
AN14485
Using ADC in i.MX RT1180
Rev. 1.0 — 7 February 2025 Application note

Document information
Information Content

Keywords AN14485, i.MX RT1180, ADC, ADCK, DMA, SAR

Abstract This document explains how to configure, implement, and use analog-to-digital converters on the
NXP i.MX RT1180 microcontroller (MCU).

https://www.nxp.com

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

1 Introduction

This document explains how to configure, implement, and use analog-to-digital converters on the NXP i.MX
RT1180 microcontroller (MCU).

The i.MX RT1180 MCU has two Analog-to-Digital Converter (ADC) modules: ADC1 and ADC2. Each ADC
module has two successive approximation register (SAR) converter blocks: side A and side B. It means that
each ADC module has a dual SAR converter, which can sample and convert (S/C) two single-ended signals at a
time.

Each ADC module has eight trigger inputs, connected to the XBAR1 outputs. The signal on each trigger input
can start execution of a conversion sequence. Signals on high-priority trigger inputs can interrupt conversion
sequences triggered by signals on trigger inputs with lower priorities. Each ADC module has two FIFOs for
storing conversion results, along with some flags. A conversion result can take up to 16 bits of a FIFO entry.
Each FIFO is 32-bit wide and can store up to 16 entries.

ADC1 has 16 external channels (coming from SoC pins), and ADC2 has 14 external channels.

2 Implementing conversion sequences

In the i.MX RT1180 MCU, each ADC module has three main components (or concepts):

• Trigger input (trigger or TRIG) ports:
These input ports are connected to the XBAR_OUT140 – XBAR_OUT147 signals of the i.MX RT1180 XBAR1
module. In this case, internal signals (for example, from a PWM or Timer module) or external signals (for
example, from chip pins) can be used to trigger an analog-to-digital (AD) conversion conveniently. Each ADC
module has eight TRIG ports: TRIG0 – TRIG7.

• AD channels:
In i.MX RT1180, 16 pins can be assigned as ADC1 channels (CH0A – CH7A, CH0B – CH7B). Similarly, 14
pins can be assigned as ADC2 channels (CH0A – CH6A, CH0B – CH6B).
Note:
– A channel with the suffix A belongs to the side A converter.
– A channel with the suffix B belongs to the side B converter.

• Command buffers (CMDs):
A command buffer is a 64-bit buffer that can store several configurations of an AD conversion. Each ADC
module has 15 command buffers: CMD1 – CMD15. Each CMD is divided into two parts: CMDH (higher
(upper) 32 bits of the CMD) and CMDL (lower 32 bits of the CMD).
The following two register bit fields store important information related to an AD conversion:
– CMDLm[ADCH]: The ADCH bit field of the current CMDL register indicates the AD channel to be converted.
– CMDHm[NEXT]: The NEXT bit field of the current CMDH register indicates which CMD to use for the next

conversion in the sequence, after the AD channel in the current CMD has been converted.

Each TRIG input can be associated with a CMD. When a rising edge is detected on a TRIG input port, the ADC
module starts converting the AD channel contained in the CMD associated with the TRIG input port.

When the conversion of this channel completes, the ADC module moves to the next CMD pointed by the NEXT
bit field of the current CMDH register, and starts converting the AD channel contained in that CMD.

The conversion process continues until the NEXT bit field value of the current CMDH register is 0. When this
condition is met, the AD conversion stops. This sequence is known as the conversion sequence for a TRIG
input port.

Figure 1 shows a conversion sequence.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
2 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMDHa[NEXT] = b CMDHb[NEXT] = c CMDHc[NEXT] = d CMDHi[NEXT] = 0

CMDa

ADCH = CHx

CMDb

ADCH = CHy

CMDc

ADCH = CHz

CMDd

ADCH = CHm

CMDi End

ADCH = CHj

a, b, c, d, and i are different numbers in the range 1–15.
x, y, z, m, and j can be any number in the range 0–31.

TCTRLn[TCMD] = a

TRIGn
n = 0–7

Figure 1. Conversion sequence

In Figure 1:

• TCTRLn (n = 0–7) is the register used to configure the TRIGn input. The TCTRLn[TCMD] bit field determines
the first CMD associated with TRIGn. For example, TCTRL5[TCMD] = 3 indicates that when TRIG5 has a
rising-edge signal, AD conversion starts with CMD3.

• CMDHm and CMDLm (m = 1–15) are CMD buffer registers, where:
– CMDLm[ADCH] indicates the AD channel contained in CMDm. For example, CMDL3[ADCH] = 5 indicates

that CMD3 contains channel CH5A, CH5B, or CH5A/CH5B pair. For more details, see Section 2.2.3.
– CMDHm[NEXT] indicates which CMD to use after the channel in CMDm has been converted. For example,

CMDH3[NEXT] = 1 indicates that CMD1 is used immediately after the channel in CMD3 has been
converted.

2.1 AD conversion sequence types
Based on the value of CMDHm[NEXT], conversion sequences can be of several types, as described in the
subsections that follow.

2.1.1 Sequential conversion

In a sequential conversion:

• None of the CMDs points to itself or a previously used CMD. For example, CMDH3[NEXT] = 3 indicates that
CMD3 points to itself.

• The NEXT bit field value of the CMDH register in the last CMD of the sequence is 0.

A sequential conversion ends automatically after all CMDs have been executed. This execution flow is widely
used for conversion sequences. Figure 2 shows an example of a sequential conversion.

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11 CMDH11[NEXT] = 1 CMDH1[NEXT] = 0

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH2A

CMD1 End

ADCH = CH5A
TCTRL3[TCMD] = 2

TRIG3

Figure 2. Sequential conversion

In Figure 2:

• If TRIG3 has a valid signal, the first CMD used is CMD2 because TCTRL3[TCMD] = 2. Because CH0A is
configured in CMD2; therefore, the first converted channel in this sequence is CH0A.

• Through the configuration of the NEXT bit field of the CMDH register in each CMD, the control comes to
CMD1 finally, where CMDH1[NEXT] = 0. Therefore, the conversion sequence ends execution after CH5A in
CMD1 has been converted.

Each time a valid signal occurs on TRIG3, the conversion sequence described above is executed.

Note: The order of execution for the CMDs in a conversion sequence is determined by the NEXT bit fields of
the CMDH registers in the CMD buffers.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
3 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

2.1.2 Unending circular conversion

If the NEXT bit field of the CMDH register in the last CMD of a sequential conversion configuration points to
the first CMD in the conversion sequence, the sequence runs indefinitely after getting triggered. This type of
conversion is called unending circular conversion.

Figure 3 shows an example of an unending circular conversion.

CMDH4[NEXT] = 11CMDH2[NEXT] = 4 CMDH11[NEXT] = 1 CMDH1[NEXT] = 2

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH2A

CMD1

ADCH = CH5A
TCTRL3[TCMD] = 2

TRIG3

Figure 3. Unending circular conversion

In Figure 3, the last CMD is CMD1. For CMD1, the NEXT bit field value of its CMDH register (CMDH1) is 2, that
is, the NEXT bit field is pointing to the first CMD in the sequence: CMD2. This sequence runs indefinitely until
interrupted or aborted by a valid signal occurring on a higher-priority TRIG.

2.1.3 Continuous conversion

When a CMD points to itself (indicated by the NEXT bit field of the current CMDH register), the channel
specified in the CMD is converted repeatedly until the CMD is interrupted or aborted. This type of conversion is
called continuous conversion.

Figure 4 shows an example of a continuous conversion.

CMDH2[NEXT] = 2

CMD2

ADCH = CH0A
TCTRL3[TCMD] = 2

TRIG3

Figure 4. Continuous conversion

2.2 Configure each conversion in a sequence through CMD
In a conversion sequence, each conversion can be configured separately through a CMD. For example, the
"hardware average" feature can be enabled for a channel specified in a CMD while the channels in other CMDs
have this feature disabled.

Both the "hardware average" and loop features can be enabled for a channel in a CMD. In addition, some
channels may need some other features, such as compare. All these settings can be configured in the CMDLm
and CMDHm (m = 1–15) registers.

2.2.1 Hardware average

The "hardware average" feature can be enabled or disabled on a CMD in a conversion sequence. Figure 5
demonstrates the "hardware average" feature.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
4 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Store s/c result into FIFO

Store averaged s/c result
of CH2A into FIFO

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A

S

S

SS S

Store s/c result of
CH0A into FIFO

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

TCTRL3[TCMD] = 2

TRIG3

Figure 5. "Hardware average" feature demonstration

As shown in Figure 5, when conversion ends for channel CH0A in CMD2, conversion starts for CH2A in CMD4
because the NEXT bit field of the CMDH2 register points to CMD4.

Because the "hardware average" feature is enabled for CMD4 (CMDH4[AVGS] = 7), CH2A is converted 27

times = 128 times, and the average of the conversion results is stored in the result FIFO. For calculating the
average, a channel can be converted up to 1024 times.

2.2.2 Loop feature

After a CMD is triggered in a conversion sequence, the LOOP bit field of the CMDH register (CMDHm[LOOP])
can be used to enable sampling and conversion of the channel specified in the CMD for multiple times. This
feature is called loop.

When CMDHm[LOOP] = N, the channel in CMDm is sampled and converted N+1 times, and the result of each
conversion is stored in the result FIFO. The maximum value for N is 15, it means that at most 16 loops are
allowed.

One major difference between a loop and a hardware average is that in a loop, each conversion result is stored
in the result FIFO, whereas in a hardware average, only the average result is stored in the FIFO. A hardware
average can be considered an atomic behavior that normally cannot be interrupted and that produces only one
result.

Figure 6 demonstrates the loop feature.

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11 CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Store s/c result into FIF

O

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A

S

S

Check if Loop CNT > 4LC

S S

S
LC

Y

N

Store s/c result of CH2A
into FIFO in each loop,

before Loop CNT increments

Store s/c result of
CH0A into FIFO

TCTRL3[TCMD] = 2

TRIG3

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Figure 6. Loop feature demonstration

In Figure 6, the ADC module uses a hardware counter, Loop CNT, for counting the loop iterations. The loop
feature is enabled for CMD4. Therefore, the channel specified in CMD4 is sampled and converted multiple

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
5 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

times. After each conversion of the channel, the result is stored in the result FIFO, and the Loop CNT is
incremented by 1.

When Loop CNT > CMDH4[LOOP], the loop ends and the sequence goes to CMD11. Because CMDH4[LOOP]
= 4, the channel CH2A in CMD4 is sampled and converted five times, and the result of each conversion is
stored in the FIFO. When CMDHm[LOOP] = 0, the channel in CMDHm is converted only once (the loop feature
is disabled).

2.2.3 Conversion types

The ADC channels are named in pairs, such as CH0A/CH0B and CH1A/CH1B. For each CMD, four types of
conversions can occur:

• CMDLm[CTYPE] = 0: Single-Ended mode with side A channel conversion
• CMDLm[CTYPE] = 1: Single-Ended mode with side B channel conversion.

For this conversion type:
– When CMDLm[ALTBEN] = 0, the channel for side B is selected by CMDLm[ADCH].
– When CMDLm[ALTBEN] = 1, the channel for side B is selected by CMDLm[ALTB_ADCH].

• CMDLm[CTYPE] = 2: Differential mode. In this conversion type, the voltage between side A channel and side
B channel (channel A to channel B voltage) is converted. In this case, side A and side B must have matching
channel numbers, for example, CH0A/CH0B and CH1A/CH1B.

• CMDLm[CTYPE] = 3: Dual-Single-Ended mode. In this conversion type, both the side A and side B channels
are converted simultaneously. In this case, side A and side B do not need to have matching channel numbers,
such as CH1A and CH4B, CH2A and CH2B.
For this conversion type:
– When CMDLm[ALTBEN] = 0, the channels for side A and side B are selected by CMDLm[ADCH]. It means

that side A and side B channels are paired, for example, CH0A/CH0B and CH1A/CH1B.
– When CMDLm[ALTBEN] = 1, the channel for side A is selected by CMDLm[ADCH], whereas the channel for

side B is selected by CMDLm[ALTB_ADCH]. In this case, side A and side B can have unmatched channel
numbers, for example, CH1A/CH4B, CH2A/CH2B, and CH5A/CH3B.

Figure 7 shows different conversion types used for different CMDs in a conversion sequence.

CMDH4[NEXT] = 11CMDH2[NEXT] = 4 CMDH11[NEXT] = 1 CMDH1[NEXT] = 0

CMD2

ADCH = CH0A

CMD4

ADCH = CH2B

CMD11

ADCH = CH2A
ALTB_ADCH = CH4B

CMD1

ADCH = CH5A/CH5B

EndSSSS

Store s/c result into FIFOS

CMDL2[CTYPE] = 1:
Single-Ended mode,
B-side channel only

CMDL2[CTYPE] = 3:
Dual-Single-Ended mode.

Both B-side and A-side
channels are converted

simultaneously.

CMDL2[CTYPE] = 2:
Differential mode.

Channel A to channel B
voltage is converted.

TCTRL3[TCMD] = 2

TRIG3

Store s/c result of CH0A
into FIFO specified by
TCTRL3[FIFO_SEL_A]

Store s/c result of CH2B
into FIFO specified by
TCTRL3[FIFO_SEL_A]

Store s/c result of CH2A
into FIFO specified by

TCTRL3[FIFO_SEL_A],
and result of CH4B into

FIFO specified by
TCTRL3[FIFO_SEL_B]

Store s/c result of CH5A-
CH5B into FIFO specified by

TCTRL3[FIFO_SEL_A]

CMDL2[CTYPE] = 0:
Single-Ended mode,
A-side channel only

Figure 7. Conversion type demonstration

In Figure 7:

• The first CMD is CMD2, and the conversion type is Single-Ended mode with side A channel conversion
(CTYPE = 0). The side A channel to be converted is CH0A.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
6 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

• The second CMD is CMD4, and the conversion type is Single-Ended mode with side B channel conversion
(CTYPE = 1). The side B channel to be converted is CH2B.

• The third CMD is CMD11, and the conversion type is Dual-Single-Ended mode (CTYPE = 3). The channels
to be sampled and converted (simultaneously) are CH2A and CH4B. Because the channel numbers of side A
and side B are unmatched; therefore:
– CMDL11[ALTBEN] = 1
– The channel for side B is selected by CMDL11[ALTB_ADCH].

• The last CMD is CMD1, and the conversion type is Differential mode (CTYPE = 2). In this case, the voltage
difference between CH5A and CH5B is converted.

2.2.4 Result FIFO

Each ADC module has two 32-bit wide FIFOs for storing the conversion results: FIFO0 and FIFO1. Each FIFO
can store 16 (32-bit) entries.

After a conversion sequence is triggered by the signal on TRIGn (n = 0–7), a FIFO is selected for storing the
results of the conversion sequence by TCTRLn[FIFO_SEL_A] and TCTRLn[FIFO_SEL_B]:

• For a CMD with Dual-Single-Ended mode (CMDLm[CTYPE] = 3), the conversion result of the side A channel
is stored in the FIFO specified by TCTRLn[FIFO_SEL_A], and the conversion result of the side B channel is
stored in the FIFO specified by TCTRLn[FIFO_SEL_B].
If FIFO_SEL_A = FIFO_SEL_B, channels of both side A and side B are stored in the same FIFO and the
result of the side A channel is stored in the FIFO prior to the side B channel result.

• For a CMD other than Dual-Single-Ended mode (CMDLm[CTYPE] != 3), the conversion result is always
stored in the FIFO specified by TCTRLn[FIFO_SEL_A].

Figure 7 shows which FIFO to use for each CMD in a conversion sequence. Because only two FIFOs are
available to store all the conversion results, knowing the TRIG conversion and CMD associated with the result
is necessary. Therefore, each FIFO entry contains information related to TRIGn, CMDm, and Loop CNT, along
with the conversion result. It helps determine the conversion sequence, CMD, and loop time associated with the
result.

Figure 8 shows the structure of a result FIFO.

CMD Loop CNT TRIG S/C result
Bit 31 Bit 15 Bit 0

Figure 8. A result FIFO with one 32-bit entry

The lower 16 bits in a FIFO entry are used to store the conversion result. The higher (upper) 16 bits are used to
store the associated TRIG number, CMD number, and the Loop CNT value. As described in Section 2.2.2, after
each conversion in a loop completes and before the Loop CNT is incremented, the CMD number, Loop CNT,
TRIG number, and the result are stored in the specified FIFO.

2.2.5 Channel number remains unchanged during loop if CMDHm[LWI] = 0

If CMDHm[LWI] = 0, the channel number specified by CMDHm remains unchanged during the loop. For
example, if CMDH4[LWI] = 0 for the conversion sequence of Figure 6, the result FIFO has contents similar to
Figure 9 (assuming that the sequence is not interrupted by a higher-priority TRIGn signal).

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
7 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMD1

CMD11

CMD4

CMD4

CMD4

CMD4

CMD4

CMD2
...

...

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3
...

...

Loop CNT = 0

FIFO
increases

Loop CNT = 0

Loop CNT = 4

Loop CNT = 3

Loop CNT = 2

Loop CNT = 1

Loop CNT = 0

Loop CNT = 0
...

...

CH5A result

CH7A result

CH2A result

CH2A result

CH2A result

CH2A result

CH2A result

CH0A result
...

...

Figure 9. A result FIFO with loop enabled and CMD4[LWI] = 0

2.2.6 Channel number is incremented during loop if CMDHm[LWI] = 1

When CMDHm[LWI] = 1, the channel number specified by CMDHm is incremented by 1 after each iteration of
the loop (similar to the Loop CNT). For example, if CMDH4[LWI] = 1 for the conversion sequence of Figure 6,
the result FIFO has contents similar to Figure 10 (assuming that the sequence is not interrupted by a higher-
priority TRIGn signal).

CMD1

CMD11

CMD4

CMD4

CMD4

CMD4

CMD4

CMD2
...

...

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3
...

...

Loop CNT = 0

FIFO
increases

Loop CNT = 0

Loop CNT = 4

Loop CNT = 3

Loop CNT = 2

Loop CNT = 1

Loop CNT = 0

Loop CNT = 0
...

...

CH5A result

CH7A result

CH6A result

CH5A result

CH4A result

CH3A result

CH2A result

CH0A result
...

...

Figure 10. A result FIFO with loop enabled and CMD4[LWI] = 1

2.2.7 Enable loop and hardware average on same CMD

When CMDHm[AVGS] = M (where M != 0) and CMDHm[LOOP] = N (where N != 0), CMDm is executed N+1
times in a loop. For each iteration of the loop, the channel specified by CMDm is sampled and converted 2M

times and the average of the results is stored in the result FIFO.

In Figure 11, when the control comes to CMD4, because CMDH4[AVGS] = 7 and CMDH4[LOOP] = 4, CMD4 is
executed 5 times due to the loop.

In each iteration during the loop, the channel CH2A specified by CMD4 is sampled and converted 27 times =
128 times and the average of the results is stored in the result FIFO. In the entire loop, the channel CH2A is
sampled and converted 5 x 128 times = 640 times.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
8 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Store s/c result into FIFO

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A

S

S

Check if Loop CNT > 4LC

S S

S
LC

Y

N

Store averaged s/c result of
CH2A into FIFO in each loop,
before Loop CNT increments

Store s/c result of
CH0A into FIFO

TCTRL3[TCMD] = 2

TRIG3

Figure 11. Loop and hardware average enabled on same CMD

Figure 12 shows the conversion results of Figure 11 stored in the result FIFO (assuming that this sequence is
not interrupted by a higher-priority TRIGn signal). CMD4 occupies five FIFO entries with each entry storing an
average of 128 conversion results.

CMD11

CMD4

CMD4

CMD4

CMD4

CMD4

CMD2
...

...

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3

TRIG3
...

...

Loop CNT = 0

FIFO
increases

Loop CNT = 4

Loop CNT = 3

Loop CNT = 2

Loop CNT = 1

Loop CNT = 0

Loop CNT = 0
...

...

CH7A result

128 averaged CH2A result

128 averaged CH2A result

128 averaged CH2A result

128 averaged CH2A result

128 averaged CH2A result

CH0A result
...

...

Figure 12. A result FIFO with loop and hardware average enabled

2.2.8 Wait for a trigger signal during execution of a sequence

Sometimes, after getting triggered, a conversion sequence is required to be paused at some channel. The
execution can be resumed from the paused channel later at a specific time point. This goal can be achieved by
enabling the "wait for trigger" feature for a CMD containing the channel that has to be paused.

To enable the feature, configure the WAIT_TRIG bit field of the CMDHm register (CMDHm[WAIT_TRIG] = 1).
Figure 13 demonstrates the "wait for trigger" feature.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
9 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMDH2[NEXT] = 4

CMDH4[WAIT_TRIG] = 1

Wait for
TRIG3

Wait for
TRIG3

CMDH11[WAIT_TRIG] = 1

CMDH4[NEXT] = 11

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1
TRIG3

Store s/c result into FIFO

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A
TCTRL3[TCMD] = 2

S

S

Check if Loop CNT > 4

Wait for TRIG3 signal

LC

S S

S
LC

Y

N

Store averaged s/c result of
CH2A into FIFO in each loop,
before Loop CNT increments

Store s/c result of
CH0A into FIFO

Figure 13. "Wait for trigger" feature demonstration

In Figure 13, a valid signal occurring on TRIG3 triggers a conversion sequence, which contains CMD2, CMD4,
CMD11, and CMD1. Because CMDH4[WAIT_TRIG] = 1 and CMDH11[WAIT_TRIG] = 1:

• The conversion sequence pauses execution after CMD2, and it waits for a valid trigger signal on TRIG3 to
resume execution from CMD4.

• After CMD4 is executed (including hardware average and loop), the sequence pauses execution again, and it
waits for a valid trigger signal on TRIG3 to resume execution from CMD11.

• After CMD11 is executed, the sequence continues execution with CMD1. With CMD1 execution, the
conversion sequence completes execution.

2.2.9 Compare feature

For CMD1–CMD4, a feature, called compare, is available. It works when the CMPEN bit field of a CMDHa
register (where 'a' = 1–4) is set to 2 or 3.

When the compare feature is enabled for a CMD and the channel conversion (including hardware average) has
been completed, the hardware compares the conversion result with the values in the CVa[CVH] and CVa[CVL]
bit fields. Based on the comparison result, a decision is taken on whether to store the conversion result in the
result FIFO.

Depending on the CMDHa[CMPEN] value, the compare feature has two variants:

• Compare with "store on true" option (CMDHa[CMPEN] = 2): In this variant, the conversion result is stored
in the result FIFO if the comparison result is true:
– When the comparison result is false, the hardware discards the conversion result (does not store it in the

result FIFO), and increments the loop counter.
– When the comparison result is true, the hardware stores the conversion result in the result FIFO, and

increments the loop counter.
Note: The loop counter is incremented after each conversion, irrespective of the comparison result.

• Compare with "repeat until true" option (CMDHa[CMPEN] = 3): In this variant, the compare operation is
repeated until the comparison result is true:
– When the comparison result is false, the hardware discards the conversion result (does not store it in the

result FIFO). The loop counter is kept unchanged, and the channel inside the current CMD is converted
again.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
10 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

– When the comparison result is true, the hardware stores the conversion result in the result FIFO, and
increments the loop counter.

In Figure 14, the compare feature is enabled for CMD4 with the "store on true" option (CMDH4[CMPEN] = 2),
along with the "hardware average" and loop features.

In each iteration of the loop, an average of 128 conversion/sampling results is calculated, and a comparison
operation is performed. Irrespective of the outcome of the comparison operation, the loop counter is always
incremented by 1. Only when the outcome of the comparison operation is true, the average of the 128
conversion results is stored in the result FIFO.

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11
CMDH4[CMPEN] = 2

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Compare
true?

TRIG3

Store s/c result into FIFO

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A
TCTRL3[TCMD] = 2

S

S

Check if Loop CNT > 4LC

S S

LC

Y

N
No

Yes

S

Store averaged s/c result of CH2A into FIFO,
before Loop CNT increments

when compare is true

Store s/c result of
CH0A into FIFO

Figure 14. Compare feature with "store on true" option

In Figure 15, the compare feature is enabled for CMD4 with the "repeat until true" option (CMDH4[CMPEN] = 3),
along with the "hardware average" and loop features.

If the comparison result is false for the average of the 128 conversion results, the loop counter remains
unchanged, and channel conversion starts again for 128 times. Only when the comparison result is true, the
averaged result is stored in the result FIFO, and the loop counter is incremented.

Do not store
result into

FIFO
CMDH2[NEXT] = 4

CMDH4[CMPEN] = 3

CMDH4[NEXT] = 11

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Compare
true?

TRIG3

Store s/c result into FIFO

Loop CNT stays
the same

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A
TCTRL3[TCMD] = 2

S

S

Check if Loop CNT > 4LC

S S

LC

Y

N

No

Yes

SStore s/c result
of CH0A into FIFO

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Loop CNT++

Loop ends

Do loop only when compare is true.
Store averaged s/c result of CH2A into FIFO
in each loop, beforeLoop CNT increments

when compare is true.

Figure 15. Compare feature with "repeat until true" option

In Dual-Single-Ended mode (CMDLm[CTYPE] = 3), the comparisons are made only for the conversion results of
channels with suffix A.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
11 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

A comparison result determines whether to store the current pair of conversion results in the result FIFO:

• If the comparison result for a channel with suffix A is true, the conversion results of both side A and side B
channels are stored in the result FIFO. The loop behavior is determined by CMDHa[CMPEN].

• If the comparison result for a channel with suffix A is false, neither of the conversion results (side A channel or
side B channel) is stored in the result FIFO. The loop behavior is determined by CMDHa[CMPEN].

2.2.9.1 Interpreting a comparison result

Based on the values in CVa[CVL] and CVa[CVH], the following four scenarios are possible:

• min. value < CVL < CVH < max. value: The comparison result is true when the conversion result is less than
CVL OR greater than CVH.

• min. value < CVL < CVH = max. value: The comparison result is true when the conversion result is less than
CVL.

• min value = CVL < CVH < max. value: The comparison result is true when the conversion result is greater
than CVH.

• CVL > CVH: The comparison result is true when the conversion result is less than CVL AND greater than
CVH.

2.2.10 Conversion result format

For each CMD, the conversion result can be configured in one of the following formats by setting the
CMDLm[MODE] bit field value:

• 12-bit / 13-bit format (CMDLm[MODE] = 0):
– For the Single-Ended mode conversion type, a 12-bit conversion result format is used.
– For the Differential mode conversion type, a 13-bit conversion result format is used with 2's complement

output.
• 16-bit format (CMDLm[MODE] = 1):

– For the Single-Ended mode conversion type, a 16-bit conversion result format is used.
– For the Differential mode conversion type, a 16-bit conversion result format is used with 2's complement

output.

Note: In Differential mode, the conversion result is stored in the result FIFO in 2's complement format.

Figure 16 shows example conversion results in a result FIFO when CMDLm[MODE] = 0.

SCMDLm[MODE] = 0, CMDLm[CTYPE] = 2

CMDLm[MODE] = 0, CMDLm[CTYPE] != 2, CFG2[JLEFT] = 0

CMDLm[MODE] = 0, CMDLm[CTYPE] != 2, CFG2[JLEFT] = 1

D D D D D D D D D D D D 0 0 0

0 D D D D D D D D D D D D 0 0 0

D D D D D D D D D D D D 0 0 0 0

CMD Loop CNT TRIG S/C result
Bit 0Bit 31 Bit 15

Figure 16. A result FIFO with 12-bit / 13-bit conversion result

In Figure 16, 'D' represents a data bit and 'S' represents a sign bit.

Figure 17 shows example conversion results a result FIFO when CMDLm[MODE] = 1.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
12 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

SCMDLm[MODE] = 1, CMDLm[CTYPE] = 2

CMDLm[MODE] = 1, CMDLm[CTYPE] != 2

D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

CMD Loop CNT TRIG S/C result
Bit 0Bit 31 Bit 15

Figure 17. A result FIFO with 16-bit conversion result

In Figure 17, 'D' represents a data bit and 'S' represents a sign bit.

2.2.11 Channel scaling

For the ADC modules, the reference voltage is usually 1.8 V. When the input signal on a channel is at a voltage
higher than 1.8 V, the signal must be reduced by a scale. To achieve this goal, the "channel scaling" feature can
be used. This feature is available for all CMDs.

The "channel scaling" feature can be configured for the channel of a CMD using the CSCALE bit field of the
CMDL register (CMDLm[CSCALE]), as follows:

• CMDLm[CSCALE] = 1: Full scale, no reduction in channel signal
• CMDLm[CSCALE] = 0: Scale the channel with a factor of ½, the channel signal is halved.

– When CMDLm[ALTBEN] = 0, CMDLm[CSCALE] controls both side A and side B channels for the CMD.
– When CMDLm[ALTBEN] = 1, CMDLm[CSCALE] controls the side A channel for the CMD, whereas

CMDLm[ALTB_CSCALE] controls the side B channel for the CMD.

Note: When the i.MX RT1180 MCU is out of reset, CMDLm[ALTB_CSCALE] = 1 and CMDLm[CSCALE] = 1. It
indicates that no signal reduction happens for the selected channel.

2.3 Add a delay between two conversions in a sequence through PAUSE register
When PAUSE[PAUSEEN] = 1, a delay occurs between two consecutive AD conversions in a conversion
sequence. The delay is 4 x PAUSE[PAUSEDLY] ADC clock cycles.

Figure 18 shows where the delay caused by the PAUSE register is located in a sequence, with the "store on
true" compare option configured for CMD4 (CMDH4[CMPEN] = 2).

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11
CMDH4[CMPEN] = 2

128 s/c averaged

Compare
true?

TRIG3

Store s/c result into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A
TCTRL3[TCMD] = 2

S

S

Check if Loop CNT > 4LC

LC

Y

N
No

Yes

S

CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A

S S

A delay of 4 x PAUSE[PAUSEDLY]
ADCK cycles

Store s/c result of
CH0A into FIFO

Store averaged s/c result of CH2A into
FIFO, before Loop CNT increments

when compare is true

Figure 18. Using PAUSE register for delay with "store on true" compare

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
13 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

Figure 19 shows where the delay caused by the PAUSE register is located in a sequence, with the "repeat until
true" compare option configured for CMD4 (CMDH4[CMPEN] = 3).

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11

128 s/c averaged

Compare
true?

TRIG3

Store s/c result into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A
TCTRL3[TCMD] = 2

S

S

Check if Loop CNT > 4LC

LC

Y

N

Yes

S

CMDH1[NEXT] = 0CMDH11[NEXT] =

1

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A

S S

Loop CNT stays
the same

No
Do not store

result into FIFO

Do loop only when compare is true. Store averaged
s/c result of CH2A into FIFO in each loop, before

Loop CNT increments when compare is true.

Store s/c result of
CH0A into FIFO

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

A delay of 4 x PAUSE[PAUSEDLY]
ADCK cycles

CMDH4[CMPEN] = 3

Figure 19. Using PAUSE register for delay with "repeat until true" compare

2.3.1 PAUSE register does not work with "wait for trigger" feature

Both the "wait for trigger" feature and the PAUSE register are used to add delays in a conversion sequence.
If both are used together (CMDHm[WAIT_TRIG] = 1 and PAUSE[PAUSEEN] = 1) on a CMD of a conversion
sequence, only the "wait for trigger" feature makes an impact, the PAUSE register has no impact.

Figure 20 shows the conversion sequence of Figure 18 modified by enabling the "wait for trigger" feature for
CMD4 and CMD1.

CMDH2[NEXT] = 4 CMDH4[NEXT] = 11 CMDH4[CMPEN] = 2

CMDH4[WAIT_TRIG] = 1 CMDH1[WAIT_TRIG] = 1

128 s/c averaged

Compare
true?

TRIG3

Wait for
TRIG3

Wait for
TRIG3

Store s/c result into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A
TCTRL3[TCMD] = 2

S

S

Check if Loop CNT > 4

No PAUSE

LC

LC

Y

N
No

Yes

S

Wait for TRIG3 signal

CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A

S S

A delay of 4 x PAUSE[PAUSEDLY]
ADCK cycles

Store averaged s/c result of CH2A into FIFO,
before Loop CNT increments

when compare is true

Store s/c result of
CH0A into FIFO

Figure 20. PAUSE register has no impact when enabled with "wait for trigger" feature

After completion of CMD2, the sequence pauses and waits for another valid signal on TRIG3 to continue
execution with CMD4. The delay configured with the PAUSE register is ignored.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
14 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

After completion of CMD4, a time delay caused by the PAUSE register occurs before CMD11 is executed. After
CMD11 execution, the sequence pauses and waits for another valid signal on TRIG3 to continue execution with
CMD1. The delay configured with the PAUSE register is ignored.

2.4 Configure whole sequence through trigger control register TCTRLn
A Trigger Control register (TCTRLn) can be used to configure the following settings for a conversion sequence:

• CMD to be used for the first AD conversion in the sequence
• Maximum delay allowed between the trigger signal and the first AD conversion
• Priority of the sequence
• FIFO to be used for storing the conversion results
• Whether a hardware signal can trigger the sequence

The different bit fields of the TCTRLn register serve the following purposes:

• TCTRLn[TCMD]: Determines the first CMD in a conversion sequence triggered by TRIGn. In Figure 2,
TCTRL3[TCMD] = 2, it means that the channel specified in CMD2 is the first channel to be converted for the
conversion sequence triggered by TRIG3.
When TCTRLn[TCMD] = 0, the TRIGn does not trigger any conversion sequence.

• TCTRLn[TDLY]: Indicates the delay between the occurrence of a valid trigger signal on TRIGn and the
execution of the first CMD in the conversion sequence.
The delay is 2TDLY ADC clock (ADCK) cycles:
– For the ADC1 module, ADCK refers to adc1_clk_root, which is controlled by CLOCK_ROOT44 related

registers.
– For the ADC2 module, ADCK refers to adc2_clk_root, which is controlled by CLOCK_ROOT45 related

registers.
When TCTRLn[TDLY] = 0, no such delay occurs.
The ADC1 and ADC2 root clocks can be configured in Config Tool, as shown in Figure 21.

Figure 21. ADC1 root clock configuration in Config Tool
• TCTRLn[TPRI]: Indicates the priority of the conversion sequence triggered by the TRIGn signal. Eight priority

levels are available: from level 1 (highest, TCTRLn[TPRI] = 0) to level 8 (lowest, TCTRLn[TPRI] = 7).
If two or more trigger signals have the same priority level, the trigger event with the smallest number takes
preference. For example, when TCTRL0[TPRI] = TCTRL1[TPRI], TRIG0 takes preference over TRIG1.

• TCTRLn[FIFO_SEL_A] and TCTRLn[FIFO_SEL_B]: These bit fields help determine which result FIFO to
use for the sequence associated with the TRIGn signal. For more details, see Section 2.2.4.

• TCTRLn[HTEN]: Controls whether a hardware signal can trigger a conversion sequence:
– If TCTRLn[HTEN] = 1, a rising-edge signal on TRIGn triggers the associated conversion sequence.
– If TCTRLn[HTEN] = 0, signals on TRIGn do not trigger any conversion sequence. However, the sequence

associated with TRIGn can be triggered manually by configuring the SWTRIG[SWTn] bit field, regardless of
the TCTRLn[HTEN] bit field value.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
15 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

2.4.1 Conversion sequence priority

Each ADC module has eight TRIG inputs, which can be configured with a priority level from 1 to 8. When
multiple conversion sequences associated with different TRIGn are triggered at the same time, the conversion
sequence associated with the highest priority TRIGn takes preference over other sequences.

2.4.1.1 Trigger exceptions are disabled if CFG[HPT_EXDI] = 1

The ADC modules support a feature, called trigger exception, which allows a higher-priority trigger signal to
interrupt an ongoing lower-priority conversion sequence. This feature is similar to the nested interrupt of the
CPU core.

The "trigger exception" feature can be configured using the CFG[HPT_EXDI] bit field:

• If CFG[HPT_EXDI] = 0 (default setting), the conversion sequence associated with a higher-priority TRIGn
signal can interrupt a sequence associated with a lower priority.

• If CFG[HPT_EXDI] = 1, a conversion sequence with a higher-priority TRIGn signal cannot interrupt any
sequence with a lower priority.

2.4.2 Breakpoint options for lower-priority sequences

When the trigger exception feature is enabled (CFG[HPT_EXDI] = 0), a valid TRIGn signal with a higher priority
can interrupt an ongoing lower-priority conversion sequence, making its associated conversion sequence begin
execution. The lower-priority conversion sequence may also contain a hardware average or loop.

The point where the lower-priority sequence is interrupted (breakpoint) is decided based on the
CFG[TPRICTRL] bit field value:

• If CFG[TPRICTRL] = 0: If a higher-priority TRIGn signal occurs, the ongoing lower-priority sequence is
aborted immediately (without waiting for the ongoing conversion to complete). The sequence associated with
the higher-priority TRIGn signal starts execution after 10–11 ADC clock cycles from the time when the higher-
priority TRIGn signal occurred.
For more details on the CFG[TPRICTRL] = 0 use case, see Section 2.4.3.

• If CFG[TPRICTRL] = 1: If a higher-priority TRIGn signal occurs, the ongoing lower-priority sequence is
aborted only after the currently executing CMD (including the hardware average but not the loop) completes.
Then, the sequence associated with the higher-priority TRIGn signal starts execution.
For more details on the CFG[TPRICTRL] = 1 use case, see Section 2.4.4.

• If CFG[TPRICTRL] = 2: If a higher-priority TRIGn signal occurs, the ongoing lower-priority sequence is
aborted only after the currently executing CMD (including both hardware average and loop) completes. Then,
the sequence associated with the higher-priority TRIGn signal starts execution.
For more details on the CFG[TPRICTRL] = 2 use case, see Section 2.4.5.

2.4.2.1 Resumption options for interrupted lower-priority sequences

The resumption of a lower-priority sequence that was interrupted earlier by a higher-priority TRIGn signal
depends on the CFG[TRES] bit field value:

• If CFG[TRES] = 0: The interrupted lower-priority sequence does not resume execution or does not restart.
If a trigger exception interrupt is enabled (IE[TEXC_IE] = 1):
– The STAT[TEXC_INT] flag can be used to determine if any trigger sequence is interrupted.
– The TSTAT[TEXC_NUM] flag can be used to determine which trigger sequence is interrupted.

• If CFG[TRES] = 1: The interrupted lower-priority sequence resumes execution after the higher-priority
sequence completes execution.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
16 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

The resumption point is determined by the CFG[TCMDRES] bit field value:
– If CFG[TCMDRES] = 0: The lower-priority sequence resumes execution from the first CMD of the

sequence. It means that the lower-priority sequence is restarted.
– If CFG[TCMDRES] = 1: The lower-priority sequence resumes execution from the CMD that was executing

when the sequence was interrupted. If the interrupted CMD contains a loop, the loop starts again.

2.4.3 Exception triggering with breakpoint option CFG[TPRICTRL] = 0 and resumption option
CFG[TRES] = 0

In Figure 22, TRIG6 has a higher priority than TRIG5. A valid signal occurring on TRIG6 aborts the ongoing
conversion sequence of TRIG5 immediately because CFG[TPRICTRL] = 0. Then, the sequence of TRIG6 starts
execution.

When the TRIG6 sequence completes execution, the sequence of TRIG5 does not resume execution because
CFG[TRES] = 0.

CMDH2[NEXT] = 4

TRIG6 occurs

CMDH4[NEXT] = 11

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1
TRIG5

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A
TCTRL5[TCMD] = 2

TCTRL5[TPRI] = 7, lowest priority

TCTRL6[TCMD] = 5
TCTRL6[TPRI] = 1

S

Check if Loop CNT > 4LC

CMDH13[NEXT] = 0CMDH12[NEXT] = 13

CMD12

ADCH = CH4A

CMD13 End

ADCH = CH1A

CMDH7[NEXT] = 12CMDH5[NEXT] = 7

CMD5

ADCH = CH0A

CMD7

Time

ADCH = CH3A

S
LC

Y

N

S S S

Store averaged s/c result of
CH2A into FIFO in each loop,
before Loop CNT increments

Store s/c result of
CH0A into FIFO

Conversion in progress is
terminated, and the remaining

conversions are aborted.Store s/c result into FIFO

Figure 22. A higher-priority trigger signal aborts a lower-priority sequence immediately

2.4.4 Exception triggering with breakpoint option CFG[TPRICTRL] = 1 and resumption options
CFG[TRES] = 1 and CFG[TCMDRES] = 1

In Figure 23, TRIG6 has a higher priority than TRIG5. A valid signal occurs on TRIG6 when CMD4 is executed
in the TRIG5 sequence. Because CFG[TPRICTRL] = 1; therefore, the sequence of TRIG6 waits for a hardware
average in CMD4 of the TRIG5 sequence to complete, before starting its execution. However, it does not wait
for the loop in CMD4 to complete.

After completion of the TRIG6 sequence, the TRIG5 sequence resumes execution automatically from CMD4
(which was executing when the sequence was interrupted) (if no other higher-priority sequence is pending)
because CFG[TRES] = 1 and CFG[TCMDRES] = 1. In this case, the loop on CMD4 is restarted.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
17 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMDH2[NEXT] = 4

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A
TCTRL5[TCMD] = 2

TCTRL5[TPRI] = 7, lowest priority

TCTRL6[TCMD] = 5
TCTRL6[TPRI] = 1

Loop CNT == 2

Loop CNT = 0

S

Check if Loop CNT > 4LC

S S

CMDH13[NEXT] = 0CMDH12[NEXT] = 13

CMD12

ADCH = CH4A

CMD13 End

ADCH = CH1A

CMDH7[NEXT] = 12CMDH5[NEXT] = 7

CMD5

ADCH = CH0A

CMD7

ADCH = CH3A

S

LC

Y

N

S

TRIG6 occurs in the middle of averaging.
Loop CNT == 2

Store s/c result of
CH0A into FIFO

Store s/c result into FIFO

Time

Store averaged s/c result of
CH2A into FIFO in each loop,
before loop CNT increments

CMDH4[NEXT] = 11
TRIG5

Figure 23. A higher-priority trigger signal aborts a lower-priority sequence after completion of hardware average
in current CMD

Figure 24 shows the result FIFO entries when the sequence of TRIG5 is interrupted and when it is resumed.

CMD11

CMD4

CMD4

CMD4

CMD4

CMD4

...

TRIG5

TRIG5

TRIG5

TRIG5

TRIG5

TRIG5

...

Loop CNT = 0

FIFO
increases

Loop CNT = 4

Loop CNT = 3

Loop CNT = 2

Loop CNT = 1
TRIG5 sequence resumes

Interrupted by TRIG6

TRIG6 sequence
Loop CNT = 0

...

CH7A result

128 averaged CH2A result

128 averaged CH2A result

128 averaged CH2A result

128 averaged CH2A result

128 averaged CH2A result

...

CMD4

CMD4

CMD4

CMD2
...

TRIG5

TRIG5

TRIG5

TRIG5
...

Loop CNT = 2

Loop CNT = 1

Loop CNT = 0

Loop CNT = 0
...

128 averaged CH2A result

128 averaged CH2A result

128 averaged CH2A result

CH0A result
...

Figure 24. A result FIFO showing interruption and resumption of a conversion sequence when CFG[TCMDRES] = 1

2.4.5 Exception triggering with breakpoint option CFG[TPRICTRL] = 2 and resumption options
CFG[TRES] = 1 and CFG[TCMDRES] = 1

In Figure 25, TRIG6 has a higher priority than TRIG5. A valid signal occurs on TRIG6 when CMD4 is executed
in the TRIG5 sequence. Because CFG[TPRICTRL] = 2, the sequence of TRIG6 starts execution after CMD4 of
the TRIG5 sequence (including hardware average and loop) completes.

After the TRIG6 sequence completes execution, the TRIG5 sequence resumes execution automatically from
CMD11 (if no other higher-priority sequence is pending) because CFG[TRES] = 1 and CFG[TCMDRES] = 1. In
this case, the TRIG5 sequence resumes execution from CMD11 because CMD4 has been executed already.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
18 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMDH2[NEXT] = 4

TRIG6 occurs in the middle of
averaging. Loop CNT==2

CMDH4[NEXT] = 11

128 s/c averaged

CMDH1[NEXT] = 0CMDH11[NEXT] = 1
TRIG5

Store s/c result of
CH7A into FIFO

Store s/c result of
CH5A into FIFO

Loop CNT++

Loop ends

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH7A

CMD1 End

ADCH = CH5A
TCTRL5[TCMD] = 2

TCTRL5[TPRI] = 7, lowest priority

TCTRL6[TCMD] = 5
TCTRL6[TPRI] = 1

S

S

Check if Loop CNT > 4LC

S S

CMDH13[NEXT] = 0CMDH12[NEXT] = 13

CMD12

ADCH = CH4A

CMD13 End

ADCH = CH1A

CMDH7[NEXT] = 12CMDH5[NEXT] = 7

CMD5

ADCH = CH0A

CMD7

ADCH = CH3A

S
LC

Y

N

Store averaged s/c result of
CH2A into FIFO in each loop,
before loop CNT increments

Store s/c result of
CH0A into FIFO

Store s/c result into FIFO

Time

Figure 25. A higher-priority trigger signal aborts a lower-priority sequence after completion of hardware average
and loop in current CMD

2.4.6 Trigger delay and power-up delay

As mentioned in Section 2.4, the TCTRLn[TDLY] bit field can be used to configure a delay between the
occurrence of a valid trigger signal on TRIGn and the execution of the first CMD in the conversion sequence.

Besides this initial delay (trigger delay) for a conversion sequence, a power-up delay may be needed for the
ADC module before it can start executing the sequence. The power-up delay is 4 x CFG[PUDLY] ADC clock
cycles. The ADC power-up delay can be configured using the CFG[PWREN] bit field:

• If CFG[PWREN] = 0, the ADC module is enabled only when it performs a conversion. It means that a power-
up delay is required each time the ADC module starts executing a sequence.

• If CFG[PWREN] = 1, the ADC module is always enabled, after it is enabled once by setting the CFG[PWREN]
bit field value.
To get enabled initially, the ADC module requires a power-up delay from the time the CFG[PWREN] bit field
is set to 1. After that, the ADC module is always enabled. In this case, the ADC module begins execution
of a conversion sequence immediately after a valid signal occurs on the associated TRIGn (assuming that
TCTRLn[TDLY] = 0).

Figure 26 demonstrates the trigger delay and the power-up delay.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
19 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

CMDH4[NEXT] = 11CMDH2[NEXT] = 4 CMDH11[NEXT] = 1 CMDH1[NEXT] = 0
TRIG3

TRIG6

TCTRL3[TCMD] = 2
TCTRL3[TDLY] != 0

TCTRL3[TPRI] = 0, highest priority

CMD2

ADCH = CH0A

CMD4

ADCH = CH2A

CMD11

ADCH = CH2A

CMD1 End

ADCH = CH5A

CMDH5[NEXT] = 7 CMDH7[NEXT] = 12 CMDH12[NEXT] = 13 CMDH13[NEXT] = 0

CMD5

ADCH = CH0A

CMD7

ADCH = CH3A

CMD12

ADCH = CH4A

CMD13 End

ADCH = CH1A

TCTRL6[TCMD] = 5
TCTRL6[TDLY] ! = 0

TCTRL6[TPRI] = 1, lower priority than TRIG3

Power-up delay

Trigger delay

Figure 26. Initial trigger delay and power-up delay

In Figure 26, a valid signal occurs on TRIG3 immediately after the CFG[PWREN] bit field is set to 1. Therefore,
a power-up delay (due to the ADC module power up) and a trigger delay (because TCTRL3[TDLY] != 0) occur
before execution begins for the sequence associated with TRIG3.

A valid signal with a lower priority occurs on TRIG6 during the execution of the TRIG3 sequence. As the priority
of the TRIG6 signal is lower than the priority of the TRIG3 signal, it waits for the TRIG3 sequence to complete
execution. Also, because TCTRL6[TDLY] != 0, a trigger delay occurs at the beginning of the TRIG6 sequence.

3 ADC reference voltage

In the i.MX RT1180 MCU, the reference voltage for the ADC is selected based on the CFG[REFSEL] bit field
value:

• If CFG[REFSEL] = 0, ADC uses the voltage from its VREFH pad as a reference. The VREF_OUT pad from
the VREF module and the VREFH pad from the ADC module are bonded on the same pin (ADC_VREFH) of
the SoC package.
Note: When using VREFH as a reference, ensure that the ADC clock frequency is less than 20 MHz.
Otherwise, ADC performance described in the i.MX RT1180 data sheet cannot be guaranteed.

• If CFG[REFSEL] = 1 or 2, ADC uses the voltage from the VDDA_ADC_1P8 pin as a reference.

To receive ADC reference voltage through the VREFH pad, use one of the following options:

Option 1: ADC reference voltage from an internal source

In this option, the ADC reference voltage is received from an internal source (VREF module), as shown in
Figure 27. To use this option, the VREF module must be configured and enabled.

VREF VREF_OUT

i.MX RT1180

Ball
ADC_VREFH

ADC VREFH

Figure 27. Using internal VREF for ADC reference

Option 2: ADC reference voltage from an external source
AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
20 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

In this option, the ADC reference voltage is received from an external source, such as an LDO regulator, as
shown in Figure 28. To use this option, disable the VREF module.

VREF VREF_OUT

VREFH

i.MX RT1180

Ball
ADC_VREFH

ADC VREFH

Figure 28. Using external VREFH for ADC reference with internal VREF disabled

4 Sampling+conversion time for a CMD channel

The time taken for sampling and AD conversion can be different for different CMD channels. The sampling time
depends on the CMDHm[STS] bit field value, whereas the conversion time depends on the format used for the
conversion result (12-bit / 13-bit format or 16-bit format).

Table 1 shows the total sampling+conversion time for a CMD channel with different sampling and conversion
settings.

CMDHm[STS] value Conversion result format (CMDLm[MODE] value) Total sampling+conversion
time (in ADC clock cycles)

12-bit / 13-bit format (CMDLm[MODE] = 0) 3.5 + 15.5CMDHm[STS] = 0

16-bit format (CMDLm[MODE] = 1) 3.5 + 20.5

12-bit / 13-bit format (CMDLm[MODE] = 0) 3.5 + 2STS + 15.5CMDHm[STS] > 0

16-bit format (CMDLm[MODE] = 1) 3.5 + 2STS + 20.5

Table 1. Sampling+conversion time

5 ADC interrupts

In the i.MX RT1180 MCU, an ADC module can trigger an interrupt in the following scenarios:

• When the result FIFOn (n = 0 or 1) contains data, and the number of valid data words is greater
than the watermark level set in the FCTRL[FWMARK] bit field: This interrupt is enabled when the
IE[FWMIEn] bit field is set to 1. When the number of valid data words is greater than the watermark (the
FCTRL[FWMARK] bit field value), a 1-bit flag (the STAT[RDYn] bit field) is set to 1; otherwise, the flag is
cleared. The STAT[RDYn] bit field cannot be set or cleared through the software.
Note: If the number of data words in the result FIFO is equal to the watermark, the STAT[RDYn] flag is not
set.

• When the result FIFOn (n = 0 or 1) overflows: This interrupt is enabled when the IE[FOFIEn] bit field is
set to 1. When the FIFO overflows, a 1-bit flag (the STAT[FOFn] bit field) is set to 1, and the FIFO does
not receive new data; however, the existing data remains intact. The STAT[FOFn] bit field can be cleared
manually by writing 1 to it.

• When a conversion sequence associated with TRIGn (n = 0–7) completes execution: To enable/disable
sequence completion interrupts for sequences associated with TRIG0-TRIG7, the IE[TCOMP_IE] bit field of
8-bit size is used. Each bit of the bit field enables/disables the corresponding sequence completion interrupt.
When a conversion sequence completes execution, a 1-bit flag (the STAT[TCOMP_INT] bit field) is set to 1.
To determine which TRIG sequence completed execution, read the TSTAT[TCOMP_FLAG] bit field of 8-bit
size. To clear both the used bits in the STAT[TCOMP_INT] and TSTAT[TCOMP_FLAG] bit fields, write 1 in
each bit.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
21 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

• When a higher-priority trigger signal interrupts an ongoing conversion sequence while the CFG[TRES]
bit field is set to 0 (an interrupted lower-priority sequence does not resume execution or does not
restart): This interrupt is enabled when the IE[TEXC_IE] bit field is set to 1. When the interrupt is triggered,
a 1-bit flag (the STAT[TEXC_INT] bit field) is set to 1. The STAT[TEXC_INT] bit field can be cleared manually
by writing 1 to it. To determine which sequence was interrupted, read the TSTAT[TEXC_NUM] bit field of 8-bit
size.

For each ADC module, these four interrupts share one interrupt vector on the core side.

6 DMA interrupts triggered by ADC

When the number of valid data words in a result FIFO (FIFO0 or FIFO1) of an ADC module is greater than the
watermark, the result FIFO can trigger a DMA interrupt, as described in Table 2.

ADC module Result FIFO Triggered DMA interrupt

FIFO0 eDMA4 through source 57ADC1

FIFO1 eDMA4 through source 220

FIFO0 eDMA4 through source 158ADC2

FIFO1 eDMA4 through source 221

Table 2. DMA interrupts

7 ADC calibration for offset and gain errors

To achieve the specified accuracy during initialization, each ADC module must perform calibration on offset
and gain. The offset error has two values stored in the OFSTRIM16 and OFSTRIM12 registers, whose sizes
are 16 bits and 12 bits, respectively. The gain errors of side A and side B are stored in the GCR0[GCALR] and
GCR1[GCALR] bit fields.

For more details on the calibration process, refer to the "Initialization" section of the "Analog-to-Digital Converter
(ADC)" chapter in i.MX RT1180 Reference Manual.

8 ADC temperature sensor

Each ADC module has an integrated temperature sensor, which is connected to its CH26A and CH26B
channels. To get the correct temperature, use the following configurations:

• For the CMD that is used for temperature sensing:
– The channel number must be 26 (CMDLm[ADCH] = 26).
– The CMD must be in Differential mode (CMDLm[CTYPE] = 2).

• For a CMD, the conversion result can be in either 12-bit / 13-bit format or 16-bit format.
• Use the maximum hardware average time (CMDHm[AVGS] = 10).
• Use the longest sampling time (CMDHm[STS] = 7).
• Loop twice (CMDHm[LOOP] = 1).
• Keep the channel number in the CMD unchanged during the loop, for example, CMDHm[LWI] = 0.
• Disable the compare feature (CMDHm[CMPEN] = 0).

The result FIFO has two results corresponding to this CMD. The results can be used to calculate the ambient
temperature as follows:

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
22 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

where:

• is the first result stored in the FIFO.
• is the second result stored in the FIFO.
• A is the slope factor and its value is 789.2.
• B is the offset factor and its value is 319.2.
• is the band gap coefficient and its value is 11.2.

The calculated temperature is in °C. To achieve maximum temperature calculation accuracy, set the
CMDLm[CSCALE] bit field to 1.

9 Points to remember

• When ADC_VREFH is selected as the ADC reference voltage, the ADC clock frequency must be less than 20
MHz to achieve the performance mentioned in the data sheet.

• When VDDA_ADC_1P8 is selected as the ADC reference voltage, the maximum ADC clock frequency is 88
MHz.

• The CTRL[RST] bit field can be used to reset the ADC internal logic and registers. However, it cannot be used
to reset the CTRL register itself.

• If CTRL[ADCEN] = 1, the CFG register bit field values cannot be changed. Before writing the CFG register,
clear the CTRL[ADCEN] bit field.

• The STAT[TCOMP_INT] flag is asserted when a sequence completes execution, only if IE[TCOMP_IE] = 1.
The TSTAT[TCOMP_FLAG] bits are asserted when the corresponding sequences complete execution, only if
IE[TCOMP_IE] = 1.

• The STAT[TEXC_INT] flag is asserted when a higher-priority trigger interrupt occurs, only if IE[TEXC_IE] = 1
and CFG[TRES] = 0.

• Calibration must be done before using ADC; otherwise, the performance cannot be guaranteed.
• The CSCALE bit must be cleared when the corresponding CMD channel signal is at a voltage higher than 1.8

V.

10 References

The following are some additional documents that you can refer to for more information on the i.MX RT1180
MCU:

• i.MX RT1180 Reference Manual (IMXRT1180RM)
• i.MX RT1180 Crossover Processors Data Sheet for Industrial Products (IMXRT1180IEC)
• i.MX RT1180 Crossover Processors Data Sheet for Extended Industrial Products (IMXRT1180XEC)

11 Acronyms

Table 3 lists the acronyms used in this document.

Acronym Description

AD Analog-to-digital

ADC Analog-to-Digital Converter

ADCK ADC clock

CMD Command buffer

Table 3. Acronyms

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
23 / 26

https://www.nxp.com/doc/IMXRT1180RM
https://www.nxp.com/doc/IMXRT1180IEC
https://www.nxp.com/doc/IMXRT1180XEC
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

Acronym Description

LDO Low dropout

SAR Successive approximation register

S/C Sampling+conversion

SoC System-on-chip

XBAR Inter-Peripheral Crossbar Switch

Table 3. Acronyms...continued

12 Revision history

Table 4 summarizes the revisions to this document.

Document ID Release date Description

AN14485 v.1.0 7 February 2025 Initial public release

Table 4. Revision history

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
24 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14485 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 7 February 2025 Document feedback
25 / 26

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

NXP Semiconductors AN14485
Using ADC in i.MX RT1180

Contents
1 Introduction .. 2
2 Implementing conversion sequences2
2.1 AD conversion sequence types 3
2.1.1 Sequential conversion 3
2.1.2 Unending circular conversion 4
2.1.3 Continuous conversion 4
2.2 Configure each conversion in a sequence

through CMD ... 4
2.2.1 Hardware average ... 4
2.2.2 Loop feature .. 5
2.2.3 Conversion types ...6
2.2.4 Result FIFO ... 7
2.2.5 Channel number remains unchanged

during loop if CMDHm[LWI] = 07
2.2.6 Channel number is incremented during loop

if CMDHm[LWI] = 1 ... 8
2.2.7 Enable loop and hardware average on

same CMD ...8
2.2.8 Wait for a trigger signal during execution of

a sequence .. 9
2.2.9 Compare feature ..10
2.2.9.1 Interpreting a comparison result 12
2.2.10 Conversion result format 12
2.2.11 Channel scaling ... 13
2.3 Add a delay between two conversions in a

sequence through PAUSE register 13
2.3.1 PAUSE register does not work with "wait for

trigger" feature ... 14
2.4 Configure whole sequence through trigger

control register TCTRLn 15
2.4.1 Conversion sequence priority 16
2.4.1.1 Trigger exceptions are disabled if

CFG[HPT_EXDI] = 1 16
2.4.2 Breakpoint options for lower-priority

sequences ..16
2.4.2.1 Resumption options for interrupted lower-

priority sequences ..16
2.4.3 Exception triggering with breakpoint option

CFG[TPRICTRL] = 0 and resumption option
CFG[TRES] = 0 ... 17

2.4.4 Exception triggering with breakpoint
option CFG[TPRICTRL] = 1 and
resumption options CFG[TRES] = 1 and
CFG[TCMDRES] = 1 17

2.4.5 Exception triggering with breakpoint
option CFG[TPRICTRL] = 2 and
resumption options CFG[TRES] = 1 and
CFG[TCMDRES] = 1 18

2.4.6 Trigger delay and power-up delay 19
3 ADC reference voltage 20
4 Sampling+conversion time for a CMD

channel ... 21
5 ADC interrupts ... 21

6 DMA interrupts triggered by ADC 22
7 ADC calibration for offset and gain

errors ...22
8 ADC temperature sensor 22
9 Points to remember23
10 References ..23
11 Acronyms ... 23
12 Revision history ...24

Legal information ...25

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 7 February 2025
Document identifier: AN14485

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14485

	1 Introduction
	2 Implementing conversion sequences
	2.1 AD conversion sequence types
	2.1.1 Sequential conversion
	2.1.2 Unending circular conversion
	2.1.3 Continuous conversion

	2.2 Configure each conversion in a sequence through CMD
	2.2.1 Hardware average
	2.2.2 Loop feature
	2.2.3 Conversion types
	2.2.4 Result FIFO
	2.2.5 Channel number remains unchanged during loop if CMDHm[LWI] = 0
	2.2.6 Channel number is incremented during loop if CMDHm[LWI] = 1
	2.2.7 Enable loop and hardware average on same CMD
	2.2.8 Wait for a trigger signal during execution of a sequence
	2.2.9 Compare feature
	2.2.9.1 Interpreting a comparison result

	2.2.10 Conversion result format
	2.2.11 Channel scaling

	2.3 Add a delay between two conversions in a sequence through PAUSE register
	2.3.1 PAUSE register does not work with "wait for trigger" feature

	2.4 Configure whole sequence through trigger control register TCTRLn
	2.4.1 Conversion sequence priority
	2.4.1.1 Trigger exceptions are disabled if CFG[HPT_EXDI] = 1

	2.4.2 Breakpoint options for lower-priority sequences
	2.4.2.1 Resumption options for interrupted lower-priority sequences

	2.4.3 Exception triggering with breakpoint option CFG[TPRICTRL] = 0 and resumption option CFG[TRES] = 0
	2.4.4 Exception triggering with breakpoint option CFG[TPRICTRL] = 1 and resumption options CFG[TRES] = 1 and CFG[TCMDRES] = 1
	2.4.5 Exception triggering with breakpoint option CFG[TPRICTRL] = 2 and resumption options CFG[TRES] = 1 and CFG[TCMDRES] = 1
	2.4.6 Trigger delay and power-up delay

	3 ADC reference voltage
	4 Sampling+conversion time for a CMD channel
	5 ADC interrupts
	6 DMA interrupts triggered by ADC
	7 ADC calibration for offset and gain errors
	8 ADC temperature sensor
	9 Points to remember
	10 References
	11 Acronyms
	12 Revision history
	Legal information
	Contents

