
1 Introduction
ADC converts an input analog voltage (or current) to a digital
number proportional to the magnitude of voltage (or current).

This document describes a driver for analog-to-digital converter
(ADC), allowing users the customization of all the possible
configurations for this peripheral.

The software architecture is designed to provide seamless
migration between devices that posses the same peripheral
module.

In this application note, the driver interfaces are explained.
Various applications for MC9S08GW64 can make use of this
driver. The following sections describes the details and the steps
for creating an application using it.

1.1 ADC in MC9S08GW64
The MC9S08GW64 series includes two separately controllable
16-bit ADCs—ADC0 and ADC1. The 16-bit analog-to-digital
converter is a successive approximation ADC designed for
operation within the integrated microcontroller system-on-chip.

© 2010 Freescale Semiconductor, Inc.

Document Number: AN4169Freescale Semiconductor
Rev. 2, 2010Application Note

ADC Driver for MC9S08GW64
Tanya Malikby:
Microcontroller Solutions Group
Noida
India

Contents
Introduction...11

ADC in MC9S08GW64................................11.1

ADC clock gating..21.2

Signal description..31.3

ADC channels ..31.4

Features...52

Hardware trigger ..52.1

Hardware average function...........................52.2

Modes of operation.......................................52.3

Self calibration..52.4

Software driver description...................................53

gw64_adc.h...63.1

gw64_adc.c...83.2

Interrupt Subroutines...................................143.3

Assumptions..154

Use Case..155

Conclusion...166

References...167

1.2 ADC clock gating
The bus clock to each ADC can be gated on or off using the SCGC1_ADC0 / SCGC1_ADC1 bits of “System clock gating
control 1 register”. On reset the clock is gated to the ADC modules.

Table 1. SCGC1 Register Field Description

DescriptionField

ADC1 Clock Gate Control—This bit controls the
clock gate to the ADC1 module.

0 Bus clock to the ADC1 module is disabled.

1 Bus clock to the ADC1 module is enabled.

7

ADC1

ADC0 Clock Gate Control—This bit controls the
clock gate to the ADC0 module.

0 Bus clock to the ADC0 module is disabled.

1 Bus clock to the ADC0 module is enabled.

6

ADC0

KBI Clock Gate Control—This bit controls the
clock gate to the KBI module.

0 Bus clock to the KBI module is disabled.

1 Bus clock to the KBI module is enabled.

5

KBI

IIC Clock Gate Control—This bit controls the clock
gate to the IIC module.

0 Bus clock to the IIC module is disabled.

1 Bus clock to the IIC module is enabled.

4

IIC

SCI3 Clock Gate Control—This bit controls the
clock gate to the SCI3 module.

0 Bus clock to the SCI3 module is disabled.

1 Bus clock to the SCI3 module is enabled.

3

SCI3

SCI2 Clock Gate Control—This bit controls the
clock gate to the SCI2 module.

0 Bus clock to the SCI2 module is disabled.

1 Bus clock to the SCI2 module is enabled.

2

SCI2

SCI1 Clock Gate Control—This bit controls the
clock gate to the SCI1 module.

0 Bus clock to the SCI1 module is disabled.

1 Bus clock to the SCI1 module is enabled.

1

SCI1

SCI0 Clock Gate Control—This bit controls the
clock gate to the SCI0 module.

0 Bus clock to the SCI0 module is disabled.

1 Bus clock to the SCI0 module is enabled.

0

SCI0

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.2

Introduction

1.3 Signal description
Table 2. Signal Description

FunctionName

Differential analog channels inputDADP0-DADP1

Differential analog channels inputDADM0-DADM1

Single ended analog channel inputsAD2-AD14

External voltage reference highVREFH

External voltage reference lowVREFL

Analog power supplyVDDA

Analog groundVSSA

1.3.1 Differential and single ended analog channels
The ADC module supports up to two pairs of differential inputs and 14 single-ended inputs. Each differential pair requires two
inputs (DADP0 / DADM0) and (DADP1 / DADM1). The ADC also requires four supply / reference / ground connections.

1.3.2 Analog power (VDDA)

The ADC analog portion uses VDDA as its power connection. In some packages, VDDA is connected internally to VDD. If

externally available, connect the VDDA pin to the same voltage potential as VDD.

1.3.3 Analog ground (VSSA)

The ADC analog portion uses VSSA as its ground connection. In some packages, VSSA is connected internally to VSS. If externally

available, connect the VSSA pin to the same voltage potential as VSS.

1.3.4 Voltage reference
Voltage reference can have two values—voltage reference select high (VREFSH) and voltage reference select low (VREFSL).

VREFSH is the high reference voltage for the converter. The ADC can be configured to accept one of three voltage reference

pairs for VREFSH. The three pairs are external (VREFH and VREFL), alternate (VALTH and VALTL) and the internal band gap (VBGH

and VBGL). These voltage references are selected using the REFSEL bits in the ADCSC2 register.

VREFSL is the low reference voltage for the converter. The ADC can be configured to accept one of three voltage reference pairs

for VREFSL. The three pairs are external (VREFH and VREFL), alternate (VALTH and VALTL) and the internal bandgap (VBGH and

VBGL). These voltage references are selected using the REFSEL bits in the ADCSC2.

1.4 ADC channels
Single ended analog channels

ADC Driver for MC9S08GW64, Rev. 2, 2010
3Freescale Semiconductor, Inc.

Introduction

There are 14 single ended analog channels. A single-ended input is selected for conversion through the ADCH channel select
bits when the DIFF bit in the ADCSC1 register is low, that is, when differential mode is disabled.

Differential analog channels

There are two pairs of differential channels. Each differential analog input is a pair of external pins (DADP1/DADM1) and
(DADP0/DADM0). A differential input is selected for conversion through the ADCH channel select bits when the DIFF bit in
the ADCSC1 register bit is high, that is, when differential mode is enabled.

Table 3. ADC Channel Assignments

Input function of ADC1Input function of
ADC0

ADCH

DADM1(As Single Ended)DADP0/DADM00000

DADP1/DADM1DADM0 (As Single
Ended)

0001

NA1AD20010

AD3NA0011

ReservedAD4200100

NAAD500101

VREFHVLL100110

VREFLVCAP100111

AD6NA01000

AD7NA01001

NAVLL201010

ReservedVCAP201011

ReservedAD801100

ReservedAD901101

ReservedReserved01110

VREF OUT InternalVREF OUT Internal01111

AD11NA10000

AD10PMC VREF 1.2V10001

NANA10010

NANA10011

PRACMP0 DAC OUTAD1210100

PRACMP1 DAC OUTAD1310101

AD15NA10110

AD14NA10111

PRACMP2 DAC OUTNA11000

NANA11001

Temperature SensorTemperature Sensor11010

BandgapBandgap11011

NANA11100

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.4

Introduction

Input function of ADC1Input function of
ADC0

ADCH

NANA11101

NANA11110

NANA11111

1 The unused channels are connected to VREFL

2 Users must not select AD4 – AD15 as a channel if VLL3 > VDDA

2 Features
The following section describes the ADC features.

2.1 Hardware trigger
The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled when the ADTRG bit
is set and a hardware trigger select event (ADHWTSn) has occurred. When the ADHWT source is available and hardware
trigger is enabled (ADTRG=1), a conversion is initiated on the rising edge of the ADHWT after a hardware trigger select event
(ADHWTSn) has occurred.

The hardware triggers of ADC0 and ADC1 are provided from Programmable Delay Block (PDB) channel 1 and channel 2
respectively, when ADTRG is set in ADC0SC2 / ADC1SC2.

2.2 Hardware average function
Hardware averaging is available in both the ADCs. The number of samples to be taken for averaging can be 4, 8, 16, or 32
samples and is configurable.

2.3 Modes of operation
ADC can operate in both differential and single ended mode. It can operate in differential 16-bit, 13-bit, 11-bit, and 9-bit modes,
or single-ended 16-bit, 12-bit, 10-bit, and 8-bit modes.

2.4 Self calibration
The ADC contains a self-calibration function that is required to achieve the specified accuracy. Calibration must be run before
a conversion is initiated. The calibration function sets the offset calibration value and the plus-side and minus-side calibration
values. The offset calibration value is automatically stored in the ADC Offset Correction Registers.

Prior to calibration, the user must configure the ADCs clock source and frequency, low power configuration, voltage reference
selection, sample time and the high speed configuration according to the application’s clock source availability and needs.

3 Software driver description
The ADC driver is provided as C code files. You can add these files to your applications. With the integration of ADC driver,
you can call ADC driver API functions to use the ADC functionality in your application.

ADC Driver for MC9S08GW64, Rev. 2, 2010
5Freescale Semiconductor, Inc.

Features

There are two files associated with the ADC driver.

• gw64_adc.h: It contains all the high level API functions declarations and the various macros to be used in the functions.
It also defines the structure of the various ADC registers.

• gw64_adc.c: It is the main file for the driver. It contains the various high level API definitions.

NOTE
The ADC driver code is available in a zipped file named AN4169SW.zip

3.1 gw64_adc.h
The macros provided are passed as arguments to the respective functions to get the required configuration. The next section in
this document describes it in more detail.

Table 4. Macros used for ADC initialization

DescriptionMacro

Used to select between the two ADCs. Both the ADCs can be used simultaneously for
conversion.

#define ADC_0
#define ADC_1

Used to select the clock used for both the ADC modules. The ADC clock can be selected
between bus clock, bus clock/2, alternate clock, or asynchronous clock.

#define ADICLK_BUS
#define ADICLK_BUS_2
#define ADICLK_ALTCLK
#define ADICLK_ADACK

Used to select the divide ratio of the ADC clock. The ADC clock can be divide by 1, 2, 4,
or 8.

#define ADIV_1
#define ADIV_2
#define ADIV_4
#define ADIV_8

Used to select the number of samples for hardware averaging.
These macros only make sense when hardware averaging is enabled.NOTE:

#define ADC_AVG_SAMPLE_4
#define ADC_AVG_SAMPLE_8
#define ADC_AVG_SAMPLE_16
#define ADC_AVG_SAMPLE_32

Used to select between software trigger or hardware trigger.#define ADTRG_SW
#define ADTRG_HW

Table 5. Macros used to select the reference voltage for the ADC

DescriptionMacro

Default voltage reference pin pair (External pins VREFH and VREFL).#define ADC_REFSEL_EXT

Alternate reference pair (VALTH and VALTL)#define ADC_REFSEL_ALT

Internal bandgap reference and associated ground reference (VBGH and VBGL).#define ADC_REFSEL_BG

Reserved - Selects default voltage reference (VREFH and VREFL) signals.#define ADC_REFSEL_RES

Table 6. Macros used in calibration function to check between the options

DescriptionMacro

Checks if the calibration is act-
ive.

#define ADC_CAL_BE-
GIN

Checks if the calibration is over.#define ADC_CAL_OFF

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.6

Software driver description

DescriptionMacro

Checks if the calibration is
completed normally.

#define
ADC_CALF_NORMAL

Checks if the calibration is
failed.

#define
ADC_CALF_FAIL

Table 7. Macros used to select the various options for compare

DescriptionMacro

Compares if the converted value stored in data register is less than the specified
value.

#define ADC_COMPARE_LESS

Compares if the converted value stored in data register is greater than the
specified value.

#define ADC_COMPARE_GREATER

Comparison within the specified range is disabled.#define ADC_COMPARE_RANGE_DISABLED

Comparison within the specified range function is enabled.#define ADC_COMPARE_RANGE_ENABLED

Table 8. Macros to select between the various modes of conversion

DescriptionMacro

It selects 8-bit conversion mode when Single ended conversion occurs and 9-bit signed mode
when differential mode is used.

#define ADC_MODE_8

It selects 12-bit conversion mode when Single ended conversion occurs and 13-bit signed
mode when differential mode is used.

#define ADC_MODE_12

It selects 10-bit conversion mode when Single ended conversion occurs and 11-bit signed
mode when differential mode is used.

#define ADC_MODE_10

It selects 16-bit conversion mode when Single ended conversion occurs and 16-bit signed
mode when differential mode is used.

#define ADC_MODE_16

Used to select between continuous or single ADC conversion.#define ADCO_SINGLE
#define ADCO_CONTINUOUS

Used to select between Channel A or Channel B for conversion.#define ADC_CHANNEL_A
#define ADC_CHANNEL_B

Used for enabling or disabling the ADC conversion interrupt.#define ADC_AIEN_OFF
#define ADC_AIEN_ON

Used to select between differential mode or singled ended mode conversion.#define ADC_SINGLE_MODE
#define ADC_DIFF_MODE

ADC Driver for MC9S08GW64, Rev. 2, 2010
7Freescale Semiconductor, Inc.

Software driver description

Table 9. Macros used to select the channel for conversion

DescriptionMacro

These channels are distributed between the two ADCs.They are explained in ADC channels.#define ADC_CHANNEL_AD0
#define ADC_CHANNEL_AD1
#define ADC_CHANNEL_AD2
#define ADC_CHANNEL_AD3
#define ADC_CHANNEL_AD4
#define ADC_CHANNEL_AD5
#define ADC_CHANNEL_AD6
#define ADC_CHANNEL_AD7
#define ADC_CHANNEL_AD8
#define ADC_CHANNEL_AD9
#define ADC_CHANNEL_AD10
#define ADC_CHANNEL_AD11
#define ADC_CHANNEL_AD12
#define ADC_CHANNEL_AD13
#define ADC_CHANNEL_AD14
#define ADC_CHANNEL_AD15

Table 10. Macros to read the analog values of the signal read from the specific ADC

DescriptionMacro

It reads the data from channel A of ADC0 and returns the analog value in float.#define Read_ADC0_A_AnalogValue ()

It reads the data from channel B of ADC0 and returns the analog value in float.#define Read_ADC0_B_AnalogValue()

It reads the data from channel A of ADC1 and returns the analog value in float.#define Read_ADC1_A_AnalogValue()

It reads the data from channel B of ADC1 and returns the analog value in float.#define Read_ADC1_B_AnalogValue()

Table 11. Macro to set the values for VREFH and VREFL

DescriptionMacro

Used to set the values for VREFH and VREFL for conversion of the digital data read from ADC into

analog value.

The conversion includes the calculation Analog data = (Digital data / (2^n -1)) * (VREFH – VREFL).

#define VREFH 3.3
#define VREFL 0

3.2 gw64_adc.c
It contains the definition of functions to configure and use the various features of ADC.

3.2.1 ADC_Init ()
Description:

This function initializes the specific ADC interface by configuring the internal registers. It is also used to set the ADC clock,
the ADC reference clock, and modes of operation.

Prototype:

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.8

Software driver description

void ADC_Init(unsigned char ADC_Index, unsigned char ADC_Clk_Select, unsigned char ADC_Clk_Div,
 unsigned char ADC_Mode, unsigned char Trigger_Select, unsigned char
Continuous_Conversion_Select, unsigned char Volt_Ref_Select)

Input Parameters:
• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1
• ADC_Clk_Select—Selects the clock for ADC using the macros ADICLK_BUS, ADICLK_BUS_2, ADICLK_ALTCLK,

ADICLK_ADACK
• ADC_Clk_Div—Selects the divide factor for ADC clock using the macros ADIV_1, ADIV_2, ADIV_4, ADIV_8
• ADC_Mode—Selects the bit conversion mode of ADC using the macros ADC_MODE_8, ADC_MODE_12,

ADC_MODE_10, ADC_MODE_16
• Trigger_Select—Selects between software / hardware trigger mode using the macros ADTRG_SW, ADTRG_HW
• Continuous_Conversion_Select—Selects between the single / continuous conversion mode using the macros

ADCO_SINGLE, ADCO_CONTINUOUS
• Volt_Ref_Select—Selects the reference voltage for ADC using the macros ADC_REFSEL_EXT, ADC_REFSEL_ALT

ADC_REFSEL_BG, ADC_REFSEL_RES

Output Parameters:

None

Example:

ADC_Init(ADC_0,ADICLK_BUS,ADIV_1,ADC_MODE_16,ADTRG_HW, ADCO_SINGLE,ADC_REFSEL_EXT)

Initializes ADC0 with bus clock as ADC clock, 16-bit mode, hardware trigger enabled, single conversion and external reference
voltage.

3.2.2 ADC_Channel_Config ()
Description:

This function is used to select between the Channel A or Channel B of the selected ADC. It also configures the channel properties
such as differential mode / single ended mode and enabling or disabling the interrupt.

Prototype:

void ADC_Channel_Config(unsigned char ADC_Index, unsigned char Channel_Index, unsigned char
Interrupt_Enable, unsigned char Diff_Mode_Sel)

Input Parameters:

• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1
• Channel_Index—Selects between the Channel A / Channel B of the selected ADC using the macros ADC_CHANNEL_A,

ADC_CHANNEL_B
• Interrupt_Enable—Enables or disables the conversion complete interrupt by using the macros ADC_AIEN_OFF,

ADC_AIEN_ON
• Diff_Mode_Sel—Selects between differential / single ended mode using the macros ADC_SINGLE_MODE/

ADC_DIFF_MODE

Output Parameters:

None

Example:

ADC_Channel_Config(ADC_0,ADC_CHANNEL_A,ADC_AIEN_OFF, ADC_SINGLE_MODE)

Configures Channel A for ADC0 with conversion complete interrupt disabled and single ended conversion mode enabled.

ADC Driver for MC9S08GW64, Rev. 2, 2010
9Freescale Semiconductor, Inc.

Software driver description

3.2.3 ADC_Compare_Enable ()
Description:

This function is used to enable the compare function of the selected ADC and configures the various compare properties.

Prototype:

void ADC_Compare_Enable(unsigned char ADC_Index, unsigned char
Compare_GreaterThan_Enable,unsigned char Compare_Range_Enable, unsigned int
Compare_Value1,unsigned int Compare_Value2)

Input Parameters:
• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1
• Compare_GreaterThan_Enable—Compares the result is Greater than or less than the specific value by using the macros

ADC_COMPARE_LESS, ADC_COMPARE_GREATER
• Compare_Range_Enable—Enables or disables the comparison of the result within the range specified using the macros

ADC_COMPARE_RANGE_ENABLED, ADC_COMPARE_RANGE_DISABLED
• Compare_Value1—Sets the lower compare value of the range
• Compare_Value2—Sets the higher compare value of the range

Output Parameters:

None

Example:

ADC_Compare_Enable (ADC_0, ADC_COMPARE_LESS, ADC_COMPARE_RANGE_ENABLED,0x22, 0xFF)

Enables the Compare function for ADC0 within the range 0x22 and 0xFF. The conversion complete flag is set only when the
converted value is within the specified range.

3.2.4 ADC_Compare_Disable ()
Description:

This function is used to disable the compare function for the selected ADC.

Prototype:

void ADC_Compare_Disable(unsigned char ADC_Index)

Input Parameters:
• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1

Output Parameters:

None

Example:

ADC_Compare_Disable(ADC_0)

Disables the compare function for the conversion taking place at ADC0.

3.2.5 ADC_Avg_Enable ()
Description:

This function is used to enable the hardware averaging for the selected ADC and select the number of samples for the hardware
averaging.

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.10

Software driver description

Prototype:

void ADC_Avg_Enable(unsigned char ADC_Index,unsigned char Avg_Sample_Select)

Input Parameters:
• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1
• Avg_Sample_Select—Selects the number of samples for the hardware averaging using the macros ADC_AVG_SAMPLE_4,

ADC_AVG_SAMPLE_8, ADC_AVG_SAMPLE_16, ADC_AVG_SAMPLE_32

Output Parameters:

None

Example:

ADC_Avg_Enable(ADC_0, ADC_AVG_SAMPLE_32)

Enables the hardware averaging for ADC0 with 32 samples taken for averaging.

3.2.6 ADC_Avg_Disable ()
Description:

This function is used to disable the hardware averaging function for the selected ADC.

Prototype:

void ADC_Avg_Disable(unsigned char ADC_Index)

Input Parameters:
• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1

Output Parameters:

None

Example:

ADC_Avg_Disable(ADC_0)

Disables the hardware averaging for the conversion taking place at ADC0.

3.2.7 ADC_Diff_Channel_Select ()
Description:

This function is used to select the differential channel for conversion. DADP0 / DADM0 is selected by selecting ADC0 in the
function and DADP1 / DADM1 is selected by selecting ADC1 in the function.

Prototype:

unsigned char ADC_Diff_Channel_Select(unsigned char ADC_Index, unsigned char Channel_Index)

Input Parameters:

• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1
• Channel_Index—Selects between the Channel A / Channel B of the selected ADC using the macros ADC_CHANNEL_A,

ADC_CHANNEL_B

Output Parameters:

None

Example:

ADC Driver for MC9S08GW64, Rev. 2, 2010
11Freescale Semiconductor, Inc.

Software driver description

ADC_Diff_Channel_Select(ADC0, ADC_CHANNEL_A)

Selects the differential channel available on ADC0, that is, DADP0 / DADM0 and configured channel A for conversion.

3.2.8 ADC_Single_Channel_Select ()
Description:

This function is used to select the single ended channel among the 16 channels available (including the differential channels
which can be used as single ended as well).

Prototype:

unsigned char ADC_Single_Channel_Select(unsigned char Channel_Index,unsigned char Channel)

Input Parameters:
• Channel_Index—Selects between the Channel A / Channel B of the selected ADC using the macros ADC_CHANNEL_A,

ADC_CHANNEL_B
• Channel—Selects the channel for ADC conversion using the macros ADC_CHANNEL_AD0, ADC_CHANNEL_AD1

...... ADC_CHANNEL_AD15

Output Parameters:

None

Example:

ADC_Single_Channel_Select(ADC_CHANNEL_A, ADC_CHANNEL_AD2)

Selects the single ended channel AD2 available in ADC0 for conversion.

3.2.9 ADC_Cal ()
Description:

This function is used to calibrate the selected ADC and store the calibrated values in respective gain and offset registers.

NOTE
This function should be always called in the beginning after initializing the ADC. All the
conversions should be done after the calibration.

Prototype:

unsigned char ADC_Cal(unsigned char ADC_Index)

Input Parameters:

ADC_Index —Selects the ADC to be initiated using the macros ADC_0, ADC_1

Output Parameters:

None

Example:

ADC_Cal(ADC_0)

It calculates the ADC gain and offset and stores it in respective ADC registers.

3.2.10 Read_ADC0_A ()
Description:

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.12

Software driver description

This function reads and stores the digital value of data from channel A of ADC_0.

Prototype:

void Read_ADC0_A(unsigned int* Data)

Input Parameters:
• Data—Data read is stored in the address pointed by this pointer passed

Output Parameters:

None

Example:

unsigned int value
Read_ADC0_A(&value)

Reads the data from channel A of ADC_0 and stores it in the variable ‘value’.

3.2.11 Read_ADC0_B ()
Description:

This function reads and stores the digital value of data from channel B of ADC_0.

Prototype:

void Read_ADC0_B(unsigned int* Data)

Input Parameters:
• Data—Data read is stored in the address pointed by this pointer passed

Output Parameters:

None

Example:

unsigned int value
Read_ADC0_B(&value)

Reads the data from channel B of ADC_0 and stores it in the variable ‘value’.

3.2.12 Read_ADC1_A ()
Description:

This function reads and stores the digital value of data from channel A of ADC_1.

Prototype:

void Read_ADC1_A(unsigned int* Data)

Input Parameters:
• Data—Data read is stored in the address pointed by this pointer passed

Output Parameters:

None

Example:

unsigned int value
Read_ADC1_A(&value)

ADC Driver for MC9S08GW64, Rev. 2, 2010
13Freescale Semiconductor, Inc.

Software driver description

Reads the data from channel A of ADC_1 and stores it in the variable ‘value’.

3.2.13 Read_ADC1_B ()
Description:

This function reads and stores the digital value of data from channel B of ADC_1.

Prototype:

void Read_ADC1_B(unsigned int* Data)

Input Parameters:
• Data—Data read is stored in the address pointed by this pointer passed

Output Parameters:

None

Example:

unsigned int value
Read_ADC1_B(&value)

Reads the data from channel B of ADC_1 and stores it in the variable ‘value’.

3.2.14 Read_ADC_AnalogValue ()
Description:

This function reads the digital value from the specified ADC channel. It converts the digital value into analog value depending
upon the ADC reference voltage.

Prototype:
• ADC_Index—Selects the ADC to be initiated using the macros ADC_0, ADC_1
• Channel_Index—Selects between the Channel A / Channel B of the selected ADC using the macros ADC_CHANNEL_A,

ADC_CHANNEL_B

Output Parameters:

Analog value of the data read (in float)

Example:

float value
value = Read_ADC_AnalogValue(ADC_0, ADC_CHANNEL_A)

Stores the analog value of the data at channel A of ADC_0.

3.3 Interrupt Subroutines
If the conversion complete interrupt is enabled then the interrupt subroutine for the respective ADC is executed. There are two
different interrupts for the two ADCs. Thus there are two interrupt subroutines as follows:

3.3.1 ADC0_ServiceInterrupt ()
Description:

This subroutine is called when the conversion complete interrupt occurs for ADC_0. Status bits are checked to find on which
channel conversion has taken place and it stores the data in the global variable ADC_Data_A / ADC_Data_B.

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.14

Software driver description

Prototype:

void interrupt VectorNumber_Vadc0 ADC0_ServiceInterrupt(void)

Input Parameters:

None

Output Parameters:

None

3.3.2 ADC1_ServiceInterrupt()
Description:

This subroutine is called when the conversion complete interrupt occurs for ADC_1. Status bits are checked to find on which
channel conversion has taken place and it stores the data in the global variable ADC_Data_A / ADC_Data_B.

Prototype:

void interrupt VectorNumber_Vadc1 ADC1_ServiceInterrupt(void)

Input Parameters:

None

Output Parameters:

None

4 Assumptions
The descriptions in this document assumes the person reading it has full knowledge of all the configuration registers of all the
blocks in MC9S08GW64, especially LCD and Internal Clock Source (ICS) blocks.

5 Use Case
Assuming that the clock settings are done and the bus clock is running on 20MHz. Include the file adc_flowtron.h in the

main file and perform the following steps.
1. Declare an unsigned int variable data and initialize the respective ADC with the required configuration

unsigned int data;
ADC_Init(ADC_0,ADICLK_BUS, ADIV_1, ADC_MODE_12, ADTRG_SW, ADCO_SINGLE,
 ADC_REFSEL_EXT);

2. Calibrate the ADC_0

ADC_Cal(ADC_0);

3. Select single channel AD2 and select the channel for conversion

ADC_Single_Channel_Select(ADC_CHANNEL_A, ADC_CHANNEL_AD2);

4. Read the data from AD2 and store it in a variable

Read_ADC0_A(&data);

ADC Driver for MC9S08GW64, Rev. 2, 2010
15Freescale Semiconductor, Inc.

Assumptions

6 Conclusion
This driver provides a software base for applications that needs the implementation of ADC.

7 References
MC9S08GW64/MC9S08GW32 Reference Manual(document: MC9S08GW64RM)

ADC Driver for MC9S08GW64, Rev. 2, 2010
Freescale Semiconductor, Inc.16

Conclusion

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4169
Rev. 2, 2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

	Introduction
	ADC in MC9S08GW64
	ADC clock gating
	Signal description
	Differential and single ended analog channels
	Analog power (VDDA)
	Analog ground (VSSA)
	Voltage reference

	ADC channels

	Features
	Hardware trigger
	Hardware average function
	Modes of operation
	Self calibration

	Software driver description
	gw64_adc.h
	gw64_adc.c
	ADC_Init ()
	ADC_Channel_Config ()
	ADC_Compare_Enable ()
	ADC_Compare_Disable ()
	ADC_Avg_Enable ()
	ADC_Avg_Disable ()
	ADC_Diff_Channel_Select ()
	ADC_Single_Channel_Select ()
	ADC_Cal ()
	Read_ADC0_A ()
	Read_ADC0_B ()
	Read_ADC1_A ()
	Read_ADC1_B ()
	Read_ADC_AnalogValue ()

	Interrupt Subroutines
	ADC0_ServiceInterrupt ()
	ADC1_ServiceInterrupt()

	Assumptions
	Use Case
	Conclusion
	References

