AN14399

MCXW71 Connectivity Test for 802.15.4 Application Rev. 1.0 — 10 September 2024

Application note

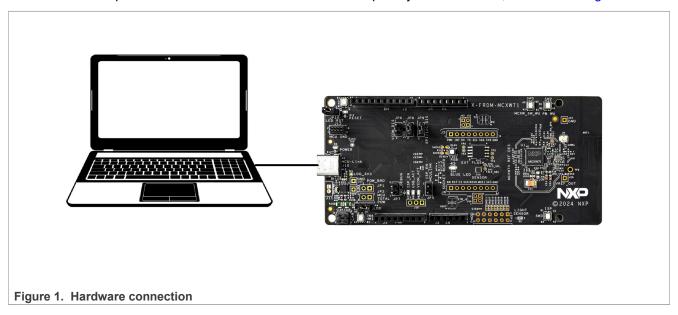
Document information

Information	Content
Keywords	MCXW71, 802.15.4, RF performance, FCC/CE certification
Abstract	This application note describe RF performance test with connectivity test tool using the MCXW71 FRDM board.

MCXW71 Connectivity Test for 802.15.4 Application

1 Introduction

The application note describes how to use the connectivity test tool to perform the MCXW71 802.15.4 RF performance.


2 Test setup

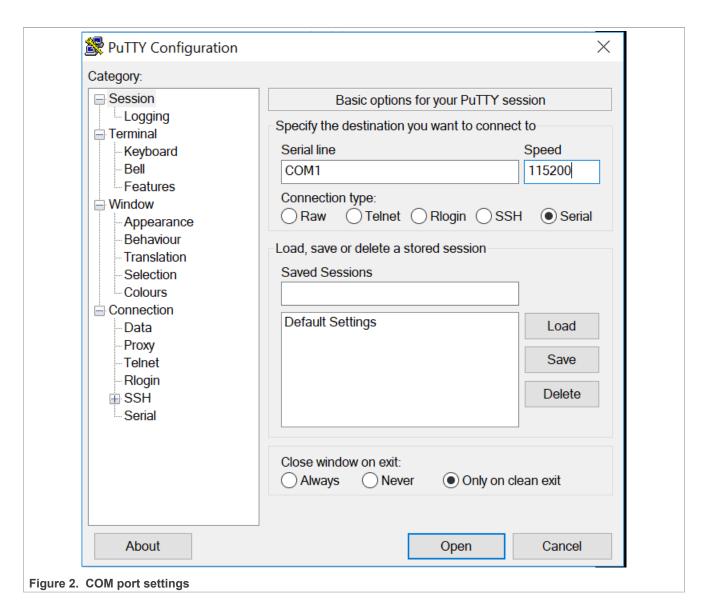
This section describes the hardware and software requirements to have the setup ready for the test.

2.1 Hardware

- MCXW71 FRDM of NXP
- A USB-Type C Cable
- A personal computer with a serial port terminal application installed

Connect the USB port of the MCXW71 FRDM to the PC USB port by the USB cable, as shown in Figure 1.

2.2 Software


- Firmware: Connectivity test is located in the MCXW71 SDK
- · Test tools: PuTTy or other terminal tools

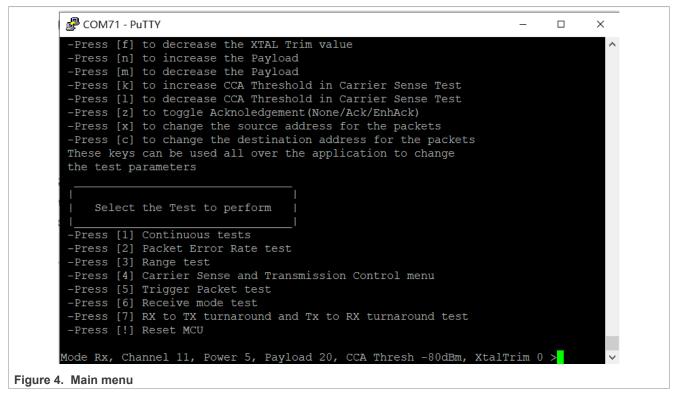
2.3 Test preparation

To perform the test, follow the steps below:

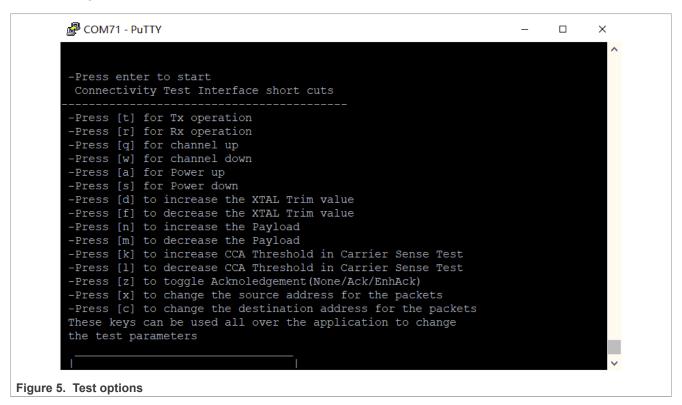
- 1. Download the firmware into the target board.
- 2. Set COM port terminal.
 - a. Open the COM port terminal on your computer.
 - b. Select the correct setting for COM port with 115200 baud rate.
 - c. Taking Putty as an example, the COM port setting is as shown in Figure 2.

MCXW71 Connectivity Test for 802.15.4 Application

3 Test items and options


The project uses a COM port terminal as a commands console to control the operations of MCXW71 FRDM. After the setup completes successfully, open Putty with the correct settings and then press the Reset button (SW1). The output is as shown in Figure 3.

MCXW71 Connectivity Test for 802.15.4 Application


3.1 Test items

After pressing the Reset button (SW1) and the Enter key, the main menu with all the options and test items is as shown in Figure 4.

MCXW71 Connectivity Test for 802.15.4 Application

3.2 Test options

- Tx/Rx mode:
 - Press [t] for Tx operation.
 - Press [r] for Rx operation.
- · Channel change:
 - Press [q] for channel up.
 - Press [w] for channel down.

The MCXW71 can be configured to use any channel frequency between ch11 and ch26 with each channel frequency interval 5 MHz. This parameter is used to select the channel number from ch11 to 26. The default channel is Channel 11.

Table 1. Channel

Channel	Frequency (MHz)
Ch11	2405
Ch12	2410
Ch13	2415
Ch18	2440
Ch26	2480

• Tx power:

Application note

- Press [a] for power-up.

AN14399

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

MCXW71 Connectivity Test for 802.15.4 Application

- Press [s] for power-down.

Tx power is maximum 10 dBm when the power code is 32.

- Set the 32 MHz xtal trim value:
 - To increase the xtal trim value, press [d].
 - To decrease the xtal trim value, press [f].

This value can be set from 0 to 127. To calibrate the 32 M clock accuracy, adjust the suitable value.

- · Set the payload length:
 - To increase the payload, press [n].
 - To decrease the payload, press [m].

This parameter specifies the payload length when MCXW71 needs to send a packet of data. The default payload length is 20. This parameter is insignificant when Rx operation.

- CCA threshold:
 - To increase the CCA threshold in the carrier sense test, press [k].
 - To decrease the CCA threshold in the carrier sense test, press [l].

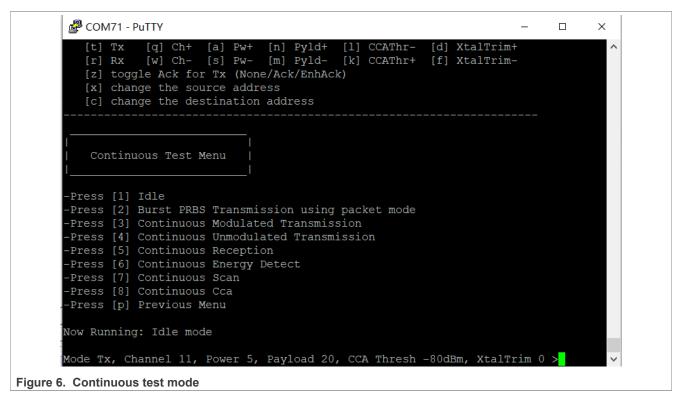
This parameter specifies the CCA threshold. It can be configured from 0 dBm to -110 dBm. The default value is -80 dBm.

- Toggle acknowledgment (None/Ack/EnhAck):
 - Press [z]
- Change the source short address for packets:
 - Press [x]

This parameter specifies the device short address. It can be configured from 0x0000 to 0xfffff.

- · Change the destination short address for packets:
 - Press [c]

This parameter specifies the device short address. It can be configured from 0x0000 to 0xffff.


3.3 Test cases

This section describes different tests cases used for the test.

3.3.1 Continuous tests

The test case puts the device into a transmission with continuous mode or a reception with continuous mode, as shown in <u>Figure 6</u>.

MCXW71 Connectivity Test for 802.15.4 Application

- To choose the Tx mode with burst PRBS transmission, press [2].
- To choose the Tx mode with continuous modulated transmission, press [3].
 This mode can be used for Tx cases testing, such as EVM and Tx output power and some test cases which related to FCC and CE and MIIT certification.
- To choose the Tx mode with continuous unmodulated transmission, press [4]. This mode is enabled for Tx output signal tone.
- To choose the Rx mode with continuous reception, press [5].
- To choose the Rx mode with energy detect, press [6].
 To exit this mode, press the reset button (SW1).
- To choose the Rx mode with signal Scan, press [7].
 To exit this mode, press the reset button (SW1).
- To choose the Rx mode with channel CCA, press [8]. To exit this mode, press the reset button (SW1).

3.3.2 Packet error rate test

The test case allows the measurement of packet error rate using two boards running this mode. One device must be configured as an end device, and the other as a coordinator that controls the test and displays the results, as shown in <u>Figure 7</u>.

MCXW71 Connectivity Test for 802.15.4 Application

- To choose the packet error rate test and enable the PER test menu, press [2]. Select Tx or Rx by option [t] and [r]. The default is Rx mode.
 - Tx mode for coordinator:
 Choose the number of packets to send and type the Tx interval. To enable packets send, press [enter].
 - Rx mode for end device:
 To start/stop receiving packets, press [Space bar].

MCXW71 Connectivity Test for 802.15.4 Application

3.3.3 Range test

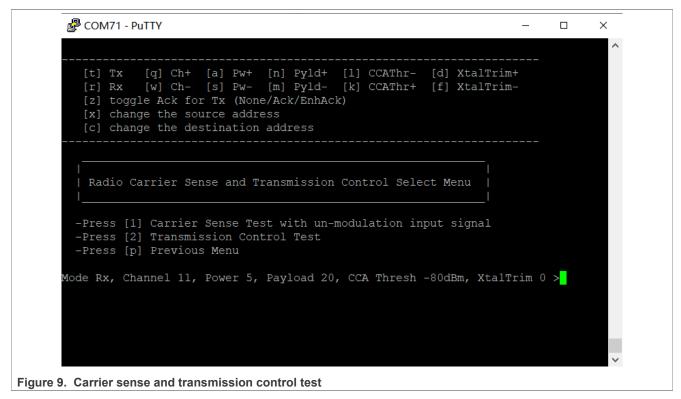
The test case allows the measurement of range using two boards running this mode. One device must be configured as a end device, and the other device as a coordinator that controls the test and displays the results, as shown in Figure 8.

• To choose range test and enable the range test menu, press [3].

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

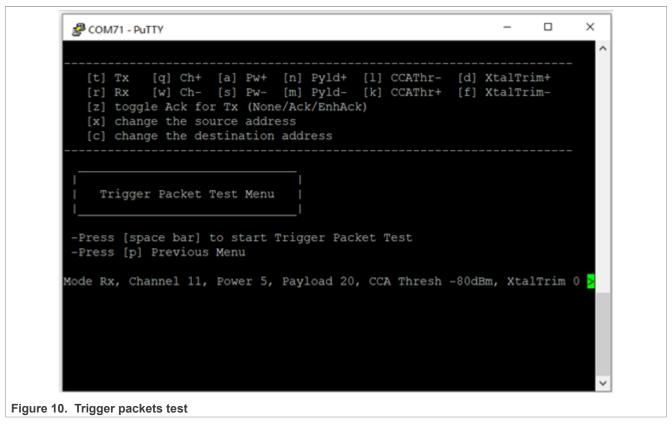
MCXW71 Connectivity Test for 802.15.4 Application


Select Tx or Rx by option [t] and [r]. The default is Rx mode.

- Tx mode for coordinator
 - To start/stop transmitting packets, press [Space bar].
- Rx mode for end device
 - To start/stop receiving packets, press [Space bar].

3.3.4 Carrier sense and transmission control

To do some experiments if needed, adjust the carrier sense of the CCA threshold value.


- To choose carrier sense and transmission control test and enable the test menu, press [4].
 - To choose the carrier sense test with un-modulation input signal, press [1].
 - To choose the transmission control test, press [2].

3.3.5 Trigger packet test

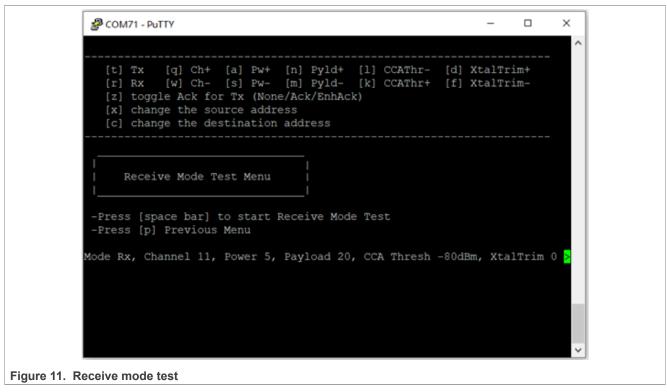
The test case allows the measurement of Rx sensitivity, as shown in Figure 10.

MCXW71 Connectivity Test for 802.15.4 Application

Connect the RFIO port of the device to an RF signal generator and a GPIO of the device to the external trigger input of the RF generator. The RF generator must be supported for arbitrary waveform configuration and to generate an ideal packet each time when it is triggered. The default number of 1000 trigger pulses generated by the device GPIO. The trigger number can be configured by #define trigger cont in connectivity_test.h.

The external trigger input of the generator must be set in rising edge mode with an external delay equal to about 2 ms.

The device counts the number of packets received. It also displays the number of packets expected and the number of packets received.


The GPIO pin that carries the trigger signal can be configured by configuring the **BOARD_TRIGGER_GPIO_PIN** in *connectivity_test.c*. The default value is PTA18 pin for this purpose.

- To choose trigger packets test and enable the Test Menu, press [5].
- To start the trigger packet test, press [Space bar]. Wait for about 4 ms and it shows the received packets.
- To go back to the test menu, press [enter].

3.3.6 Receive mode test

The test case allows the measurement of Rx receiver, as shown in <u>Figure 11</u>. In this mode, it enables Rx receiving continuously.

MCXW71 Connectivity Test for 802.15.4 Application

To choose the receive mode test and enable the test menu, press [6].

- To start receiving packets and enable receiving mode, press [Space bar].
- To stop the receiving packets mode and show the number of received packets, press again [Space bar].
- To go back to the receive test menu, press [enter].

3.3.7 Tx/Rx turnaround test

The Rx to Tx and Tx to Rx turnaround tests are part of the 802.15.4 PHY requirements.

• Rx to Tx:

Connect the RFIO port of the device to an RF signal generator. An RF signal generator is configured to transmit a standard conforming signal and packet with an arbitrary payload and correct CRC to the device. To choose the Rx to Tx turnaround and Tx to Rx turnaround test and enable the test menu, press [7].

- To enable the Rx/Tx turnaround test, select the Rx mode by option [r].
- To start receiving packets, press [Space bar].

The device is in receive mode and waiting for packets. Each time a packet has been received, the device sends an acknowledge. The RF signals can be monitored with a spectrum analyzer and the delay between the end of the received packet and the start of the sent ACK can be measured,

• Tx to Rx:

Connect the RFIO port of the device to an RF signal generator and a GPIO of the device (the default is PTD1) to an external trigger input of the RF generator. The RF generator is configured to transmit an Acknowledge when requested by an external trigger signal.

To choose the Rx to Tx turnaround and Tx to Rx turnaround test and enable the test menu, press [7].

- To enable the Tx/Rx turnaround test, select the Tx mode by option [r].
- To start receiving packets, press [Space bar].

The device sends a packet and generates a negative trigger on PTD1 at the end of the packet. At the reception of the trigger signal, the generator sends an ACK. The delay between the start of the trigger and

MCXW71 Connectivity Test for 802.15.4 Application

the actual beginning of the ACK sent by the device is the Tx-to-Rx turnaround time that can be measured. An acknowledge message is displayed in the windows and the device stops transmitting.

4 Revision history

Table 2 summarizes the revisions to this document.

Table 2. Revision history

Document ID	Release date	Description
AN14399 v.1.0	10 September 2024	Initial public release

MCXW71 Connectivity Test for 802.15.4 Application

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

MCXW71 Connectivity Test for 802.15.4 Application

Contents

1	Introduction	2
2	Test setup	2
2.1	Hardware	
2.2	Software	2
2.3	Test preparation	
3	Test items and options	
3.1	Test items	
3.2	Test options	5
3.3	Test cases	6
3.3.1	Continuous tests	6
3.3.2	Packet error rate test	7
3.3.3	Range test	9
3.3.4	Carrier sense and transmission control	10
3.3.5	Trigger packet test	10
3.3.6	Receive mode test	11
3.3.7	Tx/Rx turnaround test	12
4	Revision history	13
	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.