Freescale Semiconductor, Inc.

Advance Information

AN2469/D
Rev. 1.1, 2/2003

MPC190 PCI Device Driver
Design Specification

This document contains information on a new product under development by Freescale. It
reflects the current design of the MPC190 device drivers for VxWorks, WindowsNT, and
RTLinux. The design of al three drivers will be consistent in future.

This document contains the following topics:

Topic Page
Section Part |, “Architecture Overview” 1
Section Part 11, “Device Driver Structure” 3
Section Part 111, “Process Flow Chart” 4
Section Part 1V, “Device Driver Interface” 8
Section Part V, “Design Considerations” 18
Section Part VI, “References’ 23
Section Part V11, “Acronyms and Abbreviations’ 23

Part | Architecture Overview

The MPC190 isone of the latest Motorola's security processors which is optimized to process
all the algorithms associated with 1PSec, IKE, WTLSWAP and SSL/TLS, including RSA,
RSA signature, Diffe-Hellman, elliptic curve, DES, 3DES, SHA-1, MD-4, MD-5 and ARC-4.
The MPC190 is designed to operate in a PCl system. The external processors access the
MPC190 through its device drivers using system memory for data storage. The MPC190
resides in the PCl address map of the processor, therefore when an application requires
cryptographic functions, it creates descriptors for the MPC190, defining the cryptographic
function to be performed, and the location of the data. The M PC190 will decode the descriptor
and allocate the internal execution unit to do the cryptographic computing. The result is set to
the predefine data out buffer and the PCI bus is notified by firing a channel done interrupt.
Figure 1-1 shows the physical overview of the MPC190 security processor.

.

Z “freescale

For More Information On This semiconductor
Go to: www.freescale

© Freescale Semiconductor, Inc., 2004. All rights reserved.

g |

Other
Peripherals

Freescale Semiconductor, Inc.

Memory

CPU

Physical Address

r

PCI By

Yvyy

PCl 2.2
Interface

Typto

Channel
VP10

Channel

rypto
Channel

rypto
Channel

Channel

Channel

rypto
Channel

VP1O
Channel

VP10
Channel

Control

PKHA DES Auth
x6 x3 x3

Arc-4

RNG

MPC190 Processor

Baranti PCI Board

Figure 1-1. Physical Overview

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Driver Initialize Routine

Application
i User Mode
i Kernel Mode

NT Executive Service

NT System Service

1/0 Manager
NT Kernel
MPC190
Device Driver HAL

:

MPC190 PCI Board

Figure 1-2. Logical Overview for WinNT

Part Il Device Driver Structure

General device driver should have these common routines and components:

2.1 Driver Initialize Routine

The device driver will have OS-specific loading and initialization functions. In general, these functionswill
ensure that the MPC190 is installed and working, that the device driver is properly loaded, and that the
reguesting task can issue processing requests.

For the Windows NT device driver (Kernel Mode) isaNT service. It can be loaded during the system boot
up or after OS system isloaded. During the driver loading phase, the driver initialization routine should find
the MPC190, create a NT loDevice, map the MPC190 physical memory to the NT kernel memory space,
allocate global storage and initialize the MPC190 crypto channels and CHAs. Thelast step isto register the
InterruptServiceRoutine to listen to the PCI bus interrupt events.

2.2 10 Request Dispatch Routine

The device driver will have a dispatch function. When a task issues an o request for processing, the
operating system will fire the device driver dispatch routine and pass the 1o request context buffer to the
dispatch routine as an Irp. The lo request dispatch routine will handle various Irp requests based on the Irp
Stack’s Mg or Function and 1o control code. If the Irp request is a basic process like IO_Close, IO_Open,

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
>rocess Request Routine

|O_Create, it will directly call these pre-registered functions and normally these functionswill complete the
lorequest. If thelrp request is an lo process request, it will call the Process Request Routine.

2.3 Process Request Routine

The device driver will have a process request function. When the |O Request Dispatch routine sends an Irp
to the Process Request, the driver will determine if the MPC190 has enough free resources to process the
current request. If it does, the driver will translate the process request into a sequence of one or more Data
Packet Descriptors and start the operation. If the MPC190 is busy, the process request will be added to a
queue.

2.4 Interrupt Service Routine

The device driver will have an interrupt service routine (ISR), which will be triggered by the PCI INTA
interrupt line. Since PCI interrupts are shared, the ISR will first determine if the MPC190 generated an
interrupt. If it did, the ISR will clear the interrupt and schedule a separate device driver function to handle
the process request completion details. The ISR will be as short and fast as possible.

2.5 Processing Complete Routine

The device driver will have a processing complete function, which is scheduled by the ISR when a
processing request is completed, but runs at a lower priority than the ISR. This function will determine
which processing requests are complete and notify the corresponding calling tasks. It will then check the
processing request queue and based on the available MPC190 resources, initiate one or more processing
requests.

WInNT provide DPC mechanism that runs at low level priority to handle these tasks.

2.6 Process Request Queue Routine

The device driver will maintain a processing request queue (protected by a Spin Lock or Mutex, so that the
process reguest function and the processing complete function do not modify the queue at the same time).

The Process Request Queue Routine is normally fired by Processing Complete Routine using
ScheduleNext() call. It will get one queue_entry and try to find an available channel and CHA resource. If
successed, it will move the request from the queue_entry to the Channel Assignments. Then it removes this
queue_entry from the request queue.

2.7 Other Functions

The device driver will have other functions for checking the status of the driver, controlling the driver or
MPC190, and setting the block size.

Part Ill Process Flow Chart

The MPC190 device driver has four basic phases, the initiaization phrase, the 10 request process phase,
interrupt service phase and driver unload phase.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
Other Functions

(Driver Loading) Reset CHA/EU
ese

Start a PCl bus loop to find
the MPC190 PCI card
Devld/Vendorld

Return Error and
auto unload

Return Emor and
auto unload

Find MPC1907?

Reset & Config Channel

Get PCI Bus Info

loCreateDevice (NT) Return Errorand
auto unload
Return Emror and Connect & Enable Interrupt
auto unload

Map MPC190 physical Retum Error and
memory autounload

l\%s

Rngtest, FIPS test,
Return Emror and Known-answer test
auto unload

Yes

Retum Error and
auto unload

Allocate global variables

Retum Error and
auto unload

Init Spinlock, Semld

Return Error and
auto unload

Figure 3-3. Device Driver Initialization.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

(Driver Unloading

Cleanup all
resources

Jdther Functions

Close MPC190

{ Retum Success

Figure 3-4. Device Driver Unload

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

g |

Freescale Semiconductor, Inc.

Device lo request)

Entering MPC190
Dispatch, switch Irp type

Irp_Open/Create

Irp_Close

MPC190 Open

Irp_Device Control

MPC190 Close

Default: Irp type not match

Return Error)

Switch ioctiCode

Proc_Req

Return Success

Return Success

ProcessRequest

Get_Status

Other Functions

Retrieve MPC190 Status

Control

SetControl

Reserve_Channel_Static

ReserverChannelStatic

Reserve_Channel_Manual

Assign_CHA

ReserveChannelManual S

Release_ CHA

AssignCha

ReleaseCha

Release_Channel

ReleaseChannel

Set_Block_Size

SetBlockSize

Default: ioctl code
not match

[Return Error >

Figure 3-5. 10 Request Process

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Return Success

Freescale Semiconductor, Inc.

(' Interrupt Service

Read MPC190 Interrupt
Status Register

Yes
CHA error ? Reset CHA
No
Yes
Channel error ? Reset Channel
No

Processing Complete

Jdther Functions

Clean MPC190 Interrupt
Status Register

Return TRUE

Figure 3-6. Interrupt Service

Part IV Device Driver Interface

The IOCTL device driver function calls have limited capabilities for passing data to and from the device
driver (in VxWorks and RTLinux, a single parameter). For cryptographic processing requests, we will use
asingle parameter to pass in a pointer to a data structure that contains the details of the request. There will
be adifferent process request structure for each type of cryptographic processing supported by MPC190.

The first member of every request structure is an operation ID that can be used by the device driver to
determine the format of the rest of the request structure.

All process request structures have a channel member. For process requests that work in either dynamic
mode or static mode, the channel can be set to zero to indicate dynamic mode, or to avalid channel number
(1 through 9) to indicate static mode. For process requests that only work in static mode, the channel should
be set to avalid channel number (1 through 9).

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Global Variables Definition

All process request structures have a status member. This value isfilled in by the device driver when the
interrupt for the operation occurs, and reflects the type of interrupt — done (normal status) or error (error
status).

All process request structures have a notify member. This value is used by the device driver to notify the
application when its request has been completed.

All process request structures have a next request member. This allows the application to chain multiple
process reguests together.

The hardware limit of 2048 bytes per data packet descriptor is not exported by the device driver. The
application can issue a process request with any length (up to 232 — 1), and the device driver will handle the
details of breaking the request up into the proper size chunks.

4.1 Global Variables Definition

The following sections describe channel specific information for channel assignments.

4.1.1 ChannelAssignments

The ChannelAssignments retains all channel specified information, the driver should lock it while
modifying. So only one process can modify it at anytime.

typedef struct
{

unsigned char assignment;
unsigned char isChunked;

int ownerTaskId;

void *firstRequest;

void *currentRequest;
unsigned long currentOffset;
void *notify;

DPD **dpds;

int dpdCount;

#ifdef WINNT
PIRP Irp;
MDL **reqgMdl;
int regMdlCount;
MDL **dataMdl;
int dataMdlCount;
#endif

} CHANNEL_ASSIGNMENT;
CHANNEL ASSIGNMENT ChannelAssignments [NUM_ CHANNELS]

4.1.2 ChaAssignments

The ChaAssignments retains the CHA assignment information.
unsigned char ChaAssignmentsfNUM_CHAS];

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

h -

Freescale Semiconductor, Inc.
Slobal Variables Definition

4.1.3 ProcessQueueTop and ProcessQueueBottom

Thesetwo QUEUE_ENTRY pointer retain the top pointer and the bottom pointer of the processing queue.
QUEUE_ENTRY *ProcessQueueTop;
QUEUE_ENTRY *ProcessQueueBottom;

4.1.4 ChannelAssignLock and BlockSizelLock

The ChannelAssignLock locks the Channel Assignments modification process while the BlockSizel ock
locks the BlockSize modification process.

4.1.5 Other variables

int FreeChannels;

int FreeRngas;

int FreeAfhas;

int FreeDesas;

int FreeMdhas;

int FreePkhas;

unsigned long BlockSize; /* The current max block size */

unsigned long PCIBaseAddress; /* The PCI mapping base address */

unsigned long IntStatus([2]; /* Controller interrupt status register, 0x1010 */
unsigned long ChaAssignmentStatus[2]; /* Controller EU assignment status
register, 0x1028 */

unsigned long ChannelError [NUM_CHANNELS] [2];/* Channel Pointer Status Register,
0x2010, 0x3010,...%*/

unsigned long ChaError [NUM CHAS] [2]; /* EU/Cha Interrupt Status Register, 10030,
11030, ... */

int FIPS AccessRole;

int FIPS Connections;

4.1.6 Error return codes

/* return codes */

#define MPC190 SUCCESS (0)

#define MPC190 MEMORY ALLOCATION (-1)
#define MPC190 INVALID CHANNEL (-2)
#define MPC190 INVALID CHA TYPE (-3)
#define MPC190 INVALID OPERATION ID (-4)
#define MPC190 CHANNEL NOT AVAILABLE (-5)
#define MPC190 CHA NOT AVAILABLE (-6)
#define MPC190 INVALID LENGTH (-7)
#define MPC190 OUTPUT BUFFER ALIGNMENT (-8)
#define MPC190 RNG ERROR (-9)

#ifdef WINNT

#define MPC190_ PCI_CARD NOT FOUNDSTATUS NO_SUCH_DEVICE

#define MPC190_ PCI_MEMORY ALLOCATE_ ERRORSTATUS INSUFFICIENT RESOURCES
#else

#define MPC190 PCI CARD NOT FOUND-1000)

#define MPC190_PCI_MEMORY_ALLOCATE_ERROR—1001)

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

#endif

Freescale Semiconductor, Inc.
Device Driver I/O Interface

#define MPC190 PCI IO ERROR-1002)
#define MPC190 PCI_ VXWORKS DRIVER TABLE ADD ERROR (-1003)
#define MPC190 PCI_ INTERRUPT ALLOCATE ERROR (-1004)

4.2 Device Driver I/O Interface

This section lists different functions of 1/O interface of the device driver.

Open/Create—This function allows a task to get a device descriptor for future calls to the device
driver.

Close—This function tells the device driver that the user task is finished with its device descriptor.

|OCTL—This set of functionsisthe main interfaceto the device driver. Subfunctions are identified
by their IOCTL control code. Subfunctionsinclude:

Status—Returns the status of the MPC190 card, including crypto channel status, CHA status, and
gueue length. Third argument in theioctl() call isa pointer to the MPC190 STATUS structure.

Control—Allows the caller to modify certain MPC190 features, including Enable/Disable
ReserveChannelManual, Enable/Disable ReserveChannel Static, Enable/Disable Notify, Change
the Role Maode (FIPS Crypto Officer, FIPS User, No Control).

ProcessRequest—Allows the caller to make arequest for one or more crypto processing functions.
Third argument inioctl() call is apointer to a specific request structure.

ReserveChannel Static—Statically allocates a channel for use by asingle task. Third argument in
ioctl() cal is an unsigned long specifying the channel number.

ReserveChannelManual—Allows the caller to reserve a crypto channel for usein
manual/debug/target mode. Third argument inioctl() call isan unsigned long specifying the channel
number.

AssignCHA—AlIlows the caller to reserve a specific CHA for use by either a static channel or a
manual channel. Third argument inioctl() call isaunsigned long — bottom eight bits are the CHA,
next eight bits are the channel number. More than one CHA may be assigned to the same channel
by calling this function multiple times. The caller should check the assignment status of the
specified CHA (by calling the Status IOCTL function) before trying to assign it.

ReleaseCHA—Returns areserved CHA to normal use (dynamic mode) by the device driver. Third
argument inioctl() cal isan unsigned long specifying the CHA to release.

Rel easeChannel—Frees areserved (static or manual) channel. Third argument inioctl() call isan
unsigned long specifying the channel to release.

SetBlockSize—Controls the block size that the request data can be broken up to this size (DPD).
Third argument inioctl() call isan unsigned long giving the new block sizein bytes. The maximum
block size (the hardware upper limit) is 2048 bytes. Default value at driver startup is 2048 bytes.

4.3 Device Driver Internal Functions

This section describe different functionswith their associated prototype, platform dependency, input, output
and return status.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

h -

g |

Jevice Driver Internal Functions

Freescale Semiconductor, Inc.

Table 4-1. Device Driver Internal Functions

Platform Prototype
Function Name Dggr?tn- Purpose Input Output Return
NT VxWorks Linux
AssignCha No |Toreservea y \/ \/ channelCha None |MPC190_
specific CHA for [- - - — SUCCESS
use by either a int AssignCha (unsigned long bottom eight btis is if success
static channel or channelCha, int currentTaskld) the CHA chaType otherwise
a manual . o the error
channel. next eight bits is code
the channel
number (1-9)
currentTaskld
task id
ChaNumToType No |To translate the Y \/ \/ cha None |ChaType if
the CHA number [- found or
to the CHA int ChaNumToType (int cha) CHA Number MPC190_|
chaType NVALID_C
HA_TYPE
if not
found.
CheckChas No |Check to see if \/ \/ \/ chaType None |MPC190_
the CHA is - - SUCCESS
avaiable (at int CheckChas (int chaType) CHA Type if this type
least one of this of CHA is
type of CHA is available
available) otherwise
MPC190_
CHA_NOT
_AVAILAB
LE
MPC190 Driver Yes | Device driver Y \/ \/ DriverObject None |MPC190_
Initialization initialization - - - SUCCESS
routine NTSTATUS int MPC190Driverlnit PDRIVER_OBJE if success
DriverEntry (void) CT (NT only) otherwise
I(:I’BRIVER OB the error
JECT RegistryPath code
DriverObject, PUNICODE_STRI
IN NG (NT only)
PUNICODE_S
TRING
RegistryPath)

MPC190 PCI Device Driver Design Specification

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Device Driver Internal Functions

Table 4-1. Device Driver Internal Functions (continued)

Platform Prototype
Function Name | Depen- Purpose Input Output Return
dent
NT VxWorks Linux
InterruptService Yes |To handle all y v v Interrupt None |TRUE if
Routine interrupts - finished all
generated by BOOLEAN void . . PKINTERRUPT the steps
the Channel or MPC190Interr | InterruptServiceRoutin | (NT only) otherwise
the CHA (Done “?tse(rl‘,’\;cem e (void) FALSE
utine
O oy tne | PRINTERUP T o)
Interrupt Status | | Interrupt, IN PVOID the
Register . OUT PVOID request Context
Context) (NT only)
If Error, clean
the
InterruptStatusR
egister by
writing
InterruptClearR
egister.
Finally call
ProcessingCom
plete routine.
OpldToChaType No |To translate the Y \ \ opld chaType |MPC190_
crypto operation Success if
id to the int OpldToChaType (unsigned long crypto operation | CHA type |match,
chaType and Opld, int *chaType) Id otherwise
later on the MPC190_|I
routine can NVALID_
check if this type OPERATI
of CHA is ON_ID
available or not.
ProcessRequest | Yes |To handle the IO \/ N v req req MPC190_
request routine - - - Success if
int int ProcessRequest pointer of the IO | pointer of success,
ProcessRequ | (void *req, int request buffer the 10 otherwise
est (void *req, | callingTaskld) callingTaskld - request MPC190
int task Id buffer error code.
callingTaskld,
PIRP Irp) -
Irp

PIRP (NT only)

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

h -

g |

Freescale Semiconductor, Inc.

Jevice Driver Internal Functions

Table 4-1. Device Driver Internal Functions (continued)

Platform Prototype
Function Name | Depen- Purpose Input Output Return
dent
NT VxWorks Linux
ReleaseCha No |Toreleasea N v v channelCha None |MPC190_
specific CHA for SUCCESS
use by either a |int ReleaseCha (unsigned long Bottom eight btis if success
static channel or | channelCha, int callingTaskld, int are the CHA otherwise
a manual locked) chaType.the next the error
channel. eight bits are the code.
channel number
(1-9)
currentTaskld
task id
ReleaseChannel No |Tofreea N v v Channel None |MPC190_
reserved - - SUCCESS
channel (either int ReleaseChannel (unsigned long Channel number if success
a static channel channel, int callingTaskld, int locked) (1-9) otherwise
or a manual the error
channel.) currentTaskld code.
the task id
locked
CHANNELS_UNL
OCKED or
CHANNELS_LOC
KED
ReserveChanne No |Toreservea N v v reserve Reserve |MPC190_
IManual crypto channel - —>chann | SUCCESS
for use in int ReserveChannelManual the el - the if success
manual/debug (MPC190_RESERVE_MANUAL MPC190_RESER channel otherwise
mode *reserve, int callingTaskld) VE_MANUAL number the error
structure that code.
currentTaskld | allocated
thetask id
ReserveChannl No |To allocate a N R R channel channel |MPC190_
Static channel for use |- - SUCCESS
by a single task. int ReserveChannelStatic (IN OUT the channel | the if success
PULONG channel, IN int callingTaskld) | number (1-9) channel otherwise
number 4o error
that code.
currentTaskld allocated
thetask id

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

g |

Freescale Semiconductor, Inc.
Device Driver Internal Functions

Table 4-1. Device Driver Internal Functions (continued)

Platform Prototype
Function Name Dggﬁtn- Purpose Input Output Return
NT VxWorks Linux

SetBlockSize No |To control how N v R newBlockSize None |MPC190_
large blocks of I - - SUCCESS
data are broken |int SetBlockSize (unsigned long 256-2048 if success

newBlockSize) otherwise
the error
code.

MPC1900pen Yes |To establish an y v v DeviceObject None
1/0O connection MPC190
between the NTSTATUS int int PDEVICE_OBJE SUCCES_S
driver service MPC1900pen | MPC1900 | MPC1900 | CT (NT) if success
and the (IN pen pen (struct otherwise
application. PDEVICE_OB | (DEV_HD |inode | the error

JECT R *inode, p code.
DeviceObject,| | "pDevHdr, | structfile | pigp (NT)
N PIRP Irp) int mode, | *filp)

int flag)

MPC190Close Yes |Toclose an I/O y N N DeviceObject None |MPC190_
connection - SUCCESS
between the NTSTATUS | Prototype |int PDEVICE_OBJ if success
driver service | MPC190Close | (VxWorks) | MPC190CI | ECT (NT) otherwise
and the (IN int ose (int the error
application. PDEVICE_OB | MPC190Cl | devDesc) code.

JECT ose (int
DeviceObject, |devDesc) Irp
IN PIRP Irp) PIRP (NT)
DevDesc
device descriptor
number

MPC190Clean- Yes To clean up the Y DeviceObject None MPC190_

up (NT only) internal staff SUCCESS
before the 1/0 NTSTATUS PDEVICE_OBJE if success
connection Miﬁ;\: 90Clean CT(NT) otherwise
closing. up the error

g PDEVICE_OB oo
JECT | '
DeviceObiject, | P
N PIRP Irp) PIRP (NT)

MPC190 PCI Device Driver Design Specification

For More Information On This Product,

Go to: www.freescale.com

h -

g |

Freescale Semiconductor, Inc.
Jevice Driver Internal Functions

Table 4-1. Device Driver Internal Functions (continued)

Platform Prototype
Function Name Dggﬁtn- Purpose Input Output Return
NT VxWorks Linux
MPC190Unload Yes To unload itself Y DeviceObject None MPC190_
NT onl when the driver SUCCESS
() is unload. NTSTATUS PDEVICE_OBJE if success
MPC190Un- CT (NT) otherwise
load (IN the error
PDEVICE_OB code.
JECT
DeviceObject, Irp
IN PIRP Irp)
PIRP (NT)
lo Control Yes |To handle the y \/ \/ devDesc None |MPC190_
Dispatch 1/0 request and - - SUCCESS
dispatch to the NTSTATU$ int loctl (int | int loctl | PDEVICE_OBJE if success
differentprocess mEﬁLQOD'Spa F:]?VDESC’ (struct CT(NT) otherwise
function based ! i the error
the iocl PDEVICE_OB |ioctiCode, | M°% 4
on the 10C JECT void *nodePtr, Irp code.
code.)
devDesc, IN *param) struct file PIRP (NT)
PIRP Irp) *devDesc,
unsigned
int
ioctliCode,
unsigned
long
param)
PCIRead No |Toread Y \/ v numUlongs None None
numbers of
void PCIRead (unsigned long *data, int | number of

unsigned long
from src to dest

numUlongs, volatile unsigned long

*address)

unsigned long to
read

address

the start pointer of
the src

data

the start pointer of
the dest.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,

Go to: www.freescale.com

g |

Freescale Semiconductor, Inc.
Device Driver Internal Functions

Table 4-1. Device Driver Internal Functions (continued)

Platform Prototype
Function Name Dggﬁtn- Purpose Input Output Return
NT VxWorks Linux
PCIWrite No |T owrite Y \/ v numUlongs None None
numbers of -)) .
unsigned long void PCIWrite (unsigned long *data, int | number of
from src to dest numUlongs, volatile unsigned long unsigned long to
*address) read
address
the start pointer of
the dest
data
the start pointer of
the src
ProcessingCom-| Yes |To handle the y \ \ Dpc None None
plete non time-critical -
process and if VoID void PKDPC
. ProcessingCo]
the request is olote (INg PrO.C ngComplete DeviceObject
done, then P (void)
complete the | PKDPC Dpc, PDEVICE_OBJE
1/O. PDEVICE_OB CT (NT)
JECT
deviceObject, SystemArgl
IN PVOID
SystemArg1, PVOID (NT)
IN PVOID SystemArg2
SystemArg2)
PVIOD (NT)
RemoveQueue- No |To remove the Y v \/ Entry None |New
Entry queue from the - queue_ent
queue entry QUEUE_ENTRY* RemoveQueueEntry | pointer of the ry pointer
chain (QUEUE_ENTRY *entry) QUEUE_ENTRY
RequestToDpd No |To translate the N v v Request None |MPC190
request
strqucture toDPD int RequestToDpd (void *request, int the request —SUCCI_E
chain channel) pointer SS if
Success
Channel .
otherwise
the channel the error
number code.
ScheduleNext No |To process the Y \/ v None None None

next request
entry in the
chain.

void ScheduleNext (void)

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
viulti Platform Support Considerations

PartVV Design Considerations

The following sections describe the considerations that are needed for designing a multiple platform with
MPC190 device.

5.1 Multi Platform Support Considerations

The MPC190 device driver source should support multiple platforms, including WinNT, VxWorks, Linux.
For each platform, the MPC190 device driver contains two parts, the platform dependent part and the
common part. The common part can be compiled and run under these three platforms. This part only
provides the common data processing and computing functionality. The platform dependent part will do OS
related tasks, like driver initialization, interrupt service routine and so on.

5.2 PCIBus interface 32/64 bit words data transfers
Issue.

The MPC190 isdesigned to plug directly into aPCl v2.2 compliant 66 MHz / 64 bit bus. It can be converted
toa33 MHZ / 32 bit 5V bus. Conversion may introduce some problems, e.g. data alignment.

5.3 Big Endian and Little Endian Issue.

WinNT isalittle endian system while VxWorks is a big endian system. Big endian introduces word order
swap code. A pre-compile flag is recommended to do all of the swap decision code.

5.4 Memory Considerations

[The following discussion applies to WindowsNT and RTLinux, but not VxWorks, which has a unified
address space.] Tasks will call the device driver with a pointer to a process request structure allocated from
the task’s memory space. The device driver runsin kernel space and cannot access the task space directly.
Furthermore, when the device driver does gain accessto the process request data, it must ensure that the data
is page-locked, since a page fault in kernel mode may result in afatal error. The driver should handle three
types of memory space:

541 For DPDs:

The device driver alocates a fixed amount of kernel memory at startup, and uses this area to buffer the
Channel Assignmentq] |. The DPD chains are inside the Channel Assignment[]. This static kernel memory
spaceisalocated at driver startup, and is deallocated when the driver is unloaded.

5.4.2 For task’s input memory space

The device driver can access the task input memory space, but the PCI bus can not access the user memory
space. The device driver should map the user’s input space to the system. Kernel functions will be used to
page-lock the task memory with the User Mode along with an loReadA ccess type. A pointer to the physical
memory equivalent will be necessary.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Synchronization Considerations

5.4.3 For task’s output memory space

The device driver can access the task output memory space, but the PCI bus can not access the user memory
space. The device driver should map the user’s output space to the system. Kernel functions will be used to
page-lock the task memory with the User Mode a ong with an loWriteAccesstype. A pointer to the physical
memory equivalent will be necessary.

5.5 Synchronization Considerations

The MPC190 supports multi channel processing, When the cryptographic execution is done or any error
happens, a PCI interrupt will be generated. The device driver’s interrupt service routine must figure out
which channel or Chaisdone and handle the rest of works, e.g. theinterrupt clean up, the result data process
and loCompl ete. From the application point of view, the application hasits own user space. The application
prepares a request structure, fill in the header field and the rest of length and pointer key pairs. Then it pass
the pointer of the request structure to the driver through the DeviceloControl function. The device driver
will accept the request and finish the application’s Devicel oControl call. The application should not expect
the result to be ready immediately since the MPC190 device driver handles the output data asynchronously
from the DeviceloControl return. There are two ways to know whether the cryptographic computing is
done or not. Thefirst approach isto use aloop to check the request->status field since the device driver will
set the status field to 0 when computing isdone or to any error codeif any error happened. Another approach
isto usethe notify (callback) mechanism. The application provides acallback entry in the request structure.
Then the callback pointer is passed to the device driver along with the request pointer. After the device driver
finishesthe loComplete, it will call the callback entry if itisnot NULL. Thefirst approach (check the status)
is safe but not efficient. The second approach (notify) ishighly efficient. The application’s callback function
should be very atomic and robust. The run time fault or deadly loop of the callback function will damage
the device driver and cause the whole system to halt.

5.6 Multi Card Support Considerations

There are two ways to achieve this goal. Oneisto use asingle device driver to control al the MPC190 PCI
devices. The driver is responsible to search all the MPC190 devices on the PCI bus and then map each
MPC190 PCI physical register to the unique OS memory space and add each MPC190 to the resource table.
The device driver is aso needed to implement the 1o request pool for the dynamic channel request. The
advantage of this approach is the ssimplicity for the application to use this driver for dynamic channel
regquest. The application doesn’'t need to know which MPC190 card slot number should be used. It only
assumes that there will be more logical channels and CHASs available if multi MPC190 devices are used.
The disadvantage outwei ghs the advantage of using only asingle driver to control multiple MPC190’s. The
implementation of the single driver is very complicate. Much more control and code will be needed to
handle the multi cards. Thiswill slow down the driver performance. The other drawback is that the single
driver can only handlethe multi cards | o request sequentially. It also can slow down the overall performance.
Further more, if any single MPC190 had strange behavior, e.g. the unexpected interrupt or error, it may
block the driver and may affect the rest of all other MPC190 processes. So the second approach (multi
drivers for multi cards) is recommended. In this approach, each MPC190 has a unique copy or instance of
the device driver. Each driver handles only one MPC190. Different card's lo requests are processed in
parallel without interfering with each other. The application is responsible for determining which card to
use, in other words, the dynamic channel management should be implemented in the application. The
device driver has multiple copies. Each copy contains a unique PCI card humber sorted by incremental
order. For instance, the MPC190SbDrvNT2.sys will start aloop to find all the MPC190 from the PCI bus
and only bind if the second card is found.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Jther Design Considerations/Issues

5.7 Other Design Considerations/Issues

The following sections describe other design considerations

5.7.1 Thread

The MPC190 device driver is fully interrupt driven. The lo request is handled in the dispatch routine. It
processes the request immediately without any delay and returnsto the requests without waiting for the chip
to finish the cryptographic operation. After the chip finishes the cryptographic operation, it will generate a
PCI interrupt. The device driver hastheinterrupt service routine and some low priority routine to handle the
result return process. The application is notified if the notify entry has been passed to the device driver. So
from the device driver’s point of view, singlethreading is enough for most of the performance requirements.
Thedevicedriver itself isthread safe. From the application’s point of view, multi threading could increase
the speed of 10 requests passing into the driver and also increase the speed of data processing after the result
is ready. How to design a multi thread application to call the device driver is outside the scope of this
document.

5.7.2 Processor

All multi-processor systems need some amount of |ocking between processors to make sure access to some
datastructures or hardwareisdone atomically. The low-level locking codeisresponsiblefor serializing such
access using spin-locks (aprocessor will busy-wait while trying to acquire such alock that has already been
locked by the other processor). This operation can tie up resources on some architectures.

The device driver should implement the following two exclusive locks:
Channel AssignLock — A lock to protect the Channel Assignments data.
BlockSizel ock —A lock to protect the BlockSize variable.

5.7.3 Interrupt

Most devices generate an interrupt to notify the host computer that they have finished their tasks. The device
driver has an interrupt service routine (1SR), which will be triggered by the PCI INTA interrupt line.

Since PCI interrupts are shared, the ISR will first determineif the MPC190 generated theinterrupt. If it did,
the ISR will clear the interrupt and schedule a separate device driver function to handle the process request
completion details. The ISR will be as short and fast as possible.

5.7.3.1 Interrupt Processing For WinNT
* Thehardware triggers an interrupt.
* The ISR doesthe most time-critical processing and clears the interrupt. A DPC is schedul ed.

e The DPC routine continues processing and completes the requests (or sets up the hardware and
starts the processing of the next portion of a multistage 1/O operation).

5.7.3.2 ISR Synchronization

WINNT is intrinsically a multiprocessor system. The ISR services one device, and consequently two
processors could be accessing the same device registers or common data area concurrently. This is where
the Spin Lock comesin.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Other Design Considerations/Issues

5.7.4 Queue entry limitation

Queue entry chain is a dynamic pool of the unprocessed request. The depth of the chain indicates the
processing capacity of the driver under channel overloading. The queue entry chain may consumevery large
amount of system memory since some request may contain alarge amount of data. To search and manipulate
alarge chain of aqueue entry may consume alot of time. The maximize depth of the queue entry is very
sensitive to the device driver performance.

5.7.5 Load balance

The MPC190 device driver is designed for withstanding a heavy request process load. For the dynamic
reguest, the device driver can dynamically allocate a free channel and start to process the request without
waiting for the other channel to finish a previous operation. The device driver implements the interrupt
service routine for the time-critical processing and deferred processing routine for the rest of the I/O
process. When the request is compl eted, the device driver firesthe callback function to notify the application
that request is done.

5.7.6 Error Handling

The MPC190 device driver should be capable of tolerating most of the error conditions. These error
conditions include:

» Incorrect request. Therequest isempty or any required field isempty. The actual length of the buffer
isnot equal to the given length.

e Opldisnotinthelist or the real request structure type is mismatched.

* Invaid notify entry passed in.

* MPC190 channel error

* MPC190 CHA error

» Theactual length of the data buffer is over the boundary.

* SpinLock is deadly locked.

e Memory should be cleaned up and Spin Lock unlocked if any error happened.
* Running of out resources

5.7.7 MPC190Dump

The MPC190 device driver should implement a kerndl trace mechanism to dump useful message to the
monitoring host. The MPC190Dump supports multiple trace level filters. The precompiled constant
MPC190DebugL evel controls which messages level should be dumped. These levelsinclude:

#define MPCCONFIG ((ULONG)0x00000001)
#define MPCUNLOAD ((ULONG)0x00000002)
#define MPCINITDEV ((UL ONG)0x00000004)
#define MPCIRPPATH ((UL ONG)0x00000008)
#define MPCSTARTER ((ULONG)0x00000010)
#define MPCPUSHER ((ULONG)0x00000020
#define MPCERRORS ((ULONG)0x00000040)
#define MPCTHREAD (UL ONG)0x00000080)

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Jther Design Considerations/Issues

5.7.8 FIPS140-2 Level 1

Motorola’'s MPC190 Cryptographic Coprocessor System (MCCS) is made up of two distinct components:
the MPC190VF cryptographic coprocessor and the PCl driver software used to access the chip’s
functionality. The MCCS is designed to meet FIPS 140-2 level standard. The following issues should be
considered:

According to the definitions within FIPS 140-2, the MCCS s categorized as a Multi-chip
Stand-al one cryptographic module, where the Cryptographic Boundary is defined to be the entire
enclosure of the host system.

The MCCS supports two distinct operator roles: Crypto-Officer role and User role. It does not

enforce any identity or role based authentication. The device driver implements this requirement by

introducing aflag called Access Role. The application can set therole by calling an I/O function to

change the access role type. In other words, the application can choose to play either the

Crypto-Officer role or the User role by itself. The device driver only exposes the control services

functionality when the application plays as a Crypto-Officer. It only exposes the cryptographic

servicesif the application acts as a User.

Only one application (or user) at atime can access MCCS even through the host is a multi-tasking

and multi-user system. The device driver can enforce this by introducing a user current connection

number. If it running under FIPS 140-2 mode, only one user is allowed to connect to the driver.

If it running under FIPS 140-2 mode, the device driver will only expose the FIPS approved

algorithms provided by MCCS: single DESin ECB or CBC, triple DESin ECB or CBC (two keys

or three keys), SHA-1 hash and Random Number Generator. The device driver exposes all the

algorithms provided by MCCS if under Non FIPS 140-2 mode.

An application can access MCCS only through the device driver interface. The user level

application can not directly access the kernel without the driver interface.

It isauser/application’s responsibility to handle the key storage and key distribution issuesin

compliance with FIPS 140-2. It is also the responsibility of the application to zero all keysin RAM

when it encounters a cryptographic algorithm error and when prior to terminating.

A power on self test isrequired for the FIPS 140-2. The test is comprised of the following:

— Critical function test: Initialize, read and write internal registersin MPC190VF chip.

— RNG continuous test: The new generated random number should not match the previous. (8
bytest).

— All cryptographic function test: All of the cryptographic functions by MCCS should be tested.

If any of the self-test fails, a fatal error code is returned to the loader program and the device driver is
unloaded. All allocated memory should be zeroed and be free when the loader program exits.

Part VI References

MPC190 Security Co-Processor User's Manual.
Security Policy for the Freescale MPC190 Cryptographic Coprocessor System.

Deveoping Windows NT Device Drivers, A Programmer’s Handbook
Edward N.Dekker Joseph M.Newcomer |SBN 0-201-69590-1

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Other Design Considerations/Issues

Part VII Acronyms and Abbreviations

This section provides an alphabetical glossary of acronyms and abbreviations used in this document.

AFHA—ARC-4 Hardware Accelerator.
ARC-4—Encryption algorithm compatible with the RC-4 algorithm developed by RSA, Inc.

Auth—Authentication. The CHA or Execution Unit that performsthe authentication functionisthe
MDEU, or “Message Digest Execution Unit”.

CHA—Crypto Hardware Accelerator. Thisterm is synonymous with “ Execution Unit” in the
MPC190 User's Manual and other documentation.

DESA—DES Accelerator.
DPD—Data Packet Descriptor
MDHA—Message Digest Hardware Accel erator.

PKHA—Public Key Hardware Accelerator. This term is synonymous with PK EU in the MPC190
User’s Manual and other documentation.

RNGA—Random Number Generator Accelerator.

Part VIII Revision History

Table 8-1 summarizes the revision history of this document.

Table 8-1. Revision History

Revision No. Substantive Change(s)

1 Initial release.

1.1 Added revision history and updated with new template.

MPC190 PCI Device Driver Design Specification

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

- freescale-

semiconductor

AN2469/D

For More Information On This Product,

Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	MPC190 PCI Device Driver Design Specification
	Part�I Architecture Overview
	Figure�1-1. Physical Overview
	Figure�1-2. Logical Overview for WinNT

	Part�II Device Driver Structure
	2.1 Driver Initialize Routine
	2.2 IO Request Dispatch Routine
	2.3 Process Request Routine
	2.4 Interrupt Service Routine
	2.5 Processing Complete Routine
	2.6 Process Request Queue Routine
	2.7 Other Functions

	Part�III Process Flow Chart
	Figure�3-3. Device Driver Initialization.
	Figure�3-4. Device Driver Unload
	Figure�3-5. IO Request Process
	Figure�3-6. Interrupt Service

	Part�IV Device Driver Interface
	4.1 Global Variables Definition
	4.1.1 ChannelAssignments
	4.1.2 ChaAssignments
	4.1.3 ProcessQueueTop and ProcessQueueBottom
	4.1.4 ChannelAssignLock and BlockSizeLock
	4.1.5 Other variables
	4.1.6 Error return codes

	4.2 Device Driver I/O Interface
	4.3 Device Driver Internal Functions
	Table�4-1. Device Driver Internal Functions�

	Part�V Design Considerations
	5.1 Multi Platform Support Considerations
	5.2 PCI Bus interface 32/64 bit words data transfers Issue.
	5.3 Big Endian and Little Endian Issue.
	5.4 Memory Considerations
	5.4.1 For DPDs:
	5.4.2 For task’s input memory space
	5.4.3 For task’s output memory space

	5.5 Synchronization Considerations
	5.6 Multi Card Support Considerations
	5.7 Other Design Considerations/Issues
	5.7.1 Thread
	5.7.2 Processor
	5.7.3 Interrupt
	5.7.3.1 Interrupt Processing For WinNT
	5.7.3.2 ISR Synchronization

	5.7.4 Queue entry limitation
	5.7.5 Load balance
	5.7.6 Error Handling
	5.7.7 MPC190Dump
	5.7.8 FIPS140-2 Level 1

	Part�VI References
	Part�VII Acronyms and Abbreviations
	Part�VIII Revision History
	Table�8-1. Revision History

