

This document contains information on a new product under development by Freescale. It
reflects the current design of the MPC190 device drivers for VxWorks, WindowsNT, and
RTLinux. The design of all three drivers will be consistent in future.

This document contains the following topics:

Topic Page

Section Part I, “Architecture Overview” 1

Section Part II, “Device Driver Structure” 3

Section Part III, “Process Flow Chart” 4

Section Part IV, “Device Driver Interface” 8

Section Part V, “Design Considerations” 18

Section Part VI, “References” 23

Section Part VII, “Acronyms and Abbreviations” 23

Part I Architecture Overview

The MPC190 is one of the latest Motorola’s security processors which is optimized to process
all the algorithms associated with IPSec, IKE, WTLS/WAP and SSL/TLS, including RSA,
RSA signature, Diffe-Hellman, elliptic curve, DES, 3DES, SHA-1, MD-4, MD-5 and ARC-4.
The MPC190 is designed to operate in a PCI system. The external processors access the
MPC190 through its device drivers using system memory for data storage. The MPC190
resides in the PCI address map of the processor, therefore when an application requires
cryptographic functions, it creates descriptors for the MPC190, defining the cryptographic
function to be performed, and the location of the data. The MPC190 will decode the descriptor
and allocate the internal execution unit to do the cryptographic computing. The result is set to
the predefine data out buffer and the PCI bus is notified by firing a channel done interrupt.
Figure 1-1 shows the physical overview of the MPC190 security processor.

Advance Information

AN2469/D
Rev. 1.1, 2/2003

MPC190 PCI Device Driver
Design Specification

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

MPC190 PCI Device Driver Design Specification

Figure 1-1. Physical Overview

Other
Peripherals Memory CPU

PCI Bridge

Physical Address

PCI Bus

PCI 2.2
Interface Control

Crypto
Channel

Crypto
Channel

Crypto
Channel

Crypto
Channel

Crypto
Channel

Crypto
Channel

Crypto
Channel

Crypto
Channel

Crypto
Channel

PKHA
x6

DES
x3

Auth
x3 Arc-4 RNG

MPC190 Processor

Baranti PCI Board

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Driver Initialize Routine

Figure 1-2. Logical Overview for WinNT

Part II Device Driver Structure

General device driver should have these common routines and components:

2.1 Driver Initialize Routine

The device driver will have OS-specific loading and initialization functions. In general, these functions will
ensure that the MPC190 is installed and working, that the device driver is properly loaded, and that the
requesting task can issue processing requests.

For the Windows NT device driver (Kernel Mode) is a NT service. It can be loaded during the system boot
up or after OS system is loaded. During the driver loading phase, the driver initialization routine should find
the MPC190, create a NT IoDevice, map the MPC190 physical memory to the NT kernel memory space,
allocate global storage and initialize the MPC190 crypto channels and CHAs. The last step is to register the
InterruptServiceRoutine to listen to the PCI bus interrupt events.

2.2 IO Request Dispatch Routine

The device driver will have a dispatch function. When a task issues an Io request for processing, the
operating system will fire the device driver dispatch routine and pass the Io request context buffer to the
dispatch routine as an Irp. The Io request dispatch routine will handle various Irp requests based on the Irp
Stack’s Major Function and Io control code. If the Irp request is a basic process like IO_Close, IO_Open,

NT System Service

MPC190
Device Driver

I/O Manager

NT Kernel

HAL

MPC190 PCI Board

Application

User Mode

Kernel Mode

NT Executive Service

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Process Request Routine Process Request Routine

IO_Create, it will directly call these pre-registered functions and normally these functions will complete the
Io request. If the Irp request is an Io process request, it will call the Process Request Routine.

2.3 Process Request Routine

The device driver will have a process request function. When the IO Request Dispatch routine sends an Irp
to the Process Request, the driver will determine if the MPC190 has enough free resources to process the
current request. If it does, the driver will translate the process request into a sequence of one or more Data
Packet Descriptors and start the operation. If the MPC190 is busy, the process request will be added to a
queue.

2.4 Interrupt Service Routine

The device driver will have an interrupt service routine (ISR), which will be triggered by the PCI INTA
interrupt line. Since PCI interrupts are shared, the ISR will first determine if the MPC190 generated an
interrupt. If it did, the ISR will clear the interrupt and schedule a separate device driver function to handle
the process request completion details. The ISR will be as short and fast as possible.

2.5 Processing Complete Routine

The device driver will have a processing complete function, which is scheduled by the ISR when a
processing request is completed, but runs at a lower priority than the ISR. This function will determine
which processing requests are complete and notify the corresponding calling tasks. It will then check the
processing request queue and based on the available MPC190 resources, initiate one or more processing
requests.

WinNT provide DPC mechanism that runs at low level priority to handle these tasks.

2.6 Process Request Queue Routine

The device driver will maintain a processing request queue (protected by a Spin Lock or Mutex, so that the
process request function and the processing complete function do not modify the queue at the same time).

The Process Request Queue Routine is normally fired by Processing Complete Routine using
ScheduleNext() call. It will get one queue_entry and try to find an available channel and CHA resource. If
successed, it will move the request from the queue_entry to the ChannelAssignments. Then it removes this
queue_entry from the request queue.

2.7 Other Functions

The device driver will have other functions for checking the status of the driver, controlling the driver or
MPC190, and setting the block size.

Part III Process Flow Chart

The MPC190 device driver has four basic phases, the initialization phrase, the IO request process phase,
interrupt service phase and driver unload phase.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Functions

Figure 3-3. Device Driver Initialization.

Start a PCI bus loop to f ind
the MPC190 PCI card

DevId/VendorId

Driver Loading

Get PCI Bus Info

Find MPC190?

Yes

No
Return Error and

auto unload

IoCreateDevice (NT)

Success?

Yes

No
Return Error and

auto unload

Map MPC190 physical
memory

Success?

Yes

No
Return Error and

auto unload

Allocate global variables

Success?

Yes

No
Return Error and

auto unload

Init Spinlock, SemId

Success?

Yes

No
Return Error and

auto unload

Reset CHA/EU

Success?

Yes

No
Return Error and

auto unload

Reset & Config Channel

Success?

Yes

No
Return Error and

auto unload

Connect & Enable Interrupt

Success?

Yes

No
Return Error and

auto unload

Return Success

Yes

Rngtest, FIPS test,
Known-answer test

Success?

Yes

No
Return Error and

auto unload

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Functions Other Functions

Figure 3-4. Device Driver Unload

Driver Unloading

Cleanup all
resources

Close MPC190

Return Success

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Functions

Figure 3-5. IO Request Process

Device Io request

Entering MPC190
Dispatch, switch Irp type

Default: Irp type not match

Return Error

MPC190 Open

MPC190 Close

Switch ioctlCode

Return Success

Return Success

Irp_Open/Create

Irp_Close

Irp_DeviceControl

Default: ioctl code
 not match

Return Error

ProcessRequest

Retrieve MPC190 Status

SetControl

ReserverChannelStatic

ReserveChannelManual

AssignCha

ReleaseCha

ReleaseChannel

SetBlockSize

Proc_Req

Get_Status

Control

Reserve_Channel_Static

Release_Channel

Assign_CHA

Release_CHA

Reserve_Channel_Manual

Set_Block_Size

Return Success

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Functions Other Functions

Figure 3-6. Interrupt Service

Part IV Device Driver Interface

The IOCTL device driver function calls have limited capabilities for passing data to and from the device
driver (in VxWorks and RTLinux, a single parameter). For cryptographic processing requests, we will use
a single parameter to pass in a pointer to a data structure that contains the details of the request. There will
be a different process request structure for each type of cryptographic processing supported by MPC190.

The first member of every request structure is an operation ID that can be used by the device driver to
determine the format of the rest of the request structure.

All process request structures have a channel member. For process requests that work in either dynamic
mode or static mode, the channel can be set to zero to indicate dynamic mode, or to a valid channel number
(1 through 9) to indicate static mode. For process requests that only work in static mode, the channel should
be set to a valid channel number (1 through 9).

Interrupt Service

Read MPC190 Interrupt
Status Register

CHA error ? Reset CHA
Yes

No

Channel error ? Reset Channel
Yes

No

Processing Complete

Clean MPC190 Interrupt
Status Register

Return TRUE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Global Variables Definition

All process request structures have a status member. This value is filled in by the device driver when the
interrupt for the operation occurs, and reflects the type of interrupt – done (normal status) or error (error
status).

All process request structures have a notify member. This value is used by the device driver to notify the
application when its request has been completed.

All process request structures have a next request member. This allows the application to chain multiple
process requests together.

The hardware limit of 2048 bytes per data packet descriptor is not exported by the device driver. The
application can issue a process request with any length (up to 232 – 1), and the device driver will handle the
details of breaking the request up into the proper size chunks.

4.1 Global Variables Definition

The following sections describe channel specific information for channel assignments.

4.1.1 ChannelAssignments

The ChannelAssignments retains all channel specified information, the driver should lock it while
modifying. So only one process can modify it at anytime.

typedef struct

{

unsigned char assignment;
unsigned char isChunked;
int ownerTaskId;
void *firstRequest;
void *currentRequest;
unsigned long currentOffset;
void *notify;
DPD **dpds;
int dpdCount;

#ifdef WINNT
PIRP Irp;
MDL **reqMdl;
int reqMdlCount;
MDL **dataMdl;
int dataMdlCount;

#endif

} CHANNEL_ASSIGNMENT;
CHANNEL_ASSIGNMENT ChannelAssignments[NUM_CHANNELS]

4.1.2 ChaAssignments

The ChaAssignments retains the CHA assignment information.

unsigned char ChaAssignments[NUM_CHAS];

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Global Variables Definition Global Variables Definition

4.1.3 ProcessQueueTop and ProcessQueueBottom

These two QUEUE_ENTRY pointer retain the top pointer and the bottom pointer of the processing queue.

QUEUE_ENTRY *ProcessQueueTop;

QUEUE_ENTRY *ProcessQueueBottom;

4.1.4 ChannelAssignLock and BlockSizeLock

The ChannelAssignLock locks the ChannelAssignments modification process while the BlockSizeLock
locks the BlockSize modification process.

4.1.5 Other variables

int FreeChannels;
int FreeRngas;
int FreeAfhas;
int FreeDesas;
int FreeMdhas;
int FreePkhas;
unsigned long BlockSize; /* The current max block size */
unsigned long PCIBaseAddress; /* The PCI mapping base address */
unsigned long IntStatus[2]; /* Controller interrupt status register, 0x1010 */
unsigned long ChaAssignmentStatus[2]; /* Controller EU assignment status
register, 0x1028 */
unsigned long ChannelError[NUM_CHANNELS][2];/* Channel Pointer Status Register,
0x2010, 0x3010,...*/
unsigned long ChaError[NUM_CHAS][2]; /* EU/Cha Interrupt Status Register, 10030,
11030,... */
int FIPS_AccessRole;
int FIPS_Connections;

4.1.6 Error return codes

/* return codes */
#define MPC190_SUCCESS (0)
#define MPC190_MEMORY_ALLOCATION (-1)
#define MPC190_INVALID_CHANNEL (-2)
#define MPC190_INVALID_CHA_TYPE (-3)
#define MPC190_INVALID_OPERATION_ID (-4)
#define MPC190_CHANNEL_NOT_AVAILABLE (-5)
#define MPC190_CHA_NOT_AVAILABLE (-6)
#define MPC190_INVALID_LENGTH (-7)
#define MPC190_OUTPUT_BUFFER_ALIGNMENT (-8)
#define MPC190_RNG_ERROR (-9)

#ifdef WINNT
#define MPC190_PCI_CARD_NOT_FOUNDSTATUS_NO_SUCH_DEVICE
#define MPC190_PCI_MEMORY_ALLOCATE_ERRORSTATUS_INSUFFICIENT_RESOURCES
#else
#define MPC190_PCI_CARD_NOT_FOUND-1000)
#define MPC190_PCI_MEMORY_ALLOCATE_ERROR-1001)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Device Driver I/O Interface

#endif
#define MPC190_PCI_IO_ERROR-1002)
#define MPC190_PCI_VXWORKS_DRIVER_TABLE_ADD_ERROR (-1003)
#define MPC190_PCI_INTERRUPT_ALLOCATE_ERROR (-1004)

4.2 Device Driver I/O Interface

This section lists different functions of I/O interface of the device driver.

• Open/Create—This function allows a task to get a device descriptor for future calls to the device
driver.

• Close—This function tells the device driver that the user task is finished with its device descriptor.

• IOCTL—This set of functions is the main interface to the device driver. Subfunctions are identified
by their IOCTL control code. Subfunctions include:

• Status—Returns the status of the MPC190 card, including crypto channel status, CHA status, and
queue length. Third argument in the ioctl() call is a pointer to the MPC190_STATUS structure.

• Control—Allows the caller to modify certain MPC190 features, including Enable/Disable
ReserveChannelManual, Enable/Disable ReserveChannelStatic, Enable/Disable Notify, Change
the Role Mode (FIPS Crypto Officer, FIPS User, No Control).

• ProcessRequest—Allows the caller to make a request for one or more crypto processing functions.
Third argument in ioctl() call is a pointer to a specific request structure.

• ReserveChannelStatic—Statically allocates a channel for use by a single task. Third argument in
ioctl() call is an unsigned long specifying the channel number.

• ReserveChannelManual—Allows the caller to reserve a crypto channel for use in
manual/debug/target mode. Third argument in ioctl() call is an unsigned long specifying the channel
number.

• AssignCHA—Allows the caller to reserve a specific CHA for use by either a static channel or a
manual channel. Third argument in ioctl() call is a unsigned long – bottom eight bits are the CHA,
next eight bits are the channel number. More than one CHA may be assigned to the same channel
by calling this function multiple times. The caller should check the assignment status of the
specified CHA (by calling the Status IOCTL function) before trying to assign it.

• ReleaseCHA—Returns a reserved CHA to normal use (dynamic mode) by the device driver. Third
argument in ioctl() call is an unsigned long specifying the CHA to release.

• ReleaseChannel—Frees a reserved (static or manual) channel. Third argument in ioctl() call is an
unsigned long specifying the channel to release.

• SetBlockSize—Controls the block size that the request data can be broken up to this size (DPD).
Third argument in ioctl() call is an unsigned long giving the new block size in bytes. The maximum
block size (the hardware upper limit) is 2048 bytes. Default value at driver startup is 2048 bytes.

4.3 Device Driver Internal Functions

This section describe different functions with their associated prototype, platform dependency, input, output
and return status.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Device Driver Internal Functions Device Driver Internal Functions

Table 4-1. Device Driver Internal Functions

Function Name
Platform
Depen-

dent
Purpose

Prototype

Input Output Return

NT VxWorks Linux

AssignCha No To reserve a
specific CHA for
use by either a
static channel or
a manual
channel.

√ √ √

channelCha

 None MPC190_
SUCCESS
if success
otherwise
the error
code

 int AssignCha (unsigned long
channelCha, int currentTaskId)

bottom eight btis is
the CHA chaType

next eight bits is
the channel
number (1-9)

currentTaskId

task id

ChaNumToType No To translate the
the CHA number
to the CHA
chaType

√ √ √

cha

None ChaType if
found or
MPC190_I
NVALID_C
HA_TYPE
if not
found.

int ChaNumToType (int cha) CHA Number

CheckChas No Check to see if
the CHA is
avaiable (at
least one of this
type of CHA is
available)

√ √ √

chaType

None MPC190_
SUCCESS
if this type
of CHA is
available
otherwise
MPC190_
CHA_NOT
_AVAILAB
LE

 int CheckChas (int chaType) CHA Type

MPC190 Driver
Initialization

Yes Device driver
initialization
routine

√ √ √

DriverObject

None MPC190_
SUCCESS
if success
otherwise
the error
code

NTSTATUS
DriverEntry
(IN
PDRIVER_OB
JECT
DriverObject,
IN
PUNICODE_S
TRING
RegistryPath)

int MPC190DriverInit
(void)

PDRIVER_OBJE
CT (NT only)

RegistryPath

PUNICODE_STRI
NG (NT only)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Device Driver Internal Functions

InterruptService
Routine

Yes To handle all
interrupts
generated by
the Channel or
the CHA (Done
or Error)
indicated by the
Interrupt Status
Register .

If Error, clean
the
InterruptStatusR
egister by
writing
InterruptClearR
egister.

Finally call
ProcessingCom
plete routine.

√ √ √

Interrupt

None TRUE if
finished all
the steps
otherwise
FALSE
(NT only)

BOOLEAN
MPC190Interr
uptServiceRo
utine (IN
PKINTERRUP
T Interrupt, IN
OUT PVOID
Context)

void
InterruptServiceRoutin
e (void)

PKINTERRUPT
(NT only)

Context

PVOID the
request Context
(NT only)

OpIdToChaType No To translate the
crypto operation
id to the
chaType and
later on the
routine can
check if this type
of CHA is
available or not.

√ √ √

OpId chaType

MPC190_
Success if
match,
otherwise
MPC190_I
NVALID_
OPERATI
ON_ID

int OpIdToChaType (unsigned long
OpId, int *chaType)

crypto operation
Id

CHA type

ProcessRequest Yes To handle the IO
request routine

√ √ √

req req

MPC190_
Success if
success,
otherwise
MPC190
error code.

int
ProcessRequ
est (void *req,
int
callingTaskId,
PIRP Irp)

int ProcessRequest
(void *req, int
callingTaskId)

pointer of the IO
request buffer
callingTaskId -
task Id

–

pointer of
the IO
request
buffer

Irp

PIRP (NT only)

Table 4-1. Device Driver Internal Functions (continued)

Function Name
Platform
Depen-

dent
Purpose

Prototype

Input Output Return

NT VxWorks Linux

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Device Driver Internal Functions Device Driver Internal Functions

ReleaseCha No To release a
specific CHA for
use by either a
static channel or
a manual
channel.

√ √ √

channelCha

None MPC190_
SUCCESS
if success
otherwise
the error
code.

int ReleaseCha (unsigned long
channelCha, int callingTaskId, int
locked)

Bottom eight btis
are the CHA
chaType.the next
eight bits are the
channel number
(1-9)

currentTaskId

task id

ReleaseChannel No To free a
reserved
channel (either
a static channel
or a manual
channel.)

√ √ √

Channel

None MPC190_
SUCCESS
if success
otherwise
the error
code.

int ReleaseChannel (unsigned long
channel, int callingTaskId, int locked)

Channel number
(1-9)

currentTaskId

the task id

locked

CHANNELS_UNL
OCKED or
CHANNELS_LOC
KED

ReserveChanne
lManual

No To reserve a
crypto channel
for use in
manual/debug
mode

√ √ √

reserve

Reserve
—>chann
el - the
channel
number
that
allocated

MPC190_
SUCCESS
if success
otherwise
the error
code.

int ReserveChannelManual
(MPC190_RESERVE_MANUAL
*reserve, int callingTaskId)

the
MPC190_RESER
VE_MANUAL
structure

currentTaskId

the task id

ReserveChannl
Static

No To allocate a
channel for use
by a single task.

√ √ √

channel channel

MPC190_
SUCCESS
if success
otherwise
the error
code.

int ReserveChannelStatic (IN OUT
PULONG channel, IN int callingTaskId)

the channel
number (1-9)

 the
channel
number
that
allocated

currentTaskId

the task id

Table 4-1. Device Driver Internal Functions (continued)

Function Name
Platform
Depen-

dent
Purpose

Prototype

Input Output Return

NT VxWorks Linux

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Device Driver Internal Functions

SetBlockSize No To control how
large blocks of
data are broken

√ √ √

newBlockSize

None MPC190_
SUCCESS
if success
otherwise
the error
code.

int SetBlockSize (unsigned long
newBlockSize)

256-2048

MPC190Open Yes To establish an
I/O connection
between the
driver service
and the
application.

√ √ √

DeviceObject

None
MPC190_
SUCCESS
if success
otherwise
the error
code.

NTSTATUS
MPC190Open
(IN
PDEVICE_OB
JECT
DeviceObject,I
N PIRP Irp)

int
MPC190O
pen
(DEV_HD
R
*pDevHdr,
int mode,
int flag)

int
MPC190O
pen (struct
inode
*inode,
struct file
*filp)

PDEVICE_OBJE
CT (NT)

Irp

PIRP (NT)

MPC190Close Yes To close an I/O
connection
between the
driver service
and the
application.

√ √ √

DeviceObject

None MPC190_
SUCCESS
if success
otherwise
the error
code.

NTSTATUS
MPC190Close
(IN
PDEVICE_OB
JECT
DeviceObject,
IN PIRP Irp)

Prototype
(VxWorks)
int
MPC190Cl
ose (int
devDesc)

int
MPC190Cl
ose (int
devDesc)

PDEVICE_OBJ
ECT (NT)

Irp

PIRP (NT)

DevDesc

device descriptor
number

MPC190Clean-
up (NT only)

Yes To clean up the
internal staff
before the I/O
connection
closing.

√ DeviceObject None MPC190_
SUCCESS
if success
otherwise
the error
code.

NTSTATUS
MPC190Clean
up(IN
PDEVICE_OB
JECT
DeviceObject,I
N PIRP Irp)

PDEVICE_OBJE
CT (NT)

Irp

PIRP (NT)

Table 4-1. Device Driver Internal Functions (continued)

Function Name
Platform
Depen-

dent
Purpose

Prototype

Input Output Return

NT VxWorks Linux

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Device Driver Internal Functions Device Driver Internal Functions

MPC190Unload
(NT only)

Yes To unload itself
when the driver
is unload.

√ DeviceObject None MPC190_
SUCCESS
if success
otherwise
the error
code.

NTSTATUS
MPC190Un-
load (IN
PDEVICE_OB
JECT
DeviceObject,
IN PIRP Irp)

PDEVICE_OBJE
CT (NT)

Irp

PIRP (NT)

Io Control
Dispatch

Yes To handle the
I/O request and
dispatch to the
different process
function based
on the ioctl
code.

√ √ √ devDesc None MPC190_
SUCCESS
if success
otherwise
the error
code.

NTSTATUS
MPC190Dispa
tch (IN
PDEVICE_OB
JECT
devDesc, IN
PIRP Irp)

int Ioctl (int
devDesc,
int
ioctlCode,
void
*param)

int Ioctl
(struct
inode
*nodePtr,
struct file
*devDesc,
unsigned
int
ioctlCode,

unsigned
long
param)

PDEVICE_OBJE
CT (NT)

 Irp

PIRP (NT)

PCIRead No To read
numbers of
unsigned long
from src to dest

√ √ √ numUlongs None None

void PCIRead (unsigned long *data, int
numUlongs, volatile unsigned long
*address)

number of
unsigned long to
read

address

the start pointer of
the src

data

the start pointer of
the dest.

Table 4-1. Device Driver Internal Functions (continued)

Function Name
Platform
Depen-

dent
Purpose

Prototype

Input Output Return

NT VxWorks Linux

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Device Driver Internal Functions

PCIWrite No T o write
numbers of
unsigned long
from src to dest

√ √ √ numUlongs None None

void PCIWrite (unsigned long *data, int
numUlongs, volatile unsigned long
*address)

number of
unsigned long to
read

address

the start pointer of
the dest

data

the start pointer of
the src

ProcessingCom-
plete

Yes To handle the
non time-critical
process and if
the request is
done, then
complete the
I/O.

√ √ √ Dpc None None

VOID
ProcessingCo
mplete (IN
PKDPC Dpc,
PDEVICE_OB
JECT
deviceObject,
IN PVOID
SystemArg1,
IN PVOID
SystemArg2)

void
ProcessingComplete
(void)

PKDPC

DeviceObject

PDEVICE_OBJE
CT (NT)

SystemArg1

PVOID (NT)

SystemArg2

PVIOD (NT)

RemoveQueue-
Entry

No To remove the
queue from the
queue entry
chain

√ √ √ Entry None New
queue_ent
ry pointerQUEUE_ENTRY* RemoveQueueEntry

(QUEUE_ENTRY *entry)
pointer of the
QUEUE_ENTRY

RequestToDpd No To translate the
request
structure to DPD
chain

√ √ √ Request None MPC190
_SUCCE
SS if
success
otherwise
the error
code.

int RequestToDpd (void *request, int
channel)

the request
pointer

Channel

the channel
number

ScheduleNext No To process the
next request
entry in the
chain.

√ √ √ None None None

void ScheduleNext (void)

Table 4-1. Device Driver Internal Functions (continued)

Function Name
Platform
Depen-

dent
Purpose

Prototype

Input Output Return

NT VxWorks Linux

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Multi Platform Support Considerations Multi Platform Support Considerations

Part V Design Considerations
The following sections describe the considerations that are needed for designing a multiple platform with
MPC190 device.

5.1 Multi Platform Support Considerations
The MPC190 device driver source should support multiple platforms, including WinNT, VxWorks, Linux.
For each platform, the MPC190 device driver contains two parts, the platform dependent part and the
common part. The common part can be compiled and run under these three platforms. This part only
provides the common data processing and computing functionality. The platform dependent part will do OS
related tasks, like driver initialization, interrupt service routine and so on.

5.2 PCI Bus interface 32/64 bit words data transfers
Issue.

The MPC190 is designed to plug directly into a PCI v2.2 compliant 66 MHz / 64 bit bus. It can be converted
to a 33 MHZ / 32 bit 5V bus. Conversion may introduce some problems, e.g. data alignment.

5.3 Big Endian and Little Endian Issue.
 WinNT is a little endian system while VxWorks is a big endian system. Big endian introduces word order
swap code. A pre-compile flag is recommended to do all of the swap decision code.

5.4 Memory Considerations
[The following discussion applies to WindowsNT and RTLinux, but not VxWorks, which has a unified
address space.] Tasks will call the device driver with a pointer to a process request structure allocated from
the task’s memory space. The device driver runs in kernel space and cannot access the task space directly.
Furthermore, when the device driver does gain access to the process request data, it must ensure that the data
is page-locked, since a page fault in kernel mode may result in a fatal error. The driver should handle three
types of memory space:

5.4.1 For DPDs:
The device driver allocates a fixed amount of kernel memory at startup, and uses this area to buffer the
ChannelAssignments[]. The DPD chains are inside the ChannelAssignment[]. This static kernel memory
space is allocated at driver startup, and is deallocated when the driver is unloaded.

5.4.2 For task’s input memory space
The device driver can access the task input memory space, but the PCI bus can not access the user memory
space. The device driver should map the user’s input space to the system. Kernel functions will be used to
page-lock the task memory with the User Mode along with an IoReadAccess type. A pointer to the physical
memory equivalent will be necessary.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Synchronization Considerations

5.4.3 For task’s output memory space
The device driver can access the task output memory space, but the PCI bus can not access the user memory
space. The device driver should map the user’s output space to the system. Kernel functions will be used to
page-lock the task memory with the User Mode along with an IoWriteAccess type. A pointer to the physical
memory equivalent will be necessary.

5.5 Synchronization Considerations
The MPC190 supports multi channel processing, When the cryptographic execution is done or any error
happens, a PCI interrupt will be generated. The device driver’s interrupt service routine must figure out
which channel or Cha is done and handle the rest of works, e.g. the interrupt clean up, the result data process
and IoComplete. From the application point of view, the application has its own user space. The application
prepares a request structure, fill in the header field and the rest of length and pointer key pairs. Then it pass
the pointer of the request structure to the driver through the DeviceIoControl function. The device driver
will accept the request and finish the application’s DeviceIoControl call. The application should not expect
the result to be ready immediately since the MPC190 device driver handles the output data asynchronously
from the DeviceIoControl return. There are two ways to know whether the cryptographic computing is
done or not. The first approach is to use a loop to check the request->status field since the device driver will
set the status field to 0 when computing is done or to any error code if any error happened. Another approach
is to use the notify (callback) mechanism. The application provides a callback entry in the request structure.
Then the callback pointer is passed to the device driver along with the request pointer. After the device driver
finishes the IoComplete, it will call the callback entry if it is not NULL. The first approach (check the status)
is safe but not efficient. The second approach (notify) is highly efficient. The application’s callback function
should be very atomic and robust. The run time fault or deadly loop of the callback function will damage
the device driver and cause the whole system to halt.

5.6 Multi Card Support Considerations
There are two ways to achieve this goal. One is to use a single device driver to control all the MPC190 PCI
devices. The driver is responsible to search all the MPC190 devices on the PCI bus and then map each
MPC190 PCI physical register to the unique OS memory space and add each MPC190 to the resource table.
The device driver is also needed to implement the Io request pool for the dynamic channel request. The
advantage of this approach is the simplicity for the application to use this driver for dynamic channel
request. The application doesn’t need to know which MPC190 card slot number should be used. It only
assumes that there will be more logical channels and CHAs available if multi MPC190 devices are used.
The disadvantage outweighs the advantage of using only a single driver to control multiple MPC190’s. The
implementation of the single driver is very complicate. Much more control and code will be needed to
handle the multi cards. This will slow down the driver performance. The other drawback is that the single
driver can only handle the multi cards Io request sequentially. It also can slow down the overall performance.
Further more, if any single MPC190 had strange behavior, e.g. the unexpected interrupt or error, it may
block the driver and may affect the rest of all other MPC190 processes. So the second approach (multi
drivers for multi cards) is recommended. In this approach, each MPC190 has a unique copy or instance of
the device driver. Each driver handles only one MPC190. Different card’s Io requests are processed in
parallel without interfering with each other. The application is responsible for determining which card to
use, in other words, the dynamic channel management should be implemented in the application. The
device driver has multiple copies. Each copy contains a unique PCI card number sorted by incremental
order. For instance, the MPC190SbDrvNT2.sys will start a loop to find all the MPC190 from the PCI bus
and only bind if the second card is found.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Design Considerations/Issues Other Design Considerations/Issues

5.7 Other Design Considerations/Issues
The following sections describe other design considerations

5.7.1 Thread
The MPC190 device driver is fully interrupt driven. The Io request is handled in the dispatch routine. It
processes the request immediately without any delay and returns to the requests without waiting for the chip
to finish the cryptographic operation. After the chip finishes the cryptographic operation, it will generate a
PCI interrupt. The device driver has the interrupt service routine and some low priority routine to handle the
result return process. The application is notified if the notify entry has been passed to the device driver. So
from the device driver’s point of view, single threading is enough for most of the performance requirements.
The device driver itself is thread safe. From the application’s point of view, multi threading could increase
the speed of Io requests passing into the driver and also increase the speed of data processing after the result
is ready. How to design a multi thread application to call the device driver is outside the scope of this
document.

5.7.2 Processor
All multi-processor systems need some amount of locking between processors to make sure access to some
data structures or hardware is done atomically. The low-level locking code is responsible for serializing such
access using spin-locks (a processor will busy-wait while trying to acquire such a lock that has already been
locked by the other processor). This operation can tie up resources on some architectures.

The device driver should implement the following two exclusive locks:

ChannelAssignLock – A lock to protect the ChannelAssignments data.

BlockSizeLock – A lock to protect the BlockSize variable.

5.7.3 Interrupt
Most devices generate an interrupt to notify the host computer that they have finished their tasks. The device
driver has an interrupt service routine (ISR), which will be triggered by the PCI INTA interrupt line.

Since PCI interrupts are shared, the ISR will first determine if the MPC190 generated the interrupt. If it did,
the ISR will clear the interrupt and schedule a separate device driver function to handle the process request
completion details. The ISR will be as short and fast as possible.

5.7.3.1 Interrupt Processing For WinNT
• The hardware triggers an interrupt.

• The ISR does the most time-critical processing and clears the interrupt. A DPC is scheduled.

• The DPC routine continues processing and completes the requests (or sets up the hardware and
starts the processing of the next portion of a multistage I/O operation).

5.7.3.2 ISR Synchronization
WinNT is intrinsically a multiprocessor system. The ISR services one device, and consequently two
processors could be accessing the same device registers or common data area concurrently. This is where
the Spin Lock comes in.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Design Considerations/Issues

5.7.4 Queue entry limitation
Queue entry chain is a dynamic pool of the unprocessed request. The depth of the chain indicates the
processing capacity of the driver under channel overloading. The queue entry chain may consume very large
amount of system memory since some request may contain a large amount of data. To search and manipulate
a large chain of a queue entry may consume a lot of time. The maximize depth of the queue entry is very
sensitive to the device driver performance.

5.7.5 Load balance
The MPC190 device driver is designed for withstanding a heavy request process load. For the dynamic
request, the device driver can dynamically allocate a free channel and start to process the request without
waiting for the other channel to finish a previous operation. The device driver implements the interrupt
service routine for the time-critical processing and deferred processing routine for the rest of the I/O
process. When the request is completed, the device driver fires the callback function to notify the application
that request is done.

5.7.6 Error Handling
The MPC190 device driver should be capable of tolerating most of the error conditions. These error
conditions include:

• Incorrect request. The request is empty or any required field is empty. The actual length of the buffer
is not equal to the given length.

• OpId is not in the list or the real request structure type is mismatched.

• Invalid notify entry passed in.

• MPC190 channel error

• MPC190 CHA error

• The actual length of the data buffer is over the boundary.

• Spin Lock is deadly locked.

• Memory should be cleaned up and Spin Lock unlocked if any error happened.

• Running of out resources

5.7.7 MPC190Dump
The MPC190 device driver should implement a kernel trace mechanism to dump useful message to the
monitoring host. The MPC190Dump supports multiple trace level filters. The precompiled constant
MPC190DebugLevel controls which messages level should be dumped. These levels include:

#define MPCCONFIG ((ULONG)0x00000001)
#define MPCUNLOAD ((ULONG)0x00000002)
#define MPCINITDEV ((ULONG)0x00000004)
#define MPCIRPPATH ((ULONG)0x00000008)
#define MPCSTARTER ((ULONG)0x00000010)
#define MPCPUSHER ((ULONG)0x00000020
#define MPCERRORS ((ULONG)0x00000040)
#define MPCTHREAD ((ULONG)0x00000080)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Design Considerations/Issues Other Design Considerations/Issues

5.7.8 FIPS140-2 Level 1
Motorola’s MPC190 Cryptographic Coprocessor System (MCCS) is made up of two distinct components:
the MPC190VF cryptographic coprocessor and the PCI driver software used to access the chip’s
functionality. The MCCS is designed to meet FIPS 140-2 level standard. The following issues should be
considered:

• According to the definitions within FIPS 140-2, the MCCS is categorized as a Multi-chip
Stand-alone cryptographic module, where the Cryptographic Boundary is defined to be the entire
enclosure of the host system.

• The MCCS supports two distinct operator roles: Crypto-Officer role and User role. It does not
enforce any identity or role based authentication. The device driver implements this requirement by
introducing a flag called Access Role. The application can set the role by calling an I/O function to
change the access role type. In other words, the application can choose to play either the
Crypto-Officer role or the User role by itself. The device driver only exposes the control services
functionality when the application plays as a Crypto-Officer. It only exposes the cryptographic
services if the application acts as a User.

• Only one application (or user) at a time can access MCCS even through the host is a multi-tasking
and multi-user system. The device driver can enforce this by introducing a user current connection
number. If it running under FIPS 140-2 mode, only one user is allowed to connect to the driver.

• If it running under FIPS 140-2 mode, the device driver will only expose the FIPS approved
algorithms provided by MCCS: single DES in ECB or CBC, triple DES in ECB or CBC (two keys
or three keys), SHA-1 hash and Random Number Generator. The device driver exposes all the
algorithms provided by MCCS if under Non FIPS 140-2 mode.

• An application can access MCCS only through the device driver interface. The user level
application can not directly access the kernel without the driver interface.

• It is a user/application’s responsibility to handle the key storage and key distribution issues in
compliance with FIPS 140-2. It is also the responsibility of the application to zero all keys in RAM
when it encounters a cryptographic algorithm error and when prior to terminating.

• A power on self test is required for the FIPS 140-2. The test is comprised of the following:

— Critical function test: Initialize, read and write internal registers in MPC190VF chip.
— RNG continuous test: The new generated random number should not match the previous. (8

bytest).
— All cryptographic function test: All of the cryptographic functions by MCCS should be tested.

If any of the self-test fails, a fatal error code is returned to the loader program and the device driver is
unloaded. All allocated memory should be zeroed and be free when the loader program exits.

Part VI References
MPC190 Security Co-Processor User’s Manual.

Security Policy for the Freescale MPC190 Cryptographic Coprocessor System.

Developing Windows NT Device Drivers, A Programmer’s Handbook

Edward N.Dekker Joseph M.Newcomer ISBN 0-201-69590-1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MPC190 PCI Device Driver Design Specification

Other Design Considerations/Issues

Part VII Acronyms and Abbreviations
This section provides an alphabetical glossary of acronyms and abbreviations used in this document.

• AFHA—ARC-4 Hardware Accelerator.

• ARC-4—Encryption algorithm compatible with the RC-4 algorithm developed by RSA, Inc.

• Auth—Authentication. The CHA or Execution Unit that performs the authentication function is the
MDEU, or “Message Digest Execution Unit”.

• CHA—Crypto Hardware Accelerator. This term is synonymous with “Execution Unit” in the
MPC190 User’s Manual and other documentation.

• DESA—DES Accelerator.

• DPD—Data Packet Descriptor

• MDHA—Message Digest Hardware Accelerator.

• PKHA—Public Key Hardware Accelerator. This term is synonymous with PKEU in the MPC190
User’s Manual and other documentation.

• RNGA—Random Number Generator Accelerator.

Part VIII Revision History
Table 8-1 summarizes the revision history of this document.

Table 8-1. Revision History

Revision No. Substantive Change(s)

1 Initial release.

1.1 Added revision history and updated with new template.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2469/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	MPC190 PCI Device Driver Design Specification
	Part�I Architecture Overview
	Figure�1-1. Physical Overview
	Figure�1-2. Logical Overview for WinNT

	Part�II Device Driver Structure
	2.1 Driver Initialize Routine
	2.2 IO Request Dispatch Routine
	2.3 Process Request Routine
	2.4 Interrupt Service Routine
	2.5 Processing Complete Routine
	2.6 Process Request Queue Routine
	2.7 Other Functions

	Part�III Process Flow Chart
	Figure�3-3. Device Driver Initialization.
	Figure�3-4. Device Driver Unload
	Figure�3-5. IO Request Process
	Figure�3-6. Interrupt Service

	Part�IV Device Driver Interface
	4.1 Global Variables Definition
	4.1.1 ChannelAssignments
	4.1.2 ChaAssignments
	4.1.3 ProcessQueueTop and ProcessQueueBottom
	4.1.4 ChannelAssignLock and BlockSizeLock
	4.1.5 Other variables
	4.1.6 Error return codes

	4.2 Device Driver I/O Interface
	4.3 Device Driver Internal Functions
	Table�4-1. Device Driver Internal Functions�

	Part�V Design Considerations
	5.1 Multi Platform Support Considerations
	5.2 PCI Bus interface 32/64 bit words data transfers Issue.
	5.3 Big Endian and Little Endian Issue.
	5.4 Memory Considerations
	5.4.1 For DPDs:
	5.4.2 For task’s input memory space
	5.4.3 For task’s output memory space

	5.5 Synchronization Considerations
	5.6 Multi Card Support Considerations
	5.7 Other Design Considerations/Issues
	5.7.1 Thread
	5.7.2 Processor
	5.7.3 Interrupt
	5.7.3.1 Interrupt Processing For WinNT
	5.7.3.2 ISR Synchronization

	5.7.4 Queue entry limitation
	5.7.5 Load balance
	5.7.6 Error Handling
	5.7.7 MPC190Dump
	5.7.8 FIPS140-2 Level 1

	Part�VI References
	Part�VII Acronyms and Abbreviations
	Part�VIII Revision History
	Table�8-1. Revision History

