
Freescale Semiconductor
Application Note

AN3039
Rev. 0, 9/2005

CONTENTS

1 Local Bus Structure ...2
2 Local Bus Usage Project ...2
2.1 Directory Structure ..2
2.2 Bandwidth Usage Parameters5
3 Peripherals ...8
3.1 DMA Controller ..8
3.2 TDM ..11
3.3 Ethernet ...13
3.4 DSI .. 15
3.5 Timer ...17
4 MSC8122 Main Program19
5 Bus Usage Parameters ...20
6 Running the Project on CodeWarrior21
6.1 Linker Parameters ...21
6.2 Board Settings ...22
6.3 Output With all Peripherals Enabled22

Integrated Example of MSC8122 Local
Bus Usage: Ethernet, TDM, DMA, and
DSI
By Iantha Scheiwe
The local bus on the MSC8122 and MSC8126 DSPs is a 64-bit
wide bus operating at up to 166 MHz. The local bus is used for
high-bandwidth communication between the various
peripherals of the device. It connects the TDM and Ethernet
ports to internal M1 and M2 memories. The DMA controller
uses the local bus to transfer data between M1 and M2
memories as well as between these internal memories and
external SDRAM on the system bus. A host controller can
access internal resources via the DSI interface to the local bus.

When you design a new system based on the MSC8122/26, it is
useful to understand the interaction of the local bus masters and
their interaction with the device memory structure. The
programmable priority hierarchy of the local bus may require
adjustment based on an application’s transfer requirements.
Also, you should run example scenarios to understand the bus
usage when you adjust FIFO threshold levels for the TDM and
Ethernet peripherals. These values must be managed to meet
system latency requirements while maximizing bus usage.

The example project described in this application note includes
code examples for initializing the various peripherals attached
to the local bus. This project gives you a starting-point for
determining the available bandwidth of a given system design.
It runs on the MSC8122 DSP configured with Ethernet selected
and exposed on the low part of the DSI/system data bus.
Therefore, the DSI and the system bus are both 32 bits wide.
© Freescale Semiconductor, Inc., 2005. All rights reserved.

Local Bus Structure
1 Local Bus Structure
The local bus is the main internal conduit for TDM transactions. The DMA, DSI, and Ethernet controller send their
data either to the memories on the local bus (four M1 and M2) or to external SDRAM residing on the system bus.
Also, the SC140 cores use the bridge from the system bus to the local bus to access the M1 memories of other
cores. Figure 1 shows the internal connection of these masters to the local bus. If the arrow in the diagram
originates from a block, the block can act as a master on the bus and request accesses according to the programmed
bus arbitration scheme. All four cores access the system bus through the SQBus. It is the SQBus that requests
mastership of the system bus when an SC140 core requests access to that bus.

Figure 1. MSC8122 System and Local Bus Structure

As Figure 1 shows, the host bridge, DSI, DMA controller, Ethernet FIFOs, and TDM FIFOs can each act as a
master on the local bus to access the M1 memory of all four MSC8122 cores and the M2 memory. The DSI, DMA
FIFOs, and Ethernet FIFOs can also access external SDRAM on the system bus. All paths shown are available on
the device. However, the lines from the DSI, DMA FIFOs, Ethernet FIFOs, and TDM FIFOs to core 0 M1 and M2
memory as well as DMA to external SDRAM are drawn darker to indicate the data paths exercised in the example
project described in this application note. The host bridge is an additional master on the bus, but this path tends to
be low in bandwidth usage, primarily for single control accesses by one of the cores or an external master. In
general, applications should minimize core accesses to the M1 memory of other cores because such accesses can
significantly degrade core performance.

2 Local Bus Usage Project
The local bus usage project is a reference example for programming the MSC8122. The program has a modular
design so that peripherals can be enabled/disabled or added/deleted without affecting the behavior of the rest of the
program. The project includes timing mechanisms for regulating the bandwidth usage of the peripherals, so it can
be used as a framework to investigate bus usage combinations and peripheral configurations. All code files in the
initial release of software have a heading that indicates the version of the file. If a file is changed, its version
number must be updated. The initial version number is 1.0.

2.1 Directory Structure
The project includes four main directories, as shown in Figure 2. The contents of each directory are described in
the remainder of this section.

Host Bridge DMA FIFOsDSI TDM FIFOs

External
60x Master

System Bus

Local Bus

M1 Core 0 M1 Core 1 M1 Core 2 M1 Core 3
M2

External
SDRAM

MSC8122
Core 1 Core 2 Core 3Core 0

MSC8122 MSC8122 MSC8122

Ethernet FIFOs
and Buffer

Descriptor Access
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

2 Freescale Semiconductor

Local Bus Usage Project
Figure 2. Project Directory Structure

2.1.1 812x_source
Figure 3 shows the contents of the 812x_source directory that holds all MSC8122 source code. The main
program and linker command file are in this directory, as well as the include file for defining the project
functionality and the rate timing.

Figure 3. 812x_source Folder Contents

The folders in 812x_source contain the code to configure and manage each peripheral in the project. The
common folder contains the files shown in Figure 4.

Figure 4. common Folder Contents

The files in the common folder include the interrupt handlers and timer configuration common to all the
peripherals. The startup.asm file is not included in the project itself, but it is the startup.asm file to create
the custom startup_be-r.eln file used by the linker in the project (see Section 6.1). It does not require
modification and is included in this directory only as a reference. CodeWarrior™ uses the
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 3

Local Bus Usage Project
8122ADS_DSI32_Slave_Init.cfg file to initialize MSC8122 registers when the debugger is invoked. The
project was tested with this configuration file. If another configuration file is used, check the settings to ensure that
they are correct and optimal for the bandwidth test performed.

2.1.2 8103_source
Figure 5 lists the contents of 8103_source.

Figure 5. 8103_source Folder Contents

The MSC8103 device requires a configuration file when CodeWarrior invokes the debugger. This file is included in
the 8103_source folder, as shown in Figure 5. The project was tested with this configuration file. If another
configuration file is used, check the settings to ensure that they are correct and optimal for the bandwidth test
performed. In addition, the MSC8103 has its own main program to initialize the MSC8122ADS board control and
status registers (BCSR) and exercises the DSI on the MSC8122 using the MSC8103 system bus-to-MSC8122 DSI
interface on the ADS board. Because the host exercises the DSI, the HostRateTiming.h file determines the
bandwidth of MSC8103 host accesses to the DSI. The code assumes that the MSC8103 uses a 50 MHz input
oscillator on the MSC8122ADS, and the switches set the MSC8103 to MODCK1. If these values change, the
values in HostRateTiming.h must be updated. All other peripheral timing is defined in the RateTiming.h
file in the 812x_source directory, as shown in Figure 3.

2.1.3 bin_out
Figure 6 lists the contents of bin_out.

Figure 6. bin_out Folder Contents

The msc8103.eld and msc8122_0.eld files are created when the project is compiled. The linker requires the
startup_be-r.eln file, which was compiled from the startup.asm source in the
812x_source/common directory. This custom start-up file leaves the upper portion of the interrupt vector table
(0x200–0xFFF) undefined so that a separate file, Msc812xInterruptVectors.asm, can be used explicitly
to define the code loaded to the interrupt vector locations 0x200–0xFFF. The startup_be-r.eln file should
not be moved or modified.
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

4 Freescale Semiconductor

Local Bus Usage Project
2.1.4 proj_build
Figure 7 lists the contents of proj_build.

Figure 7. proj_build Folder Contents

proj_build contains the CodeWarrior project files for the MSC8103
(LocalBusIntegratedPeripheralProject.mcp) and the MSC8122 (Msc812x_0.mcp). The linker
generates the MSC8122 map file and places it into this directory. CodeWarrior creates the two <>_Data folders to
hold files related to the project. Opening either .mcp file launches the project.

2.2 Bandwidth Usage Parameters
The 812x_source directory includes a file named ProjectDefines.h that holds the definitions referenced
in the project code. There are four groupings of defines. The first group includes a single define for the device
revision when the code runs:

#define REV0or1K98M

MSC8122 1K98M mask set devices require changes to the local bus programming to complete the DMA
transactions correctly. This #define should be commented out for a Rev 2 or later version of the MSC8122
because the define workaround slightly decreases the available bandwidth of the local bus. If bandwidth estimation
is performed, a 2K98M mask set MSC8122 device should be used to get an accurate estimate of throughput
performance.

The second group of definitions determines which peripherals controlled by the MSC8122 are active for the test:

#define TDMTEST
#define ENETTEST
#define LARGEDMA
#define FLYBYDMA

If defined, the peripheral is included in the project. If the define for a peripheral is commented out, that peripheral
is not enabled and does not consume bandwidth on the local bus.

The third group of definitions relates to project parameters. By default, the Ethernet gets its clock from the PHY on
the MSC8122ADS. This default is considered CONFIG_OPTION1. However, there is an option to clock the
Ethernet from a timer by placing a jumper wire from a timer signal pin on the MSC8122ADS to the Ethernet clock
input pin on the MSC8122ADS. This configuration is not recommended, but if a clock other than the default 25
MHz Ethernet clock is desired, this is an option. If the timer clock is used, comment out the CONFIG_OPTION1
definition. The CHECK_RATES definition enables the MSC8103 host to output the throughput values for a given
code run and their associated timer values. This definition can document a particular code execution result as well
as verify that the compiler properly calculated the values of the bandwidth regulations:

#define CONFIG_OPTION1
#define CHECK_RATES

#define PERFORMANCE_VERIFICATION
#define DEBUG_REPORT
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 5

Local Bus Usage Project
The remaining two project definitions in this group affect the flow of the main program.
PERFORMANCE_VERIFICATION is defined by default and activates code checks to ensure that each peripheral
does not run out of bandwidth between transfers. DEBUG_REPORT is commented out by default. If it is defined,
the main program prints a statement each time a peripheral is serviced. However, the printf statement is a large
cycle count function call and can invalidate bandwidth checking. This statement is useful to ensure that a
peripheral continues to be serviced, but it should be commented out to get an accurate bandwidth estimation. TDM
and Ethernet data buffers are checked regularly during code execution. However, to minimize additional local bus
traffic not related to the targeted bandwidth usage, DMA buffer data is verified for accuracy only when
DEBUG_REPORT is defined.

The final group of defines provides another method to disable peripherals:

#define DSI_STOP
#define ENET_STOP
#define DMA_STOP

Defining DSI_STOP is the only way to turn off host DSI transactions so that the host initializes the ADS board
BCSR registers as required but does not complete any DSI transfers. ENET_STOP and DMA_STOP deactivate code
in the main program and re-enable these two peripherals so that the Ethernet and DMA controllers each run one
iteration and then stop. Note that there is no _STOP definition for TDM. If TDMTEST is defined in the second
grouping, it runs until the program completes.

2.2.1 Rate Timing
Because this example project can be used to estimate bandwidth, it is important to understand how rate timing for
the different peripherals is defined. The values for programming the MSC8122 timers to regulate peripheral timing
is defined in the RateTiming.h file in the 812x_source directory. The comments in this file mention the
MSC8122ADS oscillator that is assumed to be feeding the MSC8122 as well as the board switch settings. Bolded
values in the rate timing descriptions are the values that you can change for a specific case.

// MSC812x Input Crystal: 33.3 MHZ
// SW4(1-4): OFF-ON-ON-ON
#define COREFREQ(400*MEGA)
#define COREBUSRATIO3

If a different oscillator or MODCK setting for the MSC8122ADS is selected, update the comments and the
COREFREQ and COREBUSRATIO definitions to reflect the new settings. The code was tested with values of
COREFREQ = 400 and COREBUSRATIO = 3 or 4. Any valid device frequency combination should work with the
code, but other combinations were not tested. If a different combination is selected, you can use the values printed
by the MSC8103 host when CHECK_RATES is defined to validate the resulting calculated throughput values. The
peripheral timing is based on definitions of the desired peripheral throughput and the core bus frequency. This file
includes a section for defining DMA, TDM, and Ethernet throughput.

The DMA throughput is defined in MBps, DMA_MBPS. One throughput value is used for each DMA transfer
enabled in the project. If more than one DMA transfer type is enabled, actual DMA throughput consumed during
code execution is the DMA_MBPS value times the number of DMA transfer types (dual-access, flyby).

// DMA throughput in MegaBYTES per second
#define DMA_MBPS 100
// timer ticks per transfer
#define TimerLargeCompareVal (LargeDMAXferSize*(TIMERCLK/MEGA)/DMA_MBPS)
#define TimerFlyByCompareVal (FlyByDMAXferSize*(TIMERCLK/MEGA)/DMA_MBPS)
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

6 Freescale Semiconductor

Local Bus Usage Project
Based on the DMA_MBPS value, a timer comparison value is calculated to determine when the next DMA
transaction is activated. The calculation includes the rate of the timer clock, which is based on the bus frequency
and the size of the DMA transfer. The DMA throughput consumption can therefore be regulated. In addition to the
COREFREQ and COREBUSRATIO definitions, you need only to modify the DMA_MBPS value. The rest of the
DMA throughput definitions are automatically calculated.

The TDM operates differently. It is programmed to run continuously without interruption. The TDM throughput
definition is for the clock used to drive the TDM:

//TDM Serial Speed in MegaBITS per second
#define TDM_MbPS 33
//Timer ticks per bit
#define TDMClockTimerCompareVal((BUSFREQ/MEGA)/(TIMER_TOGGLE*TDM_MbPS))

TDM throughput is defined in Mbps, TDM_MbPS. The granularity of the clock speed selection is regulated by the
timer granularity in relation to the bus frequency. The timer operates at the same frequency as the MSC8122
system and local buses. However, the timer is programmed to toggle each time it reaches the timer comparison
value, so the maximum calculated timer clock frequency is one-half the bus frequency. The maximum rate of the
TDM on a 400 MHz MSC8122 device is 62.5 Mbps. The fastest timer clock that can be generated from a 133 MHz
bus frequency is (133 MHz/2), 66.5 MHz, which is above the TDM limit of 62.5 Mbps. Therefore, the fastest timer
clock to meet the TDM specification using the programming method in this example is 33 MHz, and the fastest rate
of the TDM in this example is 33 Mbps. This is the default value in the RateTiming.h file. The value can be
decreased. If a 166 MHz bus frequency is used, the fastest TDM rate using this clocking method is 41.5 MHz. Of
course, an external clock source could be used to generate a higher-frequency input to the TDM. This example is a
starting-point for evaluation and can be changed as necessary for a specific case.

Ethernet throughput is regulated in much the same way as the DMA throughput. However, Ethernet throughput is
defined in Mbps, similar to TDM. By default, the Ethernet uses the on-board PHY clock to drive the Ethernet
transactions. The initial definition of the Ethernet throughput is 70 Mbps. This default is referred to as
CONFIG_OPTION1, and the Ethernet is driven with a 25 MHz clock. However, if you choose to drive the Ethernet
controller with a timer clock, then a calculation based on the ENET_CLK value generates a timer clock. Due to the
timer programming granularity, the timer clock is a ratio of the bus frequency. With ENET_CLK defined at 25
MHz, the timer clock generated is 22 MHz.

//Ethernet Serial Speed in MHz
#ifdef CONFIG_OPTION1
#define ENET_CLK 25
#else //Use MSC812x timer to generate clock for ethernet
//Timer ticks per bit
#define EnetClockTimerCompareVal (1+(BUSFREQ/MEGA)/(TIMER_TOGGLE*ENET_CLK))
//Ethernet throughput in MegaBITS per second
#define ENET_MbPS 70
//Transfers per second

#define ENET_TRANS_S (ENET_MbPS*(MEGA/8)/ENET_BYTES_PER_TRANSFER)

//Timer ticks per transfer

#define EnetSchedTimerCompareVal (1+(TIMERCLK/ENET_TRANS_S))

The RateTiming.h file includes additional definitions to translate these timer values into throughput values that
the MSC8103 device outputs to standard I/O when the project runs to verify that the timer value was calculated
correctly. You do not change these definitions, so they are not shown or discussed here.

While this project is a useful starting-point for estimating throughput consumption and evaluating peripheral
interaction, keep in mind that several factors affect peripheral throughput. The Ethernet controller operates at
10/100 Mbps. This example project uses the smallest possible data size, so it may not maximize Ethernet
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 7

Peripherals
throughput. If the Ethernet throughput in this project is increased to 100 Mbps, the probable result is bandwidth
failures. To reach the highest bandwidth on the peripherals, you must choose the correct data size, FIFO threshold
values, and bus priorities. Section 5 describes device settings that affect bandwidth.

2.2.2 Host Rate Timing
In addition to the peripheral timing of the MSC8122, this example defines the MSC8103 usage of the MSC8122
local bus via the DSI interface, which is host-regulated and therefore defined in a separate file,
HostRateTiming.h, in the 8103_source directory.

//MSC8103 Input Crystal:50 MHZ, Clock Mode:1, MODCK_H:000 MODCK[1-3]:001
//SW 6(1-8): OFF-ON-ON-ON-ON-ON-OFF-ON (MODCK1)
//Core clock speed=300 MHz
#define HOSTCOREFREQ 300000000 //(Hz)
#define HOSTBUSRATIO 3
#define HOSTBUSFREQ (HOSTCOREFREQ/HOSTBUSRATIO)

If a different oscillator or MODCK setting for the MSC8122ADS is selected, update the comments and the
COREFREQ and COREBUSRATIO definitions to reflect the new settings.

//DSI Performance target in MBps
#define DSI_MBPS 30
#define NumDSITicksAllowed ((M2_DSI_TEST_BUFFER*2)*(HOSTCOREFREQ/1000000)/DSI_MBPS)

DSI throughput is defined in MBps, DSI_MBPS, like the DMA throughput. Because it regulates only one
peripheral, the MSC8103 uses its EOnCE to regulate the DSI usage rather than the timer method used on the
MSC8122. Therefore, the bandwidth regulation calculation is based on the MSC8103 core frequency in addition to
the DSI transfer size and throughput target number. Instead of generating a timer comparison value, the MSC8103
main program compares this NumDSITicksAllowed value with the value of the EOnCE counter to determine
when the DSI transaction should be reactivated and whether it has met its bandwidth target.

3 Peripherals
Five resources, or peripherals, are used in this project: DMA, TDM, Ethernet, DSI, and timers. The first four
peripherals consume bandwidth on the local bus. The timers regulate the bandwidth consumption. Each peripheral
is programmed in a default operating mode that you can change to fit a specific test case. The code is arranged so
that each peripheral has <peripheral>Header.h file and a <peripheral>_Setup.c file. Inside these
files, the functionality of the peripheral is programmed. The peripheral header file includes references to global
variable declarations that must be available to other files. It also includes the function prototypes for the functions
in the peripheral set-up source file.

In addition, where appropriate, the peripherals have <peripheral><data classification>.c files to
define their global variables/buffers. Each of these files defines a data_seg_name referenced in the linker
command file for placing the global variables in a specific memory region. A separate file is used to declare the
variables in each level of memory: M1, M2, and SDRAM.

3.1 DMA Controller
The MSC8122 DMA controller has two primary transfer types: flyby and dual-access. Flyby transactions transfer
entirely on the local bus and do not use the DMA FIFO. They can be transfers between the M1 memories of two
SC140 cores or transfers between M1 and M2 memory. Dual-access transfers are used for DMA transfers between
internal memories on the local bus (M1 and M2) and external memory on the system bus (SDRAM). The
transaction goes through the DMA FIFO, which sits between the two buses. Because throughput usage may vary
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

8 Freescale Semiconductor

Peripherals
for these two types of transactions due to memory latencies and bus/FIFO interactions, this example project
provides both transfer types as options. Also, the DMA arbitration requests are configured, via the LCLALRH and
LCLALRL register settings, as the lowest priority on the local bus. Therefore, if bandwidth starvation occurs in a
specific test case, the starvation is likely to appear first as a DMA bandwidth error. The DMA code is organized in
the MSC8122 project window as shown in Figure 8.

Figure 8. DMA Code Files

Three files allocate the DMA global buffers: DMAGlobalsM1.c, DMAGlobalsM2.c, and
DMAGlobalsSDRAM.c. As the file names indicate, these files allocate the buffers in each level of memory.
DMAHeader.h defines the DMA configuration values, DMA transfer attributes, DMA transfer size, and size of
the source data pattern. These values are defined as needed for each type of DMA transfer in the project. Both
DMA transfer type attributes are programmed to be cyclic (BD_ATTR:CYC = 1) so the buffer address and size are
reset at the end of each transfer. To restart the DMA transaction, simply activate the associated channel
DCHCR:ACTV bit and reprogram the flyby counter for the flyby DMA transactions.

This example project includes programming for two DMA transfers: LARGEDMA and FlyByDMA.
LARGEDMA is a dual-access transfer that transfers a large block (65520 Bytes) of data. FlyByDMA is a smaller
transfer that transfers between M1 and M2 memory on the local bus.

#define FlyByDMAXferSize 0x00003610 //bytes
#define LargeDMAXferSize 0x0000FFF0 //bytes
#define FlyByDCHCR 0x0085c400 //local bus, use DRACK,DMA PRAM#5,core 0 flyby counter a
#define FlyByAttr 0x00000200 //burst transactions
#define LargeDMALclDCHCR 0x00000040 //local bus, DMA PRAM #0, initiated by DMA controller
#define LargeDMASysDCHCR 0x40010040 //system bus, DMA PRAM #1, initiated by DMA controller
#define LargeDMAReadAttr 0x04000210 //DMA high priority bus request, burst transactions, read
#define LargeDMAWrtAttr 0x04000200 //DMA high priority bus request, burst transactions, write
#defineDMAPattSize 0x00000050 //bytes

The remaining definitions in the header pertain to register settings and bus address offsets that should not be
changed. The DMA configuration values defined in the DMAHeader.h file are referenced by the initial DMA
configuration executed in the DMA_Setup.c file and again in the DMA channel reactivation in the
MainMsc812xCore0.c file.
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 9

Peripherals
DMA_Setup.c includes a single function: DMA_Setup. The main program calls this function to initialize the
source buffers to a known value and the destination buffers to 0x0. Next, the function initializes the DMA
arbitration mode, channel parameter RAM for each DMA transfer type (flyby and dual-access), and DMA channel
configuration registers for each DMA channel to be used. The DMA channels are not activated by this function.
The main program activates each peripheral when device initialization (including the timers) completes.

3.1.1 Flyby Transfer (FlyByDMA)
The DMA flyby transaction is programmed to transfer on the local bus as shown in Figure 9.

Figure 9. Flyby DMA Transaction Diagram

FlyByDMAXferSize number of bytes (13,840 bytes by default) are transferred using DMA channel 5 from M1
at a location determined by the linker placement of the buffer gauliM1Source1 to the buffer in M2 called
gauliM2Dest, also placed in memory by the linker. By default, the flyby transaction arbitrates for bus
mastership using the DMA high-priority request (BD_ATTR:BP = 0b10).

3.1.2 Dual-Access Transfer (LARGEDMA)
The DMA dual-access transaction is programmed to transfer from M1 memory on the local bus to SDRAM on the
system bus as shown in Figure 10.

Figure 10. Dual-Access DMA Transaction Diagram

Ethernet FIFOsHost Bridge DMA FIFOsDSI TDM FIFOs

External
60x Master

System Bus

Local Bus

M1 Core 0 M1 Core 1 M1 Core 2 M1 Core 3
M2

External
SDRAM

MSC8122
Core 1 Core 2 Core 3Core 0

MSC8122 MSC8122 MSC8122

Ethernet FIFOsHost Bridge DMA FIFOsDSI TDM FIFOs

External
60x Master

System Bus

Local Bus

M1 Core 1 M1 Core 2 M1 Core 3
M2

External
SDRAM

MSC8122
Core 1 Core 2 Core 3Core 0

MSC8122 MSC8122 MSC8122

M1 Core 0
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

10 Freescale Semiconductor

Peripherals
LargeDMAXferSize number of bytes (65520 bytes by default) are transferred using DMA channels 0 and 1
from M1 at a location determined by the linker placement of the buffer gauliM1Source2 to the buffer in
SDRAM called gauliSDRAMDest, also placed in memory by the linker. By default, the dual-access attributes
are programmed so that the channels arbitrate for bus mastership using the DMA low-priority request
(BD_ATTR:BP = 0b00). This request is programmed by default in the main program to be the lowest priority
transaction on the bus. This request is also programmed as the parked master on the local and system buses. It is a
large transfer that acts as a background task and uses the local bus when no other transaction is requesting the bus.
Although it has the lowest priority on the local bus, after flyby DMA, it may not experience bandwidth starvation
first. The flyby DMA transaction may indicate bandwidth starvation first because it has a smaller transfer size. Its
timer comparison value is smaller, so it checks bandwidth usage more frequently. Of course, transfer sizes, bus
priorities, and DMA arbitration priorities can be adjusted according to the needs of the application.

3.2 TDM
The TDM transaction transfers TDM data to and from M2 memory on the local bus as shown in Figure 11.

Figure 11. TDM Transaction Diagram

The TDM rate is determined by the throughput setting in the RateTiming.h file. In TDMGlobalsM2.c the
TDM transmit and receive buffers are defined in a single multi-dimensional array called TDM_M2_Buffer. The
linker places them into M2 memory. Figure 12 shows TDM code organization in the MSC8122 project window.

Figure 12. TDM Code Files

Ethernet FIFOsHost Bridge DMA FIFOsDSI TDM FIFOs

External
60x Master

System Bus

Local Bus

M1 Core 0 M1 Core 1 M1 Core 2 M1 Core 3 M2

External
SDRAM

MSC8122
Core 1 Core 2 Core 3Core 0

MSC8122 MSC8122 MSC8122
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 11

Peripherals
TDM global parameters are defined in TDMGlobalsM1.c and TDMGlobalsM2.c. TDMHeader.h defines the
parameters for configuring the TDM module, and TDM_Setup.c configures the TDM for the desired operation.
The parameters in TDMHeader.h include number of buffers, size of buffer (bytes), size of data, the number of
channels, and the number of TDM modules activated for the test:

//TDM Transfer Parameters
#define NUM_OF_BUFFERS 32
#define BUFFER_SIZE 32
#define DATASIZE sizeof(short int)
#define NUM_OF_CHANNELS 32
#define NUM_OF_TDMS_IN_TEST 1

The MSC8122 device has four TDM modules, TDM[0–3]. This example project is configured to use TDM1.
Enabling other TDMs in the code is straightforward. In TDMHeader.h, the NUM_OF_TDMS_IN_TEST
definition can be changed to indicate more than one TDM. The active TDMs are specified in TDMGlobalsM1.c
as follows.

volatile unsigned char Active_TDMs_in_Test[NUM_OF_TDMS_IN_TEST] ={
//TDM0,
TDM1//,
//TDM2,
//TDM3
};

The Active_TDMs_in_Test array defines which TDM module(s) are to be initialized and activated. This code
was tested only with the MSC8122ADS board configuration, as described in Section 6.2, with TDM1 enabled.
While other configurations are possible in the code, you must determine the appropriate board settings and test the
code for any new configuration. TDM_Setup.c includes two functions:

• TDM_GPIO_Setup. Programs the GPIO registers to enable the TDMxRDAT pins for all four TDMs.
However, by default, this example uses only the TDM1 data pins. Because the TDM is programmed in
full-duplex loopback mode, the TDMxTDAT pins are unnecessary. The function also programs the
GPIO register so that GPIO16 functions as TDM1CLK. The function includes alternative commented-
out code that could be used if the TDM were programmed to use TDM0CLK. However, since the
current MSC8122ADS boards have a secondary clock tied to that pin on the board, TDM module 1
and TDM1CLK is a better clock source for this project.

• TDM_Setup. Contains the primary TDM module initialization code. The function is passed the
number of the TDM module being initialized and addresses of the TDM receive and transmit buffers.
TDM is initialized to share clock and sync between transmit and receive and also to operate in full-
duplex mode (TDMxGIR). TDMxRNB and TDMxTNB are initialized with the number of buffers in
the TDM local buffer derived from the value of NUM_OF_BUFFERS defined in TDMHeader.h.

Next, the TDMxTIR and TDMxRIR registers are initialized. The transmit threshold interrupts are configured to be
pulse. Transmit sync is an output with width of one bit and is driven on the rising edge of the clock. There is a one
clock delay between the transmit sync and first bit of transmit data in the frame. The transmit data is driven on the
falling edge of the clock and the sync is sampled on the falling edge of the clock. The receive threshold interrupts
are level, there is no delay between the sync signal and the first bit of data in the receive frame. Receive data is
sampled on the rising edge of the clock, and the sync is sampled on the falling edge.

The frame parameters are programmed for 32 channels of transmit and 32 channels of receive data, a maximum
latency of 128 bits for both transmit and receive, and a channel size of 8 bits (TDMxTFP, TDMxRFP).
BUFFER_SIZE defines the transmit and receive buffer sizes to be 32 bytes (TDMxRDBS, TDMxTDBS). The
TDM buffer base addresses are initialized in TDMxRGBA and TDMxTGBA based on the address of the buffers
passed to the TDM_Setup function. Receive and transmit thresholds are set at 8 bytes and BUFFER_SIZE-7 bytes
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

12 Freescale Semiconductor

Peripherals
(TDMxTDBFT, TDMxTDBST, TDMxRDBFT, TDMxRDBST). Interrupts are enabled for errors only
(TDMxTIER, TDMxRIER). However, these interrupts are not currently enabled in the interrupt controller since the
main program checks the status of the error bits manually. All transmit and receive pending events are cleared
(TDMxTER, TDMxRER). TDMxACR is cleared to disable the adaptation machine. Next, the channel parameter
registers are initialized for all NUM_OF_CHANNELS. This includes initializing the TDMxRCPR and TDMxTCPR
registers with the data buffer address for each individual channel, activating the channel, and defining it as a
transparent channel (no A-Law or µ-Law). Before the function is exited, the TDM receive and transmit buffers in
TDM local memory are initialized to known values (0x0 for receive, 0x11 for transmit), and the TDM receive and
transmit buffers in M2 memory are also initialized to known values (0x0 for receive, temporary calculated value
for transmit). The TDM module is then ready to be enabled.

3.3 Ethernet
The Ethernet transaction is programmed to transfer Ethernet data to and from M2 memory on the local bus as
shown in Figure 13.

Figure 13. Ethernet Transaction Diagram

The Ethernet code is organized in the MSC8122 project window as shown in Figure 14.

Figure 14. Ethernet Code Files

Ethernet FIFOsHost Bridge DMA FIFOsDSI TDM FIFOs

External
60x Master

System Bus

Local Bus

M1 Core 0 M1 Core 1 M1 Core 2 M1 Core 3 M2

External
SDRAM

MSC8122
Core 1 Core 2 Core 3Core 0

MSC8122 MSC8122 MSC8122
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 13

Peripherals
Ethernet global variables are defined in three files: EthernetBufferDescriptors.c,
EthernetGlobalsM1.c, and EthernetGlobalsM2.c. The names of the second two files indicate where
the linker should place the global variables. The buffer descriptors can be placed into M1 or M2 memory. This
project places them into M1 memory in the linker command file. EthernetHeader.h and
Ethernet_Setup.c serve functions similar to their counterparts for the other peripherals.
EthernetHeader.h includes definitions to configure the Ethernet controller. It also references the Ethernet
global variables, function prototypes, and definitions of Ethernet register bits used in Ethernet controller
initialization. There is a definition for the number of Ethernet frames to be transmitted/received, the transmit frame
size, receive frame size (based on transmit frame size), transmit and receive buffer sizes, and the number of
transmit and receive buffer descriptors. In this example, the number of buffer descriptors equals the number of
frames.

//Ethernet Transfer Parameters
#define NUM_OF_FRAMES 20
#define TX_FRAME_SIZE 60
#define RX_FRAME_SIZE (TX_FRAME_SIZE+4)

//Buffer sizes in bytes (must be divisible by 16)
#define TX_BUFFER_SIZE 64
#define RX_BUFFER_SIZE 64

//Number of Receive and Transmit Buffers and Buffer Descriptors
#define NUM_RXBDS NUM_OF_FRAMES
#define NUM_TXBDS NUM_OF_FRAMES

Ethernet_Setup.c contains a single function called Ethernet_Setup. The Ethernet configuration follows
the steps defined in the MSC8122 Reference Manual to configure the Ethernet controller after reset. The Ethernet
controller is enabled by setting the MIIGSK_ENR[EN] bit. When the controller is ready, it is placed into soft reset
and then released. The MAC configuration is set to full-duplex mode with a frame specification that includes a 7
byte preamble and appended CRC. The MAC station address is initialized to a known value. For this example
project, the Ethernet is transmitting in a MAC-to-MAC configuration, so no PHY configuration is required. The
controller is initialized for MII loopback mode. All pending events are cleared and interrupts are disabled. The
pattern matching and hash function registers are initialized, but the Ethernet controller is configured in
promiscuous mode, so pattern matching is ignored. The DMA maintenance register handles the priority for
Ethernet transactions as they near overrun/underrun situations. In the default configuration, all three Ethernet
priorities are defined together in the arbitration scheme, so the setting in this register has little effect. However, for
a specific application, it may be appropriate to change the arbitration hierarchy scheme in LCL_ALRH and
LCL_ALRL and the arbitration priority values in DMAMR.

At this point, the buffer descriptors are built. The transmit buffer descriptors are built first. Although the Ethernet
controller is not yet fully enabled, the code follows the recommendation that the first buffer descriptor in the
transmit buffer descriptor ring be the last to be marked as ready. Therefore, all transmit buffer descriptors in the
ring are initialized except transmit buffer descriptor 0, which is initialized last. The frame size is initialized to be 60
bytes, which is the smallest possible Ethernet frame size. The transmit data buffer is also initialized. Next, the
receive buffer descriptors are initialized. Both the transmit and receive buffer descriptor rings are the same size.
Finally, the FIFOs are initialized and the Ethernet controller is ready to transmit and receive data when the main
program fully enables it.
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

14 Freescale Semiconductor

Peripherals
3.4 DSI
The DSI transaction is programmed to transfer a block of data from the MSC8103 internal memory to the
MSC8103 DMA FIFO and then from the DMA FIFO to the MSC8103 system bus interface and the MSC8122
DSI. From the DSI it transfers data to M2 memory on the MSC8122 local bus. When that transfer completes, a
second transaction reads the data back along the same path, as shown in Figure 15.

Figure 15. DSI Transaction Diagram

The DSI code is organized in the MSC8122 project window as shown in Figure 16.

Figure 16. DSI Code Files on the MSC8122

There are only two files: DSIHeader.h and DSIGlobalsM2.c. DSIHeader.h defines the size of the data
buffer that is written and read via the DSI (M2_DSI_BUFFER_SIZE).

#define M2_DSI_BUFFER_SIZE 128
#define M2_DSI_DATA_OFFSET 0x0000
#define HOST_SIDE_M2_BUFFER_ADDRESS (0x24000000 + M2_DSI_DATA_OFFSET)

DSI

MSC8103

MSC8103 System Bus

MSC8122 Local Bus

M1 Core 0 M1 Core 1 M1 Core 2 M1 Core 3
M2

M1 RAM

DMA FIFO

MSC8103
Core

MSC8103

MSC8122
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 15

Peripherals
The DSI data buffer size is set to 128 bytes. This definition can be adjusted as needed. The associated
DSIGlobals.c file declares the buffer in M2 memory, and the array references this same
M2_DSI_BUFFER_SIZE definition, as does the MSC8103 when initializing its transfer size.

The CodeWarrior configuration files that initialize the MSC8122ADS when loading the debugger define the DSI
address and chip ID combination so that the DSI base address for the MSC8103 is 0x24000000. This address is the
first address location in M2 memory that is accessible to the MSC8103 host via DSI. In the MSC8122 linker file,
the DSI buffer in M2 is reserved at the start of M2 memory. If the location of this buffer is changed, the offset
address must be updated in DSIHeader.h so that the MSC8103 host knows where it can transfer its data block.
To make this update, change the M2_DSI_DATA_OFFSET definition. Technically, the DSI buffer can be placed
anywhere in the M1 or M2 memories of the MSC8122, and this offset is simply changed to reflect the new offset.
DSI transfers are not restricted to M2 accesses.

The MSC8103 host is responsible for all DSI data transfers. The MSC8122 only tells the linker to reserve the
memory block for use by the host. All MSC8103 programming is contained in MainMsc8103.c. Besides
configuring the Board Control and Status Registers (BCSRx) of the MSC8122ADS to enable the Ethernet PHY
clock, the only other task of the MSC8103 is to initiate DMA transactions to the MSC8122 DSI. When the entire
example has run, the MSC8103 can output the data rates for the run just completed. The code is organized in the
MSC8103 project window as shown in Figure 17.

Figure 17. Code Files on the MSC8103 Host Device

As noted in Section 2.2.2, Host Rate Timing, on page 8, the MSC8103 uses EOnCE to regulate its bandwidth
usage. Immediately after initializing the BCSRs and its system and local bus parked masters, the MSC8103 enables
EOnCE to count core clock cycles. It then initializes a source buffer to a known pattern to be used as a reference
vector for verifying correct data transmission, and it clears the receive buffer.

The MSC8122ADS has an asynchronous DSI connection between the MSC8103 and MSC8122, so bursting is not
possible. In addition, with the system bus enabled to a 32-bit width and Ethernet enabled and configured to be
exposed on the MSC8122 system bus/DSI pins, the DSI is 32-bits wide. If a transaction is placed on the 60x-
compatible system and local buses that is wider than the slave port size, the transaction is split into smaller
transactions to fit the port size. Each of the smaller transactions does not require arbitration between the
transactions. The DMA coding of the MSC8103 in this example takes advantage of the throughput increase that
can result by taking advantage of this 60x bus feature. Instead of programming the DMA to transfer bursts (which
is not possible due to the asynchronous interface) or 32-bit transactions (which would result in slightly lower
bandwidth) on its system bus, the BD_ATTR parameter for the transactions is programmed for 64-bit transactions.
The MSC8103 local bus transactions between MSC8103 M1 memory and the DMA FIFO use bursting since they
are on the MSC8103 internal local bus.
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

16 Freescale Semiconductor

Peripherals
The MSC8103 programs the DMA controller for two dual-access transactions. One dual-access (write) transaction
reads from M1 memory, writes to the DMA FIFO, then reads from the DMA FIFO and writes to the DSI. The
second (read) transaction reads from the DSI and writes to the MSC8103 DMA FIFO, then reads from DMA FIFO
and writes to M1 memory. DMA channels 0 and 1 and channel parameter RAM 0 and 1 are configured for the write
transaction. DMA channels 2 and 3 and channel parameter RAM 2 and 3 are configured for the read transaction.
When the DMA controller is initialized, the MSC8103 enters a while loop that determines the number of times the
DSI transaction executes. If DEBUG_REPORT is defined, the code runs infinitely.

Inside the while loop, the DMA write transaction is activated and the EOnCE counter is reset. The MSC8103
polls the DMA status register until the write transfer completes. Then it activates the DMA read transaction and
polls the DMA status register until the transaction completes. Next, the MSC8103 checks the value of the EOnCE
counter to record the elapsed time of the DMA transfers to and from the DSI. The elapsed time is compared with
the number of core clocks that are allowed for the DSI transaction to complete within its bandwidth allocation. If
DEBUG_REPORT is enabled, the MSC8103 checks the read data buffer to verify that it matches the reference
vector and then changes the reference vector to a new pattern. If the bandwidth target is not met, the MSC8103 hits
a debug statement immediately below a comment indicating that the DSI did not meet its throughput
commitment. If DEBUG_REPORT is not defined, the MSC8103 waits until the elapsed time allowed for the DSI
transaction is exhausted and then restarts the DMA transactions to DSI.

3.5 Timer
The timer code is organized in the MSC8122 project window in the common directory as shown in Figure 18.

Figure 18. common Files in the MSC8122 Project Window

Two files define the timer behavior: TimerHeader.h and Timer_Setup.c. TimerHeader.h is organized
into groupings for each peripheral. Each group includes the timer configuration definition for that peripheral, the
function prototypes for timer functions related to that peripheral, and required references for timer-related global
variables for the peripheral. In addition, TimerHeader.h contains register bit definitions used in
Timer_Setup.c. In general, the timer definitions should not require modification.

//DMA TIMER PARAMETERS
#define TimerFlyByConfigVal 0x00000030
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 17

Peripherals
#define TimerLargeConfigVal 0x00000030
//DMA Timer Function Prototypes
void DMA_Timer_InterruptSetup(void);
void DMA_Timer_Setup(void);
//DMA Timer Global Declarations in other files
extern volatile unsigned char vucDMA_TimerA0_Int_Flag;
extern volatile unsigned char vucDMA_TimerA1_Int_Flag;

//TDM TIMER PARAMETERS
//TDM CLOCK TIMER (B4 internal, Timer3 external)
//Connect J5.B15 to J5.B19 on the MSC812xADS
#define TDMClockTimerConfigVal 0x00000031
//TDM Timer Function Prototypes
void TDM_Clock_Timer_Setup(void);

//ETHERNET TIMER PARAMETERS
#define EnetClockTimerConfigVal 0x00000031
#define EnetSchedTimerConfigVal 0x00000030
//Ethernet Timer Function Prototypes
void Enet_Timer_InterruptSetup(void);
void Enet_Timer_Setup(void);
//Ethernet Timer Global Declarations in other files
extern volatile unsigned char vucEnet_TimerA2_Int_Flag;

Timer_Setup.c contains one function for each of the three peripherals it regulates. These are
DMA_Timer_Setup, Ethernet_Timer_Setup, and TDM_Clock_Timer_Setup. The Ethernet and
DMA set-up functions configure the timer to one-shot mode so that it stops after reaching its comparison value and
defines the timer clock source to be the bus clock, which is set at 133 MHz by the board setting defined in this
application note, but modifiable as necessary. Each MSC8122 DMA transaction gets its own timer, so there is one
configured for the flyby DMA transaction and one for the dual-access (large data buffer size) transaction. The timer
comparison registers are initialized with the value calculated in the RateTiming.h file based on the target
throughput definitions for each peripheral. These three timers (flyby DMA, large DMA, and Ethernet) each
generate an interrupt when the timer reaches its comparison value.

When the interrupt is triggered, the MSC8122 core jumps to the allocated interrupt vector defined in
Msc812xInterruptVectors.asm, which directs it to a handler routine in InterruptHandlers.asm.
The handler routine clears the timer event and interrupt status registers and sets a flag to indicate the timer event
occurred.

The TDM timer does not generate an interrupt. It is a cyclic, free-running timer whose timing is also derived from
the bus clock, but whose output is directed to Timer B4. Timer B4 is available on the MSC8122ADS expansion
connector J5 as signal TIMER3. This signal (J5:B19) must be jumpered to the TDM1CLK signal on the
MSC8122ADS (expansion connector J5:B15) to clock the TDM transactions. The timer rate is also derived from
the TDM throughput value defined in RateTiming.h.

The Ethernet_Timer_Setup function also includes a timer clock initialization that executes only if
CONFIG_OPTION1 is not defined. In this case, the Timer B0 output frequency is derived from the Ethernet clock
definition in RateTiming.h. This signal corresponds to the TIMER2 signal on the MSC8122ADS, which is
accessible on expansion connector J5:C22 and can be tied to the Ethernet clock pin on JP4:5. This option is used
only if the 25 MHz clock driven from the PHY is not acceptable and a different clock source/rate is necessary.
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

18 Freescale Semiconductor

MSC8122 Main Program
4 MSC8122 Main Program
When the peripherals and rate timing are set, the main program manages all bandwidth checking and peripheral
activation. The main program is divided into four sections.

1. Initialize device registers, including enabling the instruction cache, programming the local bus param-
eters for bus timing and arbitration, and configuring the EOnCE to count core clock cycles (the
EOnCE counter is used to manage the length of time the main program runs).

2. Initialize interrupts and call the set-up functions for each peripheral as described in Section 3.

3. Enable each peripheral and its associated timer.

4. Handle the run-time coordination and bandwidth checking for each peripheral. This (largest) portion of
the program is contained within a while loop whose length of execution is dependent on the EOnCE
counter. When this counter reaches 0, the loop exits. However, if DEBUG_REPORT is enabled the loop
runs infinitely.

Excluding DSI, which is managed by the MSC8103, each of the four peripheral tests in the example project has a
section of management code in the main program. TDM, which is the first peripheral, is checked to see if its
receive event register (TDMxRER) indicates an event. If so, the MSC8122 enters the TDM management routine.
First it verifies that the event(s) is not an error event. If it is an error event, the MSC8122 increments its
TDM_total_fail counter. If bandwidth checking is enabled (PERFORMANCE_VERIFICATION is defined), the
beginning and end of the TDM receive buffer data are checked for correctness. If the data is not correct, the
MSC8122 reaches a debug statement immediately below a comment indicating a TDM data failure. TDM differs
from the Ethernet and DMA controllers because once it is enabled it runs freely without core interaction. Also, the
local bus is configured so that TDM requests are the highest priority on the bus. Therefore, they should not
experience bandwidth starvation. However, it is still important to check the data to ensure that it is transferred
properly and to ensure confidence in the results of the test. After the data is checked, the receive buffer is modified
so that it does not hold the same value as the transmit buffer. This check ensures that the receive data arrives
correctly each time and not just the first time. If DEBUG_REPORT is defined, a message is printed indicating either
that the TDM is working as expected (TDM!), or if the TDM had receive event errors, the program prints TDM is
not working correctly.

Each peripheral has its own counter, num<peripheral test>iterations, to indicate the number of times
the MSC8122 SC140 core has serviced it. This counter can be checked after code execution to ensure that all
peripherals were serviced and had the opportunity to indicate potential bandwidth starvation or data errors.

Both DMA transfer types have their own management code in the main program, but the code is organized
similarly for each. As noted in Section 2.2.1, Rate Timing, on page 6 and Section 3.5, Timer, on page 17, each
DMA and Ethernet transfer has its own timer programmed with a comparison value to regulate its bandwidth
usage. When the timer reaches the comparison value, it generates an interrupt. In the interrupt service routine the
SC140 core sets a flag to indicate a timer interrupt. The main program checks this flag. If the flag is set, the main
program clears the flag and checks to see if the associated transfer completed. If not, an error flag is set
(FlyByDMAErrorFlag, LargeDMAErrorFlag, EnetRxErrFlag, or EnetTxErrFlag). When
PERFORMANCE_VERIFICATION is defined, these flags are checked and the MSC8122 hits a debug statement
if they are set.

The timer associated with the peripheral is immediately re-enabled to start counting for the next bandwidth check.
For DMA transfers, the error flag is checked and if DEBUG_REPORT is defined, the DMA data buffers are checked
for correctness. A print statement indicates whether the DMA transfer is executing as expected or encountered
errors. If DMA_STOP is not defined, the DMA transfer is restarted. A fail counter is updated to indicate whether a
failure occurred on this iteration. This fail counter is useful if PERFORMANCE_VERIFICATION is not defined to
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 19

Bus Usage Parameters
put the MSC8122 into debug mode when failures occur. Finally, the iteration counter is incremented to indicate that
the peripheral was serviced and restarted. The Ethernet timer is managed in the same way as the DMA timers. The
timer flag is cleared immediately when the Ethernet management portion of the main program is entered, and the
Ethernet bandwidth regulation timer is re-enabled. Next, the Ethernet transmit and receive are checked to ensure
that they completed their transfer. If not, the Ethernet Rx or Tx error flag is set. As for other peripherals, if
PERFORMANCE_VERIFICATION is defined, the SC140 core hits a debug statement when a bandwidth error is
detected. Also, the Ethernet buffers are checked for errors. Unlike the DMA management, which checks the data
buffers only if DEBUG_REPORT is defined, Ethernet buffers are checked any time performance is verified. Next,
the Ethernet receive and transmit buffer descriptors are reinitialized and the receive buffer data is modified to
ensure that it is getting a new transfer each time. If DEBUG_REPORT is defined, the program prints a statement
indicating whether Ethernet is working properly. The Ethernet error flags are cleared and its iteration counter is
incremented.

5 Bus Usage Parameters
Numerous factors affect bus usage. If an application is maximizing bus usage, check the following list for tips on
getting the most throughput on the local bus:

• Verify that the maximum bus frequency is being used. With 400 MHz MSC8122 devices, the
maximum bus frequency is achieved with a 1:3 bus:core ratio and results in a 133 MHz local bus. The
500 MHz MSC8122 devices can run the bus at 166 MHz. Verify that the input oscillator and clock
mode settings for the MSC8122 are configured for the correct bus speed.

• Check the data pipelining setting for the bus. Setting BCR[PLDP] decreases the bus throughput. This
bit is cleared by default in this project.

• Extended transfer mode (BCR[LETM], BCR[ETM]) improves bus performance. It must be disabled
on the local bus on 1K98M or 2K98M mask sets of the MSC8122 (see the definition to handle this in
Section 2.2.1, Rate Timing, on page 6). However, for Rev 2 or later devices, extended transfer mode
should be enabled to attain higher throughput.

• Both TDM and Ethernet have their own DMA engines to transfer data between the interface local
memory or FIFOs and MSC8122 internal M1 and M2 memories. There are registers to manage the
threshold for determining when to transfer the data. These thresholds can be set to maximize bus
usage, and there can be multiple back-to-back transactions on the bus to improve bus usage
significantly. However, especially for TDM, which generally has low latency requirements, ensure
that the data is transferred in time to meet the requirements of the application. For the Ethernet
controller, the thresholds are set in FTXTHR and FRXALAR. The TDM thresholds are programmed
in TDMxRFP[RCDBL] and TDMxTFP[TCDBL].

• Adjust the bus arbitration priorities in the LCLALRH and LCLALRL registers. In general, the highest-
priority master should require the lowest latency. Ideally, the high-priority transactions are also
relatively short transactions (that is, not a 65 KB DMA transaction that stalls all other transactions for
a significant period of time).

• Each Ethernet FIFO has an alarm setting to raise the Ethernet arbitration priority on the bus if it is not
getting data on time. An application can take advantage of this feature by programming the Ethernet
controller as a low-priority bus requestor with an alarm mode to raise its priority and give it access to
the bus when it is starved of bus usage (DMAMR[APR]).

• The DMA controller has three different priority levels to request the bus. These levels can be managed
on a channel-by-channel basis. These levels differ from the DMA priority levels for mastership of the
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

20 Freescale Semiconductor

Running the Project on CodeWarrior
DMA engine itself. When DMA round-robin arbitration is not in use, a high-priority channel should be
programmed for both high channel priority (DCHCR[PRIO]) and high bus request priority
(BD_ATTR[BP]).

• To save arbitration cycles, ensure that one of the masters is programmed as a parked master. In the
project example, the parked master is the one with the lowest arbitration priority and highest
bandwidth usage (dual-access DMA). In general, the master with the highest bandwidth usage should
be configured as the parked master to get the most benefit out of savings in arbitration cycles.

• If system bus accesses or DSI accesses are running out of bandwidth and Ethernet is enabled, check
the system design to see whether Ethernet can be exposed on the GPIO pins instead of the system
bus/DSI pins. Either the DSI or system bus can be configured to 64 bits instead of 32 bits for twice the
throughput capacity. This decision is dependent on the configuration and usage of the TDM.

• Ethernet frames have significant flexibility in how they are transmitted. To increase Ethernet
throughput, consider decreasing the preamble size, increasing the data load in each frame, decreasing
the inter-packet gap size, and determining whether CRC or padding is required. Adjusting these
parameters, an application can send more data and less overhead through the Ethernet interface.

• If DSI throughput reaches a ceiling, consider switching to a synchronous interface so that burst
transfers can be used. Note that synchronous mode is not supported on the MSC8122ADS, so this
throughput improvement cannot be measured on the ADS.

• If an interface to SDRAM creates a bottleneck, employ the DMA interleaving technique and SDRAM
configuration settings described in AN2704, Using DMA-SDRAM to Optimize Bandwidth on the
StarCore MSC8102 DSP Device, and AN3011, DMA Interleaving Technique for High Bandwidth
Between the MSC8122 and SDRAM.

6 Running the Project on CodeWarrior
When the definitions and rate timing that dictate the behavior of the example code are set to reflect the particular
test being verified, the code is ready to run. The device configuration set by the .cfg files in the MSC8103 and
MSC8122 source file directories and selected in the project settings must be the Initialization File when each
project is loaded into the debugger. This section discusses the linker and board settings necessary to ensure that the
code runs as expected.

6.1 Linker Parameters
In the MSC812x Core 0 Target Settings → Enterprise Linker panel, the linker is directed to use a custom start-up
file derived from the default start-up file used by CodeWarrior. This custom file has been modified to leave the
interrupt vector memory locations from 0x200–0xFFF empty so that the MSC8122 project can include a separate
Msc812xInterruptVectors.asm file to define handlers explicitly for each interrupt vector, referred to as
.myintvec in the MSC8122 linker command file.

The linker command file is also programmed to include the interrupt handler routines from
InterruptHandlers.asm in M1 memory along with the <peripheral>GlobalsM1.c variable
declarations and the Ethernet buffer descriptors. All other code is placed into M2 memory along with the DSI
buffer and the Ethernet and TDM transmit and receive buffers. M2 memory also holds the destination data buffer
for the flyby DMA transfer. SDRAM contains the destination data buffer for the dual-access DMA transfer.

The MSC8103 uses the default linker command file with everything, code and data, defined in internal M1
memory.
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 21

Running the Project on CodeWarrior
6.2 Board Settings
The Ethernet code depends on a clock source driven from the PHY on the MSC8122ADS. Therefore, the
MSC8103 host programs the MSC8122ADS board registers (BCSR 7, 8, and 9) to enable the PHY to generate the
25 MHz clock for Ethernet. This code is the first code the MSC8103 executes. It is essential for the operation of the
Ethernet and should not be removed. The code also disables a clock driven from the TSI on the MSC8122ADS to
the TDM.

The MSC8122ADS switches and jumpers should be configured as follows:

• SW4> OFF-ON-ON-ON

• SW5> OFF-ON-ON-ON

• SW6> OFF-ON-ON-ON-ON-ON-OFF-ON

• SW7> ON-ON-ON-ON

• JP1> All open.

• JP2> OSCK-IN connected. Others open.

• JP3> All open.

• JP4> All open.

• JP5> CLKOUT-DRV connected. EXCLK open.

• JP6> All open.

• JP8> Open.

• For TDM1 clock> Connect J5:B15 to J5:B19.

• MSC8103 Oscillator> 50 MHz

• MSC8122 Oscillator> 33.3 MHz

This project is intended as a starting-point for peripheral and throughput evaluation. You can change these settings
for other clock frequency combinations or peripheral combinations. Refer to the MSC8122ADS Reference Manual
to determine necessary ADS adjustments.

6.3 Output With all Peripherals Enabled
If DEBUG_REPORT is not defined and the code finishes executing, the two debugger windows (msc8103.eld
and msc8122_0.eld) stop to indicate successful completion, as shown in Figure 19.

Figure 19. Indication of Successful Code Completion
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

22 Freescale Semiconductor

Running the Project on CodeWarrior
In addition, if CHECK_RATES is defined, the MSC8103 host outputs a message indicating the peripherals used for
the code run and their throughput rates as defined in RateTiming.h and HostRateTiming.h. It also
indicates the device core and bus frequency assumptions in the code (remember to update the comments if a
different clock configuration is selected). Figure 20 shows an example of this message.

Figure 20. Standard I/O Example Output
Integrated Example of MSC8122 Local Bus Usage: Ethernet, TDM, DMA, and DSI, Rev. 0

Freescale Semiconductor 23

Document Order No.: AN3039

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor,
Inc. StarCore is a licensed trademark of StarCore LLC. All other product or service names are
the property of their respective owners.

© Freescale Semiconductor, Inc. 2005.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 0
9/2005

	1 Local Bus Structure
	2 Local Bus Usage Project
	2.1 Directory Structure
	2.2 Bandwidth Usage Parameters

	3 Peripherals
	3.1 DMA Controller
	3.2 TDM
	3.3 Ethernet
	3.4 DSI
	3.5 Timer

	4 MSC8122 Main Program
	5 Bus Usage Parameters
	6 Running the Project on CodeWarrior
	6.1 Linker Parameters
	6.2 Board Settings
	6.3 Output With all Peripherals Enabled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

