
1 Introduction
As automotive powertrain and other engine control applications
(such as those used in hybrid vehicles) become more complex,
the need for more advanced tools and development processes

increases. The MPC564xA1 implements new features specifically
for use in advanced automotive development processes. One of
the new features is a module specifically intended to enable the
user software to signal to an external tool that data is available.
This application note describes the operation of the Development
Trigger Semaphore (DTS) module and its primary intended use.
There are other ways that this module may be used, but only the
primary intended use is discussed in this application note.

The calibration process of a new engine requires real-time access
to calibration tables and the ability to update these tables in real

time2. Another important aspect of the development process
requires real-time access to data measurements, for example,
sensor data or data calculations. The DTS module specifically
targets real-time access to measurements available in the CPU
that affect the operation of the engine. Generally, these data
measurements are time-aligned or angle-aligned to the engine.
The DTS module allows up to thirty-two triggered sets of
measurements to be signaled to an external tool. When the data

The features described in this application note are not
available on revision 1 of the MPC564xA, but are available
on revision 2.

1.

See Freescale document AN4030, "Real-Time MMU
Manipulation on the e200zx Power Architecture™ Core," for
information on a method for real-time switching of calibration
tables.

2.

© 2009–2010 Freescale Semiconductor, Inc.

Document Number: AN4048Freescale Semiconductor
Rev. 0, 31/August/2010Application Note

Using the Development Trigger
Semaphore Module
As Implemented on the MPC564xA

Randy Deesby:
Applications Engineering
Austin,Texas
USA

Contents
Introduction...........................................................11

Overview...............................................................22

Development Trigger Semaphore module block
diagram..........................................................2

2.1

DTS device connections................................32.2

DTS register access...............................32.2.1

MPC564xA crossbar ports and port master
identifiers...............................................4

2.2.2

Development Trigger Semaphore module memory
map........................................................................5

3

DTS Enable register (DTS_ENABLE).........53.1

DTS Startup register (DTS_STARTUP).......63.2

DTS Semaphore register
(DTS_SEMAPHORE)..................................7

3.3

Using the DTS module..........................................74

Trigger initialization and
synchronization.............................................8

4.1

Trigger-based acquisition..............................84.2

Development Trigger Semaphore header file........9A

DTS system level block diagram........................11B



is available, a trigger signals the external tool. The tool can then retrieve the data. Since the tool is notified that new data is
available via an external signal, the tool is not required to continuously poll internal device registers or memory locations.

It is the user's responsibility to ensure that the tool has time to retrieve the data prior to that particular trigger being set a second
time. It is permissible to have multiple triggers active at the same time or for a second trigger to be set before a previous trigger
has been serviced, as long as it is not the same trigger (unless it is acceptable to the tool to not receive every data set).

2 Overview
The Development Trigger Semaphore (DTS) module provides a 32-bit register of semaphores and an identification register.
The identification register can be used as part of a triggered data acquisition protocol between an embedded controller and an

external tool, either for calibration or for rapid prototyping.3

The DTS_SEMAPHORE register, along with the DTS Trigger Output (DTO), provides a mechanism to indicate to the tool that
the calibration variables (or sets of measurements), from one to thirty-two, have been updated with new values and are available
for access. Data coherency is maintained by limiting the setting of bits in the DTS_SEMAPHORE to only the CPU and DMA.
The CPU and DMA cannot clear any bit in this register. Only a tool access via Nexus read/write access through the JTAG port
can clear bits in this register. Access permissions to the DTS_SEMAPHORE register are based on the crossbar (XBAR) master
identification number for the port.

The DTS_STARTUP register provides a mechanism for the tool to notify software running on the CPU that a tool is connected
and can provide information about either the type of tool or the options that can be used by the software.

The DTS_ENABLE register enables the DTS feature.

2.1 Development Trigger Semaphore module block diagram
The Development Trigger Semaphore (DTS) module consists of three registers and a small amount of combinational logic to
generate a trigger output signal (DTS Trigger Out, or DTO).

Semaphore

Enable

Startup

32-BitSystem Clock

System Reset

XBAR Master ID

Peripheral Bus

DTS_EN

DTS Trigger Out
(DTO)

Figure 1. DTS block diagram

The DTS Trigger Out (DTO) is asserted when any bit in the DTS_Semaphore register is set. The DTO signal connects to one
of the EVTO inputs of the Nexus port controller (NPC). The other EVTO inputs to the NPC are connected to the other Nexus
modules in the device.

NOTE
When the DTS module is enabled (DTS_ENABLE[DTS_EN]=0b1), the Nexus EVTO
function of the EVTO pin is disabled and EVTO becomes the DTO. Unlike the EVTO

This triggered data acquisition uses the Nexus read/write access via the JTAG interface of the Nexus debug port and is
different than the data acquisition protocol that uses the Nexus auxiliary port and is defined in either the IEEE-ISTO 5001-2003
or IEEE-ISTO 5001-2010 Nexus standard. The IEEE-ISTO 5001 Nexus data acquisition is also supported on the e200z4 and
e200z7 cores.

3.

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
Freescale Semiconductor, Inc.2

Overview



function that only asserts for one clock, the DTO function remains asserted until the tool
reads the DTS_SEMAPHORE register.

The timing of the DTO signal and its effect on the EVTO output are shown in the following figure.

CPU writes
DTS_SEMAPHORE
to a non-zero value

Nexus RWA reads
DTS_SEMAPHORE,
which clears register

Internal DTO
signal asserted

DTS_SEMAPHORE register

DTS Trigger Output (DTO)

EVTO pin

EVTO asserted
externally

Internal DTO
signal negated

EVTO negated
externally

Figure 2. DTS trigger-out timing

2.2 DTS device connections
The DTS module connects to the peripheral bridge (PBRIDGE) for access to the registers. The PBRIDGE is then connected to
a slave port of the crossbar bus interface (XBAR). Connected to the XBAR master ports are the core (one or more — one e200z4
Power Architecture core on the MPC564xA, each with a master access port for the separate instruction and load/store buses),

the DMA (one or more eDMA modules depending on the device), the FlexRay modules, and an external bus interface4.

Some of the registers have limited access, as shown in the DTS register access section. Access is based on the master ID of the
module through the XBAR.

NOTE
Nexus read/write accesses use the load/store bus of the core to perform accesses, but Nexus
accesses have a different master ID than normal core load/stores.

Access to the DTS_SEMAPHORE register is limited to either the e200zx cores and the eDMA module to set bits only (based

on the XBAR master ID).5 Only an access via a Nexus read/write access from an external tool through the Nexus/JTAG port
of the device can clear bits in the DTS_SEMAPHORE register (cleared automatically by the read through the Nexus/JTAG

port)6. Similarly, the DTS_ENABLE and DTS_STARTUP registers can only be written via a Nexus read/write access.

EVTO Pin

XBAR Master IDPBRIDGE
DTS Trigger Out

DTS NPCXBAR XBAR Master ID

XBAR Slave Port Peripheral Bus

E
V

TO
Inputs

eDMA

FlexRay

EBI

e200z4

Figure 3. MPC564xA DTS internal device connections

2.2.1 DTS register access
A summary of accesses to all DTS registers by bus masters is provided in DTS register access. Note that only proper 32-bit
accesses are valid. The effects of write accesses that are not 32-bit are not defined.

The external bus interface master port is used for internal testing of the device and is not accessible to the user.4.
On multi-core devices or devices with multiple eDMA modules, any core and any eDMA module can set bits in the
DTS_Semaphore register.

5.

On multi-core devices, the Nexus read/write access can use any core for the access.6.

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
3Freescale Semiconductor, Inc.

Overview



Table 1. DTS register access

32-bit write32-bit readRegister

Other3DMA2CPU CoreRWA1Other3DMA2CPU CoreRWA1

No effectNo effectNo effectDataDataDataDataDataDTS_ENABLE

No effectNo effectNo effectDataDataDataDataDataDTS_STARTUP

No effectBit ORBit ORNo effectDataDataDataData and

Clear4

DTS_SEMAPHORE

1. Nexus read/write access via an external tool.
2. Direct Memory Access module.
3. Other master ports on the XBAR are connected to FlexRay and the external bus interface (not accessible).
4. A read of the DTS_SEMAPHORE register by any Nexus read/write access module is destructive and clears all bits in the
register.

2.2.2 MPC564xA crossbar ports and port master identifiers
All internal accesses in the MPC564xA are through a crossbar (XBAR) switch matrix. The XBAR allows multiple concurrent
accesses between masters connected on the XBAR and slaves also connected to the XBAR. In the MPC564xA, the master ports
are the e200z4 core (connected to two XBAR ports), the eDMA module, the FlexRay, and a master port for an external bus
master access. The table below shows the different XBAR master IDs for each of the XBAR ports. These master IDs are used
to control access to the DTS registers.

XBAR

MPU

e200z4
Instruction

e200z4
Load/Store

eDMA

Internal
Flash

External
Bus Interface

Internal
SRAM

Peripheral
Bridge

External
Bus Interface

FlexRay

Figure 4. MPC564xA XBAR connections block diagram

Figure 4 shows all of the master and slave ports of the XBAR bus, as well as all of the possible paths through the XBAR. Up
to four paths can be in use at the same time. Three example concurrent paths are highlighted in the figure showing the following
concurrent transactions:

• e200z4 core instruction fetch from the internal flash
• e200z4 core load or store access from/to a peripheral on the peripheral bridge
• eDMA access to or from the internal SRAM

NOTE
The XBAR master ID should not be confused with the master port number of the XBAR.
These are separate. The master IDs are shown in this document since they are used by the
access logic of the DTS module, but this is transparent to the user. Some peripherals allow
the user to control access to the peripheral based on the XBAR master ID and therefore are
not transparent to the user.

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
Freescale Semiconductor, Inc.4

Overview



Table 2. MPC564xA crossbar master IDs and master port numbers

Master
ID

XBAR
master

port

DescriptionModule
type

00e200z4 core (instruction
bus)

CPU Core

01e200z4 core (load/store
bus)

81Nexus RWA1

34Enhanced direct memory
access

DMA

66FlexRay master accessFlexRay

77External bus interfaceEBI2

1. The Nexus port uses the core load/store bus, but has its own master ID when used for access.
2. The external bus master port is not accessible, but is implemented and used for internal factory test.

NOTE
Tools must access the DTS registers (ENABLE, STARTUP, and SEMAPHORE) through
the Nexus read/write access mechanism of either core. JTAG accesses through the core will
appear as if the access is via the core, and therefore will not have the same level of access
as a Nexus read/write access. For additional information about JTAG core accesses versus
Nexus read/write accesses, see Appendix B of Freescale document AN2614, "MPC553x,
MPC555x, and MPC556x Family Nexus Interface Connector."

3 Development Trigger Semaphore module memory map
The table below shows the the memory map of the Development Trigger Semaphore module registers. Only three 32-bit registers
are implemented. The rest of the memory map (0xC3F9_C00C thorugh 0xC3F9_FFFF) is reserved.

Table 3. Development Trigger Semaphore Module Memory Map

AccessSize (bits)Register DescriptionRegister NameAddress

Restricted R/W132DTS Output Enable registerDTS_ENABLE0xC3F9_C000

Restricted R/W132DTS Startup registerDTS_STARTUP0xC3F9_C004

Restricted R/W132DTS Semaphore registerDTS_SEMA-
PHORE

0xC3F9_C008

——Reserved—0xC3F9_C00C –
0xC3F9_FFFF

1. Only certain types of accesses are allowed. See DTS register access.

3.1 DTS Enable register (DTS_ENABLE)
The DTS Enable register (DTS_ENABLE) controls the DTS Trigger Output (DTO) and whether DTO is active on the EVTO
output of the device. Table 4 shows the format of the DTS_ENABLE register. Only one bit is implemented. Access to the
DTS_SEMAPHORE and DTS_STARTUP registers are unaffected by the state of this bit.

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
5Freescale Semiconductor, Inc.

Development Trigger Semaphore module memory map



Table 4. DTS enable (DTS_ENABLE)

1514131211109876543210

A
dd

re
ss

 0
xC

3F
9_

C
00

0

0000000000000000R

W

0000000000000000Reset

31302928272625242322212019181716

D
T

S
_E

N000000000000000R

W

0000000000000000Reset

Table 5. DTS_ENABLE field descriptions

DescriptionField

DTS Enable. Controls whether the DTO signal
is routed to the EVTO.

0: DTS output disabled.

1: DTS output enabled. Any bit set in the
DTS_SEMAPHORE register will assert the DTO
signal.

DTS_EN

The DTS Enable bit is cleared by a device reset (either the assertion of the external RESET or an internally generated reset). A
JTAG reset does not change the state of this register. The DTS_ENABLE register is a 32-bit register that can be read by the
e200zx core, but can only be written by a Nexus read/write access (RWA).

3.2 DTS Startup register (DTS_STARTUP)
The DTS Startup register (DTS_STARTUP) is used for tool detection and startup information exchange between the tool and
software running on the MCU. Table 6 shows the format of the DTS_STARTUP register.

• A device reset (either from the RESET pin or an internally generated reset) clears all bits in the register.
• A JTAG reset does not change the contents of the register.
• A core, DMA, or Nexus RWA 32-bit read access returns the register contents.
• Only a Nexus RWA 32-bit write access can update the contents of this register.

Table 6. DTS Start Up register (DTS_STARTUP)

1514131211109876543210

A
dd

re
ss

 0
xC

3F
9_

C
00

4

AD16AD17AD18AD19AD20AD21AD22AD23AD24AD25AD26AD27AD28AD29AD30AD31R

W

0000000000000000Reset

31302928272625242322212019181716

AD0AD1AD2AD3AD4AD5AD6AD7AD8AD9AD10AD11AD12AD13AD14AD15R

W

0000000000000000Reset

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
Freescale Semiconductor, Inc.6

Development Trigger Semaphore module memory map



Table 7. DTS_STARTUP register field descriptions

DescriptionField

Application Dependent register bits — the bits have no defined meaning to the MCU and are used to exchange in-
formation between an external tool and the software running on the target CPU at startup time.

AD[31:0]

3.3 DTS Semaphore register (DTS_SEMAPHORE)
The following table shows the format of the DTS Semaphore (DTS_SEMAPHORE) register. This register stores the currently
active triggers for the tool. When any of the trigger bits are set and the DTS_ENABLE[DTS_EN] is set, the DTS module will
assert the DTS_Trigger_Out, which drives the EVTO pin.

• All register bits are set to one by a device reset.
• A JTAG reset does not change the state of this register.
• The register can be accessed, with restrictions, by any core, DMA, or any Nexus RWA.
• For the core or DMA, only 32-bit write or read accesses are valid.
• A core or DMA valid read access returns the current value of the register and leaves the register unchanged.
• The effect of a core or DMA valid write access and Nexus RWA read access is shown in the DTS register access section

of this application note. The effect of other types of access and access by other bus masters is also discussed in that section.

Table 8. DTS Semaphore register (DTS_SEMAPHORE)

1514131211109876543210

A
dd

re
ss

 0
xC

3F
9_

C
00

8

ST16ST17ST18ST19ST20ST21ST22ST23ST24ST25ST26ST27ST28ST29ST30ST31R

W

1111111111111111Reset

31302928272625242322212019181716

ST0ST1ST2ST3ST4ST5ST6ST7ST8ST9ST10ST11ST12ST13ST14ST15R

W

1111111111111111Reset

Table 9. DTS_SEMAPHORE register field descriptions

DescriptionField

When a core or eDMA writes a logical one to a bit, the bit is set. A write of zero by the core or DMA does not change
the state of the bit. A read of this register returns the current value and does not affect the state of the register.

A Nexus read via a tool returns the current value and automatically clears all bits in the register.

0: Trigger is not active for this channel (No flag).

1: Trigger is set for this channel, data is available if software is using the DTS_SEMAPHORE register for triggered
data acquisition (flag is set).

ST[31:0]

4 Using the DTS module
The Development Trigger Semaphore module is intended to allow software that is running in the MCU to notify external tools
that specific data is available for those tools. The DTS_SEMAPHORE register allows for up to thirty-two different data sets to
be identified.

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
7Freescale Semiconductor, Inc.

Using the DTS module



The use of the DTS module can be divided into three phases: initialization, synchronization, and acquisition.

4.1 Trigger initialization and synchronization
The startup and synchronization sequence can be as simple or as complicated as the need requires. Figure 5 shows an example
of a typical startup sequence with a synchronization hand-shake and one "raster" of data becoming available (raster trigger 8
— 0x0000_0100).

• The DTS_STARTUP register is cleared by a power-on reset or any CPU reset.
• The tool writes a value, other than 0x0, to the DTS_STARTUP register.
• The CPU (user application software) then reads the value of the DTS_STARTUP register. Based on this value, different

initialization settings can be selected. The bits can be used for any application-specific definitions.
• Since the DTS_SEMAPHORE register is cleared when the tool reads the current value, the tool should perform all

necessary initialization before reading this register. The application software can then check that the DTS_SEMAPHORE
register was cleared by the tool. This is done to determine whether it is safe to start using it for its intended raster trigger
semaphore function.

• In addition, an optional handshake from the CPU could be used to inform the tool that the user software has detected that
the tool is attached and that the CPU has performed the proper initialization for the tool by writing a predefined value to
the DTS Semaphore register. (The example shown in the figure above uses 0xAAAA_AAAA — all A's was used since
it is unrealistic that sixteen channels could be enabled very quickly after a startup that follows a reset.)

Tool

Reset
Negated

Enable
DTS

0xFFFFFFFF

0x00000000 0x12345678

Write Startup
Value

Read
Semaphore

0x00000000

Verify

Read
Sync
Value

EVTO
Asserts

0x000000000xAAAAAAAA

Write
Sync
Value

0xFFFFFFFF

Initialize
Application

Raster
Task

0x0

EVTO
Asserts

Acquisition
Trigger

0x0100

Initialization Synchronization Acquisition

Core

Register

Register

Nexus/JTAG
EVTO

Asserts

Semaphore

Startup

EVTO
Negates

EVTO
Negates

EVTO
Negates

Tool
Initialization

Detect Tool
Presence

Figure 5. DTS usage overview

The acquisition phase is described in the next section.

4.2 Trigger-based acquisition
The raster trigger semaphore function is normally used to enable up to thirty-two signals from the application software to be
detected by an external tool. A raster trigger informs the tool that information (for example, calibration data measurements) is
available from the user application. It is assumed that the tool knows the meaning and requirements of each of the defined trigger
rasters. An example use is as follows:

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
Freescale Semiconductor, Inc.8

Using the DTS module



1. An application generates data measurements at some defined time. The values are then stored in a predefined memory
address for that trigger. The bit for the particular raster trigger is set in the DTS_SEMAPHORE register.

2. The bit set in the DTS Semaphore register causes the EVTO (DTO) pin to be asserted (low).
3. When the tool detects EVTO to be asserted, the tool reads the DTS_SEMAPHORE register (which clears all bits in the

register). The tool then processes each of the raster triggers that were set and transfers all data measurements for each of
the triggered "channels."

4. One example of handling the trigger raster is that the tool reads data at an address that has been defined in memory for
that raster trigger. The data could be any number of variables (and any size) as defined by the application software. Possible
data measurements could include analog-to-digital converter values from sensors, such as oxygen level, or even digital
values, such as wheel speed calculation or spark actual dwell time.

5. If multiple bits have been set, then the tool should process the other rasters that have been set in the DTS_SEMAPHORE
register.

The CPU application software should perform a "blind" write to the DTS_SEMAPHORE register of the bits (set the bits) that
represent the trigger rasters that are available.

/**************************************************************************/
/* Example setting DTS_Semaphore register.                                */
/**************************************************************************/
DTS.SEMAPHORE.R = 0x00000100; /* set semaphore trigger 8 */

NOTE
A read/modify/write operation should not be used since it is possible that the tool could
read (which clears the register) while the modify operation is being performed. By writing
ones only to the desired bits, this preserves any clear that occurs, but sets the desired bits
(since the CPU can never clear any bit in the DTS_SEMAPHORE register).

Appendix A Development Trigger Semaphore header file
The code listing below shows the header file information for the Development Trigger Semaphore module.

/**************************************************************************/
/* FILE NAME: MPC564xA_DTS.h COPYRIGHT (c) Freescale 2010 */

/* VERSION:  0.0                                  All Rights Reserved     */
/*                                                                        */
/* DESCRIPTION:                                                           */
/* This file contains all of the register and bit field definitions for   */
/* MPC564xA DTS module.                                          */
/*========================================================================*/
/* UPDATE HISTORY                                                         */
/* REV      AUTHOR      DATE       DESCRIPTION OF CHANGE                  */
/* ---   -----------  ---------    ---------------------                  */
/* 0.0   R. Dees      03/JAN/10    Initial version.                       */
/**************************************************************************/

/**************************************************************************/
/*                     MODULE : Development Trigger Semaphore Module      */
/**************************************************************************/

    struct DTS_tag {
        union {
            vuint32_t R;
            struct {
                vuint32_t RSRVD:31;        /*  */
                vuint32_t DTS_EN:1; /* Enable for the DTS Module */
            } B;
        } ENABLE;                /* DTS_ENABLE @BaseAddress */

        union 
        {
        vuint32_t R;
            struct {
                vuint32_t AD31:1;       /* Startup register MSB */
                vuint32_t AD30:1;       /* */

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
9Freescale Semiconductor, Inc.

Using the DTS module



                vuint32_t AD29:1;       /* */
                vuint32_t AD28:1;       /* */
                vuint32_t AD27:1;       /* */
                vuint32_t AD26:1;       /* */
                vuint32_t AD25:1;       /* */
                vuint32_t AD24:1;       /* */
                vuint32_t AD23:1;       /* */
                vuint32_t AD22:1;       /* */
                vuint32_t AD21:1;       /* */
                vuint32_t AD20:1;       /* */
                vuint32_t AD19:1;       /* */
                vuint32_t AD18:1;       /* */
                vuint32_t AD17:1;       /* */
                vuint32_t AD16:1;       /* */
                vuint32_t AD15:1;       /* */
                vuint32_t AD14:1;       /* */
                vuint32_t AD13:1;       /* */
                vuint32_t AD12:1;       /* */
                vuint32_t AD11:1;       /* */
                vuint32_t AD10:1;       /* */
                vuint32_t AD9:1;       /* */
                vuint32_t AD8:1;       /* */
                vuint32_t AD7:1;       /* */
                vuint32_t AD6:1;       /* */
                vuint32_t AD5:1;       /* */
                vuint32_t AD4:1;       /* */
                vuint32_t AD3:1;       /* */
                vuint32_t AD2:1;       /* */
                vuint32_t AD1:1;       /* */
                vuint32_t AD0:1;       /* Startup Register LSB */
            } B;
        } STARTUP;                /* DTS_STARTUP @BaseAddress + 0x4*/

        union 
        {
        vuint32_t R;
            struct {
                vuint32_t ST31:1;       /* Semaphore register MSB */
                vuint32_t ST30:1;       /* */
                vuint32_t ST29:1;       /* */
                vuint32_t ST28:1;       /* */
                vuint32_t ST27:1;       /* */
                vuint32_t ST26:1;       /* */
                vuint32_t ST25:1;       /* */
                vuint32_t ST24:1;       /* */
                vuint32_t ST23:1;       /* */
                vuint32_t ST22:1;       /* */
                vuint32_t ST21:1;       /* */
                vuint32_t ST20:1;       /* */
                vuint32_t ST19:1;       /* */
                vuint32_t ST18:1;       /* */
                vuint32_t ST17:1;       /* */
                vuint32_t ST16:1;       /* */
                vuint32_t ST15:1;       /* */
                vuint32_t ST14:1;       /* */
                vuint32_t ST13:1;       /* */
                vuint32_t ST12:1;       /* */
                vuint32_t ST11:1;       /* */
                vuint32_t ST10:1;       /* */
                vuint32_t ST9:1;       /* */
                vuint32_t ST8:1;       /* */
                vuint32_t ST7:1;       /* */
                vuint32_t ST6:1;       /* */
                vuint32_t ST5:1;       /* */
                vuint32_t ST4:1;       /* */
                vuint32_t ST3:1;       /* */
                vuint32_t ST2:1;       /* */
                vuint32_t ST1:1;       /* */
                vuint32_t ST0:1;       /* Semaphore Register LSB */
            } B;

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
Freescale Semiconductor, Inc.10

Using the DTS module



        } SEMAPHORE;                /* DTS_SEMAPHORE @BaseAddress + 0x8 */        
    };

/* Define instances of modules */
#define DTS     (*( volatile struct DTS_tag *)     0xC3F9C000)

Appendix B DTS system level block diagram
The figure below shows a combination of the DTS block diagram and the system device connections.

EVTO Pin

XBAR
Master
ID

P
B

R
ID

G
E

XBAR
Master
ID

N
P

C

XBAR
Slave
Port

Peripheral
Bus

E
V

TO
InputsSemaphore

Enable

Startup

32-Bit

DTS_EN

DTS Trigger Out
(DTO)

X
B

A
R

e200z4

eDMA

FlexRay

EBI

Figure B-1. MPC564xA system block diagram

Using the Development Trigger Semaphore Module , Rev. 0, 31/August/2010
11Freescale Semiconductor, Inc.



How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4048
Rev. 0, 31/August/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental      Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.


	Introduction
	Overview
	Development Trigger Semaphore module block diagram
	DTS device connections
	DTS register access
	MPC564xA crossbar ports and port master identifiers


	Development Trigger Semaphore module memory map
	DTS Enable register (DTS_ENABLE)
	DTS Startup register (DTS_STARTUP)
	DTS Semaphore register (DTS_SEMAPHORE)

	Using the DTS module
	Trigger initialization and synchronization
	Trigger-based acquisition

	Appendix A: Development Trigger Semaphore header file
	Appendix B: DTS system level block diagram



