized at reset. All
other TCD fields are undefined at reset and must be written to by software before the channel is activated.
Failure to do this may result in unpredictable behavior of the channel. Figure 8 shows the TCD memory map.
AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
12 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Figure 8. TCD memory map

Table 4 describes the elements of TCD and their functions.

Field Description

SADDR[31:0] Source address
Memory address of the transferred source data. It allows any area of the memory map to
be selected. As the eDMA performs transfers, this field is automatically updated for the next
transfer.

SMOD[15:11] Source address modulo
It simplifies the implementation of a circular data queue. A circular buffer is created as the
lower address fields wrap to their original value while the upper fields remain fixed.
00000 – The source address modulo feature is disabled.
xxxxx – The number of lower source address bits that are allowed to increment.

SSIZE[10:8] Source data transfer size
It defines the read data size for the eDMA engine. It does not define the amount of data
transferred per channel activation.
000 – 8-bit
001 – 16-bit
010 – 32-bit
011 – Reserved
100 – 16-byte burst
101 – Reserved
110 – Reserved

Table 4. TCD field descriptions

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
13 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Field Description
111 – Reserved

DMOD[7:3] Destination address modulo
It can be used to implement a circular data destination. As per SMOD but for the destination
address.

DSIZE[2:0] Destination data transfer size
It defines the data write size for the eDMA engine. As per SSIZE.

SOFF[15:0] Source address signed offset
Signed offset that is added to the current source address, upon completion of a minor loop,
to calculate the new source address value.

NBYTES[29:0]/[9:0] The number of bytes to be transferred in each service request of the channel.
The number of bytes to be transferred upon each activation of the channel.
The length of the field varies depending on enabling/disabling minor offset.

SMLOE[31] Source minor loop offset enable
0 – The minor loop offset is not applied to the SADDR.
1 – The minor loop offset is applied to the SADDR.

DMLOE[30] Destination minor loop offset enable
0 – The minor loop offset is not applied to the DADDR.
1 – The minor loop offset is applied to the DADDR.

MLOFF[29:10] If SMLOE or DMLOE is set, this field represents a sign-extended offset applied to the source
or destination address to form the next-state value after the minor loop completes.

SLAST_SDA[31:0] Last source address adjustment
Signed offset that is added to the source address upon completion of the major loop, to
calculate the new source address value. It can be used to restore the source address to the
original value or to adjust the source address to the next data structure.

DADDR[31:0] Destination address
Memory address pointing to the destination data.

CITER_ELINK Enable channel linking on completion of a minor loop
0 – Channel Linking on completion of a minor loop is disabled.
1 – Channel Linking on completion of a minor loop is enabled.
Note: This field must be equal to the BITER_E_LINK field or a configuration error is
reported.

LINKCH[5:0] Minor loop link channel number
If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted,
the eDMA engine initiates a channel service request to the channel defined by this field by
writingthe TCDn_CSR[START] field of that channel to 1.

CITER[14:0] or CITER[8:0] Current iteration count
This 9-bit (ELINK = 1) or 15-bit (ELINK = 0) count represents the current major loop count
for the channel. It is decremented each time the channel finishes a service request and is
written back to the TCD memory. After the major iteration count is exhausted, the channel
performs a number of operations — for example, final source and destination address
calculations — and optionally generates an interrupt to signal channel completion before
reloading the CITER field from the Beginning Iteration Count (BITER) field.

DOFF[15:0] Destination address signed offset
Signed offset that is added to the current destination address upon completion of a minor
loop to calculate the next destination address.

DLAST_SGA[31:0] Last destination address adjustment or memory address for the next TCD

Table 4. TCD field descriptions...continued

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
14 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Field Description
If scatter/gather is disabled (ESG = 0), then the value contained in this field performs the
same task as the SLAST field for the destination address.
When scatter/gather is enabled (ESG = 1), this field is used as a pointer to a 0-modulo-32
region that contains the next TCD for this channel.

ELINK Enable link
0b – Channel-to-channel linking disabled.
1b – Channel-to-channel linking enabled.

LINKCH[12:9] Link channel number
If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted,
the eDMA engine initiates a channel service request at the channel defined by this field by
setting that channel’s TCDn_CSR[START] field.

BITER[14:0] or BITER[8:0] Beginning major iteration count
As the transfer control descriptor is first loaded by software, this 9-bit (ELINK = 1) or 15-bit
(ELINK = 0) field must be set equal to the value in the CITER field. As the major iteration
count is exhausted, eDMA reloads the contents of this field into the CITER field. If the
channel is configured to execute a single service request, the initial values of BITER and
CITER must be 0x0001.

BWC[15:14] Bandwidth control
It provides a means of controlling the amount of bus bandwidth the eDMA uses.
00 – No stalls-consume 100 % bandwidth.
01 – Reserved.
10 – eDMA stalls for four cycles after each read/write.
11 – eDMA stalls for eight cycles after each read/write.

MAJORLINKCH[11:8] Major loop link channel number
If (MAJORELINK = 0) then:
No channel-to-channel linking, or chaining, is performed after the major loop counter is
exhausted.
Otherwise:
After the major loop counter is exhausted, the eDMA engine initiates a channel service
request.

ESDA Enable Store Destination Address
0b – Ability to store destination address to system memory disabled.
1b – Ability to store destination address to system memory enabled.

EEOP Enable End-Of-Packet Processing
0b – End-of-packet operation disabled.
1b – End-of-packet hardware input signal enabled.

MAJORLINK[5] Enable channel linking on completion of a major loop
0 – Channel linking on completion of a major loop is disabled.
1 – Channel linking on completion of a major loop is enabled.

ESG[4] Enable scatter/gather processing
0 – Scatter/Gather processing is disabled.
1 – Scatter/Gather processing is enabled.

DREQ[3] Disable request
If set when the channel completes a major loop, the eDMA clears the corresponding
DMAERQ, disabling the transfer request.
0 – The DMAERQ bit of the channel is not affected.
1 – The DMAERQ bit of the channel is cleared upon completion of a major loop.

Table 4. TCD field descriptions...continued

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
15 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Field Description

INTHALF[2] Generate interrupt when major loop is half-complete. When CITER = BITER ÷ 2, the eDMA
asserts an interrupt request in the DMAINT register.
0 – The major loop half complete interrupt is disabled.
1 – The major loop half complete interrupt is enabled.

INTMAJOR[1] Generate an Interrupt on Completion of a Major Loop. When CITER = 0, the eDMA asserts
an interrupt request in the DMAINT register.
0 – The major loop complete interrupt is disabled.
1 – The major loop complete interrupt is enabled.

START[0] Channel start
Writing this bit as a 1 explicitly activates the channel and a minor loop transfer is performed.

Table 4. TCD field descriptions...continued

If the TCD descriptor of a channel is configured with an illegal value or an illegal combination of values, a
channel error is reported in the DMAERR register.

6 Example eDMA configurations

This section details two example eDMA configurations, based on FRDM-MCXN947 SDK, starting with a simple
configuration and progressing to the more advanced feature and function of the eDMA at an application level:

1. Basic transfer (including channel linking)
2. Scatter/gather

6.1 Example configuration 1: basic transfer
This example configures the eDMA for a basic software-triggered eDMA transfer and channel linking on
completion of the major loop of the first channel.

6.1.1 Requirements

Four data arrays are created in an internal SRAM. The first, srcAddr[] is of 4-byte size while three arrays
destAddr0[], destAddr1[], and destAddr3[] of 4 bytes each to demonstrate different setups for the
TCDs.

• AT_NONCACHEABLE_SECTION_INIT(uint32_t srcAddr[BUFFER_LENGTH]) = {0x01U, 0x02U, 0x03U,
0x04U}

• AT_NONCACHEABLE_SECTION_INIT(uint32_t destAddr0[BUFFER_LENGTH]) = {0x00U, 0x00U, 0x00U,
0x00U}

• AT_NONCACHEABLE_SECTION_INIT(uint32_t destAddr1[BUFFER_LENGTH]) = {0x00U, 0x00U, 0x00U,
0x00U}

• AT_NONCACHEABLE_SECTION_INIT(uint32_t destAddr2[BUFFER_LENGTH]) = {0x00U, 0x00U, 0x00U,
0x00U}

When the channel performing the transfer is activated by software, the first 32-bit piece of data in the sequence
is moved from the source to the destination.

On completion of the major loop, the next channel is triggered automatically with channel linking and 32 bits are
moved by the second channel, and so on.

When this transfer has been completed, the channel is not used again, making it unnecessary to restore or
prepare the channel for future transfers.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
16 / 27

https://www.nxp.com/part/FRDM-MCXN947
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Source eDMA

srcAddr[BUFFER_LENGTH] = {0x01U, 0x02U, 0x03U, 0x04U}

Destination
destAddr0[BUFFER_LENGTH] = {0x01U, 0x02U, 0x03U, 0x04U}Transfer I

Transfer II

Transfer III

destAddr1[BUFFER_LENGTH] = {0x01U, 0x02U, 0x03U, 0x04U}

destAddr2[BUFFER_LENGTH] = {0x01U, 0x02U, 0x03U, 0x04U}

2. Upon completion of the 1st transfer on channel 0, channel 1 is activated through channel linking -> Transfer II
3. Upon completion of the 2nd transfer on channel 1, channel 2 is activated through channel linking -> Transfer III

1. DMA channel 0 activated by SW -> Transfer I

Figure 9. Example 1 requirements

6.1.2 Module configuration

This example uses software channel activation for the first TCD and activation by channel linking for the second
TCD and then for the third TCD. Configuring the DMAMUX or the eDMA module registers is not required. It is
only necessary to load the source data before configuring and activating the channel via the TCDs.

The code to configure the TCDs on channel 0, 1, and 2 is given below (includes enabling channel linking on
channel 1 and 2):

/* Configure CH0 */
DMA_0.TCD[0].SADDR = (int)&srcAddr[0];
/*DMA_0.TCD[0].ATTR = 0x02 which is defining SMOD, SSIZE, DMOD & DSIZE as
 below:*/

DMA_0.TCD[0].SMOD = 0;
DMA_0.TCD[0].SSIZE = 0x2; /* 32-bit */
DMA_0.TCD[0].DMOD = 0;
DMA_0.TCD[0].DSIZE = 0x2; /* 32-bit */
DMA_0.TCD[0].SOFF = 0x4;
/*TCD0_NBYTES_MLOFFNO & TCD0_NBYTES_MLOFFYES defines TCD Transfer Size without
 or with minor loop offset where SMLOE, DMLOE are disabled*/

DMA_0.TCD[0].NBYTES = 8;
DMA_0.TCD[0].SLAST_SDA = 0;
DMA_0.TCD[0].DADDR = 0x20000030;
/*TCD0_CITER_ELINKNO & TCD0_CITER_ELINKYES which indicates the Current Major
 loop channel linking enabled or disabled:*/

DMA_0.TCD[0].ELINK = 1; /*Enable Link*/
DMA_0.TCD[0].LINKCH = 1;
DMA_0.TCD[0].CITER = 2; /*Current Major iteration count*/
DMA_0.TCD[0].DOFF = 0x4;
DMA_0.TCD[0].DLAST_SGA = 0;
/*TCD0_BITER_ELINKNO & TCD0_BITER_ELINKYES which indicates the Beginning Major
 loop channel linking enabled or disabled:*/

DMA_0.TCD[0].ELINK = 1; /*Enable Link*/
DMA_0.TCD[0].LINKCH = 1;
DMA_0.TCD[0].BITER = 2; /*Beginning Major iteration count*/
/*DMA_0.TCD[0].CSR as shown below: */
DMA_0.TCD[0].BWC = 0;
DMA_0.TCD[0].MAJORLINKCH = 1; /* Link to channel 1 */

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
17 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

DMA_0.TCD[0].MAJORELINK = 1; /* Enable channel linking*/
DMA_0.TCD[0].ESG = 0;
DMA_0.TCD[0].DREQ = 1;
DMA_0.TCD[0].INTHALF = 0;
DMA_0.TCD[0].INTMAJ = 0;

/* Configure CH1 */
DMA_0.TCD[1].SADDR = (int)&srcAddr[0];
/*DMA_0.TCD[1].ATTR = 0x02 which is defining SMOD, SSIZE, DMOD & DSIZE as
 below:*/
DMA_0.TCD[1].SMOD = 0;
DMA_0.TCD[1].SSIZE = 0x2; /* 32-bit */
DMA_0.TCD[1].DMOD = 0;
DMA_0.TCD[1].DSIZE = 0x2; /* 32-bit */
DMA_0.TCD[1].SOFF = 0x4;
/*TCD1_NBYTES_MLOFFNO & TCD1_NBYTES_MLOFFYES defines TCD Transfer Size without
 or with minor loop offset where SMLOE, DMLOE are disabled*/
DMA_0.TCD[1].NBYTES = 16; /* 4x32-bits */
DMA_0.TCD[1].SLAST_SDA = 0;
DMA_0.TCD[1].DADDR = 0x20000040;
/*TCD1_CITER_ELINKNO & TCD1_CITER_ELINKYES which indicates the Current Major
 loop channel linking enabled or disabled:*/

DMA_0.TCD[1].ELINK = 0; /*Enable Link*/
DMA_0.TCD[1].LINKCH = 0;
DMA_0.TCD[1].CITER = 1; /*Current Major iteration count*/
DMA_0.TCD[1].DOFF = 0x4;
DMA_0.TCD[1].DLAST_SGA = 0;
/*TCD1_BITER_ELINKNO & TCD1_BITER_ELINKYES which indicates the Beginning Major
 loop channel linking enabled or disabled:*/

DMA_0.TCD[1].ELINK = 0; /*Enable Link*/
DMA_0.TCD[1].LINKCH = 0;
DMA_0.TCD[1].BITER = 1; /*Beginning Major iteration count*/
/*DMA_0.TCD[1].CSR as shown below:*/
DMA_0.TCD[1].BWC = 0;
//DMA_0.TCD[1].MAJORLINKCH = 0;
DMA_0.TCD[1].MAJORELINK = 0;
DMA_0.TCD[1].ESG = 0;
DMA_0.TCD[1].DREQ = 1;
DMA_0.TCD[1].INTHALF = 0;
DMA_0.TCD[1].INTMAJ = 0;
/* Configure CH2 */
DMA_0.TCD[2].SADDR = (int)&data_array1[0];
/*DMA_0.TCD[2].ATTR = 0x02 which is defining SMOD, SSIZE, DMOD & DSIZE as
 below:*/
DMA_0.TCD[2].SMOD = 0;
DMA_0.TCD[2].SSIZE = 0x2; /* 32-bit */
DMA_0.TCD[2].DMOD = 0;
DMA_0.TCD[2].DSIZE = 0x2; /* 32-bit */
DMA_0.TCD[2].SOFF = 0x4;
/*TCD2_NBYTES_MLOFFNO & TCD2_NBYTES_MLOFFYES defines TCD Transfer Size without
 or with minor loop offset where SMLOE, DMLOE are disabled*/
DMA_0.TCD[2].NBYTES = 16; /* 4x32-bits */
DMA_0.TCD[2].SLAST_SDA = 0;
DMA_0.TCD[2].DADDR = 0x20000050;
/*TCD2_CITER_ELINKNO & TCD2_CITER_ELINKYES which indicates the Current Major
 loop channel linking enabled or disabled: */

DMA_0.TCD[2].ELINK = 0; /*Enable Link*/

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
18 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

DMA_0.TCD[2].LINKCH = 0;
DMA_0.TCD[2].CITER = 1; /*Current Major iteration count*/
DMA_0.TCD[2].DOFF = 0x4;
DMA_0.TCD[2].DLAST_SGA = 0;
/*TCD2_BITER_ELINKNO & TCD2_BITER_ELINKYES which indicates the Beginning Major
 loop channel linking enabled or disabled:*/

DMA_0.TCD[2].ELINK = 0; /*Enable Link*/
DMA_0.TCD[2].LINKCH = 0;
DMA_0.TCD[2].BITER = 1; /*Beginning Major iteration count*/
/*DMA_0.TCD[2].CSR as shown below:*/
DMA_0.TCD[2].BWC = 0;
//DMA_0.TCD[2].MAJORLINKCH = 0;
DMA_0.TCD[2].MAJORELINK = 0;
DMA_0.TCD[2].ESG = 0;
DMA_0.TCD[2].DREQ = 1;
DMA_0.TCD[2].INTHALF = 0;
DMA_0.TCD[2].INTMAJ = 0;

Note: Bit fields that are commented out are shown so that all TCD fields can be viewed. If a bit field is
commented out, its value is set to 0.

Channel linking is enabled by setting MAJORELINK = 1.

The first DMA transfer is initiated by setting the start bit of TCD:

DMA_0.TCD[0].START = 1; /* Start transfer on channel 0 */

Channel 1 starts automatically via channel linking.

If possible, step through the code in a debugging environment and monitor the source and destination memory
addresses as the channels are activated and the transfers performed. On completion of the major loop, the
source and destination addresses are restored. Further activations of channel 0 therefore result in the transfer
process being repeated.

With this configuration, each time one of the 32-bit values is transferred. A minor loop is completed. When
transfers have been completed, the major loop is complete.

6.2 Example configuration 2: scatter/gather
This example configures the eDMA for a software-triggered eDMA transfer with a subsequent scatter/gather
mechanism at completion of the first major loop.

6.2.1 Requirements

Two data arrays and one TCD array are created in an internal SRAM. The first, srcAddr is of a 8-byte size
while destAddr[] is 8 bytes to demonstrate different set-ups for the TCDs.

The tcdMemoryPoolPtr structure contains the new TCD content that has to be loaded into the channels TCD
on completion of the first major loop.

When the channel performing the transfer is activated by software, the first 32-bit piece of data in the sequence
is moved from the source to the destination.

On completion of the first major loop, scatter/gather is performed and the data contained in the structure
tcdMemoryPoolPtr is loaded into the TCD of the channel. The next transfer is triggered automatically as the
START bit is set when the new TCD is loaded. When this second transfer has completed, the channel is not
used again, making it unnecessary to restore or prepare the channel for future transfers.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
19 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Source eDMA

srcAddr[BUFFER_LENGTH] = {0x01U, ………, 0x08U}

Destination
destAddr0[BUFFER_LENGTH] = {0x01U, ………, 0x08U}

Transfer I

SRAM
0x20000040: TCD_SG

TCD0

2. Upon completion of the 1st transfer the content of the stuct is loaded into TCD0.

1. DMA channel0 activated by SW -> Transfer I

3. Once the new TCD values are loaded into TCD0
Transfer starts based on the new settings n TCD0

Figure 10. Example 2 requirements

6.2.2 Module configuration

This example uses software channel activation for the first transfer. The second transfer is started automatically
when the new TCD is loaded as the START bit is set. Configuring the DMA_Mux or the eDMA module registers
is not required. It is only necessary to load the source data before configuring and activating the channel via the
TCDs.

The code to perform the transfer on channel 0 (includes enabling scatter/gather) is given below:

/* Configure CH0 */
DMA_0.TCD[0].SADDR = (int)&srcAddr[0];
DMA_0.TCD[0].SMOD = 0;
DMA_0.TCD[0].SSIZE = 0x2; /* 32-bit */
DMA_0.TCD[0].DMOD = 0;
DMA_0.TCD[0].DSIZE = 0x2; /* 32-bit */
DMA_0.TCD[0].SOFF = 0x4;
DMA_0.TCD[0].NBYTES = 16; /* 2 structures of 16 bytes each will be
 created */
DMA_0.TCD[0].SLAST_SDA = 0;
/*TCD0_CITER_ELINKNO & TCD0_CITER_ELINKYES which indicates the Current
Major loop channel linking enabled or disabled: */

DMA_0.TCD[0].ELINK = 0; /*Enable Link*/
DMA_0.TCD[0].LINKCH = 0;
DMA_0.TCD[0].CITER = 1; /*Current Major iteration count*
DMA_0.TCD[0].DADDR = 0x20000040;
DMA_0.TCD[0].DOFF = 0x4;
DMA_0.TCD[0].DLAST_SGA = 0x20000020;
/*TCD0_BITER_ELINKNO & TCD0_BITER_ELINKYES which indicates the Beginning
Major loop channel linking enabled or disabled: */

DMA_0.TCD[0].ELINK = 0; /*Enable Link*/
DMA_0.TCD[0].LINKCH = 0;
DMA_0.TCD[0].BITER = 1; /*Beginning Major iteration count*/
/*DMA_0.TCD[0].CSR as shown below: */

/*For the transfer of 1st structure the register values will be*/
DMA_0.TCD[0].BWC = 0;
DMA_0.TCD[0].MAJORLINKCH = 0;
DMA_0.TCD[0].MAJORELINK = 0; /* Disable channel linking */
DMA_0.TCD[0].ESG = 0; /* Enable Sgatter/gather */
DMA_0.TCD[0].DREQ = 1;

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
20 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

DMA_0.TCD[0].INTHALF = 0;
DMA_0.TCD[0].INTMAJ = 0;

/*And for the second structure the values will be: */
DMA_0.TCD[0].BWC = 0;
DMA_0.TCD[0].MAJORLINKCH = 0;
DMA_0.TCD[0].MAJORELINK = 0; /* Disable channel linking */
DMA_0.TCD[0].ESG = 1; /* Enable Sgatter/gather */
DMA_0.TCD[0].DREQ = 0;
DMA_0.TCD[0].INTHALF = 0;
DMA_0.TCD[0].INTMAJ = 2;

Note: Bit fields that are commented out are shown so that all the TCD fields can be viewed and differences are
made more obvious.

The code to perform the transfer on channel 0 (includes enabling sgatter/gather).

Note: The 32 bytes of the TCD array used for scatter/gather has to be 32 byte aligned. The channel reload
is performed as the major iteration count completes. The scatter/gather address must be 0-modulo-32-byte;
otherwise, a configuration error is reported.

The tcdMemoryPoolPtr structure is configured according to the TCD memory map (compare Figure 7). The
first element of the array contains the source address (SADDR) and then points to the data array that is to be
transferred. The last word is configured to set the START bit so that a transfer starts when the new TCD is
loaded.

If possible, step through the code in a debugging environment and monitor the source and destination memory
addresses as the channels are activated and the transfers performed. On completion of the first major loop, the
values defined in the array tcdMemoryPoolPtr are loaded into TCD[0].

7 Debugging tips

While this application note gives a solid grounding in using the eDMA, it is such a powerful module that there
are many possible use case scenarios that cannot all be covered in this application note. To aid in debugging
problems that may arise when developing applications, the eDMA includes the Error Status (ES) register, which
can be a powerful tool for diagnosing problems with DMA transfers.

By effectively using these registers and understanding their bit fields, developers can:

• Proactively identify and address errors: Prompt error handling based on specific bit flags can prevent data
corruption and system crashes.

• Pinpoint the source of issues: Differentiating between master and channel-specific errors enables targeted
debugging and faster resolution.

• Validate DMA configurations: Checking for errors like invalid transfer sizes or descriptor table issues helps
ensure a correct setup.

• Enhance application robustness: Incorporating error handling routines based on these registers improves
application reliability and stability.

MP_ES (Master Error Status) Register: Provides insights into errors affecting the entire eDMA controller, not
specific channels.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
21 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Figure 11. MP_ES (master error status) register

Key Bit Fields:

Field Description

VLD CH_ES[ERR] status bits, indicating an error in one of the channels. The exact channel number can be
determined by checking the Channel Error Status registers.

ERRCHN Error channel number.

ECX Transfer canceled via the error cancel transfer bit DMA_CR[ECX].

SAE Configuration error in the TCD_SADDR field (inconsistent with TCD_ATTR[SSIZE]).

SOE Configuration error in the TCD_SOFF field (inconsistent with TCD_ATTR[SSIZE])

DAE Configuration error in the TCD_DADDR field (inconsistent with TCD_ATTR[DSIZE])

DOE Configuration error in the TCD_DOFF field (inconsistent with TCD_ATTR[DSIZE])

NCE Configuration error in the TCD_NBYTES or TCD_CITER field. Initially TCD_CITER must be programmed
to be the same value as TCD_BITER.

SGE Scatter/gather error, this indicates a configuration error in the TCD_DLAST_SGA field, which has to be
on a 32-byte boundary when scatter/gather is enabled (TCD_CSR[ESG] = 1).

SBE Bus error on source read.

DBE Bus error on a destination write.

Table 5. Error Status Register field descriptions

Channel Error Status Register: Captures errors specific to individual channels, aiding in pinpointing
problematic transfers.

Figure 12. Channel error status register

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
22 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Field Description

ERR Enable if an error in the channel has occurred.

SAE Configuration error in the TCD_SADDR field (inconsistent with TCD_ATTR[SSIZE]).

SOE Configuration error in the TCD_SOFF field (inconsistent with TCD_ATTR[SSIZE])

DAE Configuration error in the TCD_DADDR field (inconsistent with TCD_ATTR[DSIZE])

DOE Configuration error in the TCD_DOFF field (inconsistent with TCD_ATTR[DSIZE])

NCE Configuration error in the TCD_NBYTES or TCD_CITER field. Initially, TCD_CITER must be programmed
to be the same value as TCD_BITER.

SGE Scatter/gather error, this indicates a configuration error in the TCD_DLAST_SGA field which must be on
a 32-byte boundary when scatter/gather is enabled (TCD_CSR[ESG] = 1).

SBE Bus error on source read.

DBE Bus error on a destination write.

Table 6. Error status register field descriptions

When an error occurs in a DMA transaction, it is flagged in this ES register, depending on the type of error. The
following table describes the errors indicated by the ES.

Field Description

VLD CH_ES[ERR] status bits, indicating an error in one of the channels. The exact channel number can be
determined by checking the Channel Error Status registers.

ERRCHN Error channel number.

ECX Transfer canceled via the error cancel transfer bit DMA_CR[ECX].

SAE Configuration error in the TCD_SADDR field (inconsistent with TCD_ATTR[SSIZE]).

SOE Configuration error in the TCD_SOFF field (inconsistent with TCD_ATTR[SSIZE])

DAE Configuration error in the TCD_DADDR field (inconsistent with TCD_ATTR[DSIZE])

DOE Configuration error in the TCD_DOFF field (inconsistent with TCD_ATTR[DSIZE])

NCE Configuration error in the TCD_NBYTES or TCD_CITER field. Initially TCD_CITER must be programmed
to be the same value as TCD_BITER.

SGE Scatter/gather error, this indicates a configuration error in the TCD_DLAST_SGA field, which has to be
on a 32-byte boundary when scatter/gather is enabled (TCD_CSR[ESG] = 1).

SBE Bus error on source read.

DBE Bus error on a destination write.

Table 7. Error Status Register field descriptions

Another useful tool when debugging is the soft start bit, TCD_CSR[START]. It can be used to start any
configuration in software and is a good method to check if the configuration is behaving as expected.

8 Conclusion

eDMA technology in MCx Nx4x Series microcontrollers unlocks significant performance benefits for various
applications. This application note provides a good understanding and working knowledge of the MCX Nx4x
eDMA controller. It enables the user to create eDMA configurations suitable for applications by effectively using
these features. Developers can maximize data throughput, minimize CPU load, and create high-performance
embedded systems. The source code provided along with this application note can be used as a basis for
configurations.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
23 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

For more information on the NXP MCX Nx4x family, visit nxp.com.

9 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

10 Revision history

Table 8 summarizes the revisions to this document.

Document ID Release date Description

AN14300 v.1.0 23 September 2024 Initial public release

Table 8. Revision history

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
24 / 27

http://www.freescale.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
25 / 27

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

CoolFlux — is a trademark of NXP B.V.

AN14300 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
26 / 27

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

NXP Semiconductors AN14300
MCX Nx4x: Unleashing the Power of eDMA Controller

Contents
1 Introduction .. 2
1.1 eDMA controller overview2
1.2 MCX Nx4x eDMA block description2
1.2.1 Address path ... 3
1.2.2 Data path ...3
1.2.3 Program/Channel arbitration3
1.2.4 Control ... 3
1.2.5 TCD ..4
1.3 MCX Nx4x eDMA controller features4
1.4 eDMA architectural integration 4
2 eDMA data Flow ...5
2.1 Channel activation ... 7
2.2 Channel arbitration .. 8
2.3 Modes of operation ..9
3 Transfer process ..9
3.1 Handling multiple transfer requests 9
3.2 Major and minor transfer loops10
3.3 Completing a minor transfer loop 10
3.4 Completing a major transfer loop 10
3.5 Channel linking .. 11
4 Dynamic programming11
4.1 Dynamic scatter/gather12
5 Configuring the eDMA12
5.1 Configuration steps ..12
5.2 Transfer Control Descriptors (TCD) 12
6 Example eDMA configurations16
6.1 Example configuration 1: basic transfer16
6.1.1 Requirements ...16
6.1.2 Module configuration 17
6.2 Example configuration 2: scatter/gather 19
6.2.1 Requirements ...19
6.2.2 Module configuration 20
7 Debugging tips ...21
8 Conclusion ... 23
9 Note about the source code in the

document ..24
10 Revision history ...24

Legal information ...25

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 23 September 2024
Document identifier: AN14300

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14300

	1 Introduction
	1.1 eDMA controller overview
	1.2 MCX Nx4x eDMA block description
	1.2.1 Address path
	1.2.2 Data path
	1.2.3 Program/Channel arbitration
	1.2.4 Control
	1.2.5 TCD

	1.3 MCX Nx4x eDMA controller features
	1.4 eDMA architectural integration

	2 eDMA data Flow
	2.1 Channel activation
	2.2 Channel arbitration
	2.3 Modes of operation

	3 Transfer process
	3.1 Handling multiple transfer requests
	3.2 Major and minor transfer loops
	3.3 Completing a minor transfer loop
	3.4 Completing a major transfer loop
	3.5 Channel linking

	4 Dynamic programming
	4.1 Dynamic scatter/gather

	5 Configuring the eDMA
	5.1 Configuration steps
	5.2 Transfer Control Descriptors (TCD)

	6 Example eDMA configurations
	6.1 Example configuration 1: basic transfer
	6.1.1 Requirements
	6.1.2 Module configuration

	6.2 Example configuration 2: scatter/gather
	6.2.1 Requirements
	6.2.2 Module configuration

	7 Debugging tips
	8 Conclusion
	9 Note about the source code in the document
	10 Revision history
	Legal information
	Contents

