
Freescale Semiconductor
Application Note

© 2011 Freescale Semiconductor, Inc.

The MSC8157 family allows you to use an I2C EEPROM to
to initialize the DSP during the reset and boot phases and
run-time. During the initialization stages, the EEPROM can
be used for multiple purposes.

This document provides guidance for setting up a system in
which a (shared) EEPROM is used. It describes the
situations in which an EEPROM can be used and examines
the EEPROM contents and how the boot program parses and
executes based on these contents.

NOTE

MSC8157 family refers to the MSC8157,
MSC8157E, MSC8158, and MSC8158E
DSPs.

This document assists system engineers to use a shared I2C
EEPROM to initialize multiple MSC8157 DSPs.

AN4205
Rev. 0, 11/2010

Contents
1. Reset Configuration Word (RCW) Basics 2
1.1. EEPROM Initialization Requirements 3
1.2. Reset Master . 4
1.3. Reset Slave . 5
2. Other Boot Ports . 5
2.1. Support for Boot Over the Serial RapidIO Interface . 5
2.2. Support for Boot Over Ethernet 6
3. Boot Over I2C . 6
4. Boot Patch . 7
5. I2C Bus Arbitration . 7

Using an I2C EEPROM During
MSC8157 Initialization

Using an I2C EEPROM During MSC8157 Initialization, Rev. 0

2 Freescale Semiconductor

Reset Configuration Word (RCW) Basics

1 Reset Configuration Word (RCW) Basics
The MSC8157 can read multiple RCWs from a shared EEPROM. During the power-on reset (PORESET)
sequence, the MSC8157 DSP reads its RCW. The RCW consists of two 32-bit values stored in the Reset
Configuration Word Low Register (RCWLR) and the Reset Configuration Word High Register
(RCWHWR). The RCW defines the boot and system information that configures the system, selects the
boot port, and stores other values sampled during reset.

The MSC8157 allows multiple sources to provide the RCW, including:

• Default values. You can use one of two default RCW values as appropriate for the system. While
providing the least flexibility, this option releases the user from providing an I2C EEPROM or
external logic, such as a field programmable gate array (FPGA) or complex programmable logic
device (CPLD) to drive various pins with specific values during the PORESET sequence.

• External inputs. These pins can be used in two ways:

— Reduced mode. The MSC8157 has 22 pins that can drive values for a subset of the 64-bit RCW.
When these values are used, all the other bits have predefined values. This option, while more
flexible than using the default values, still releases the user from providing an I2C EEPROM.
However, it does not allow you to set all 64 bits in the RCW.

— Multiplexed mode. This mode uses 16 of the RC pins and the RCS_LSEL pins to enable
loading of the RCW bits in four lanes of 16-bits each. This mode allows you to set all 64 bits
in the RCW without using and EEPROM.

• I2C EEPROM. The MSC8157 has dedicated hardware that can access an I2C EEPROM at a
predefined address to read the RCW. This option allows you to set all 64 bits in the RCW.

To choose among these three options, you must set the RCW_SRC[2–0] inputs as indicated in Table 1.
The RCW_SRC value is sampled into the reset status register (RSR).

When RCW_SRC is configured as 010, the RCW is read from an I2C EEPROM. To support this feature,
two more concepts are introduced:

• Reset master. The first MSC8157 to be configured out of PORESET is the reset master. During its
PORESET interval, it reads its RCW from the EEPROM at address 0x50. Then, it starts executing
its boot code and discovers that it is the reset master and starts executing as described in
Section 1.2, “Reset Master” on page 4.

• Reset slave. The reset slave is taken out of PORESET by the reset master and then accesses the
reset master, which emulates an EEPROM at address 0x57.

Table 1. RCW_SRC Values

RCW_SRC[2–0] Description

000 RCW_SRC[0:2] 000 Multiplexed external RCW loading. The RCW is driven by external logic on RC[15:0].

The RCS_LSEL signals select which bits should be driven on RC[15:0]. See Section 5.2.5.2 in the device
Reference Manual for details.

001 Reserved

010 Reset configuration word is loaded from an I2C EEPROM in 16-bit addressing mode.

011 Some bits of the reset configuration word are loaded from external pins and others by default.

Using an I2C EEPROM During MSC8157 Initialization, Rev. 0

Freescale Semiconductor 3

Reset Configuration Word (RCW) Basics

These two entities are required in a system because the MSC8157 reset hardware assumes that it is the sole
master on the I2C bus. As a result, as soon as the MSC8157 reset hardware finite state machine (FSM)
recognizes that it should access the EEPROM, it does so without verifying that the bus is free. The reset
master controls the access timing of the reset slaves so that each slave has the sole ownership of the I2C
while it reads its individual RCW.

The reset master is identified by the combination of two elements:

• During the PORESET sequence, its STOP_BS signal is pulled low.
• The RCWHR[RM] bit is set to 1, which indicates that the device is the initiator/master.

1.1 EEPROM Initialization Requirements
The following items are required for EEPROM initialization:

• For each EEPROM in the system, there must be at least one EEPROM master, which is also the
reset master (RCWHR[RM] = 1).

• For each EEPROM, there can be 0 or more reset slaves, each of which reads its RCW only from
the EEPROM but does not read data from it during the boot sequence. The number of reset slaves
is written as a single byte in address 0x18 of the EEPROM.

• For each EEPROM, there can be 0 or more EEPROM slaves, each of which reads its RCW from
the EEPROM and uses data only during the boot sequence. The number of EEPROM slaves is
written as a single byte in address 0x96 of the EEPROM.

• Every EEPROM slave must also be a reset slave.
• There may be up to 15 reset slaves per EEPROM. The following equation defines the limitations

on the number of slaves:
0 ≤ number of EEPROM slaves ≤ number of reset slaves ≤ 15 Eqn. 1

• The lowest-numbered reset slave must have a higher number than the highest-numbered EEPROM
slave (that is, EEPROM slaves are slaves 0–4 and reset slaves are slaves 5–12).

• EEPROM slaves must be numbered sequentially starting with 0.
• All devices connected to the same EEPROM must receive the PORESET signal together (that is,

no single device can proceed through the PORESET sequence without the others).
• For Multi-Device RCW only. The EEPROM master can have its HRESET asserted without the

reset slaves being in reset at the same time. Each reset slave can have its HRESET asserted without
the master being reset.

• For Multi-Device RCW and Boot Using I2C. If the EEPROM master has its HRESET asserted,
the EEPROM slaves must have their HRESET signals asserted as well. The EEPROM slaves can
have HRESET asserted without the master being reset. However, there must be external logic that
performs the actions that the master performs during its boot sequence. The logic can be
implemented using an FPGA or other implementation.

• During the entire system initialization process using a shared EEPROM, there should be no
unrelated I2C traffic on the bus.

Using an I2C EEPROM During MSC8157 Initialization, Rev. 0

4 Freescale Semiconductor

Reset Configuration Word (RCW) Basics

1.2 Reset Master
When PORESET is deasserted, the reset hardware reads RCW_SRC and STOP_BS. If the former
indicates that RCW is to be read using an EEPROM and the latter equals 0, the hardware accesses an
EEPROM at address 0x50. Table 2 shows the data to be read and the address at which it is read.

After the PORESET and HRESET signals are all deasserted, the cores start executing the boot code. Core
0, which is the core that performs the actual booting (see the device reference manual), reads both
RSR[RCW_SRC] and RCWHR[RM] to see if it is the reset master.

NOTE
See the device specific reference manual Section 6.1.5 for details on the reset master flow.

The reset master connects to the reset slaves STOP_BS signals using dedicated general-purpose
input/output (GPIO) pins. The number of pins actually driven during the boot process is a function of the
number of reset slaves (see Table 3). The GPIO signals are selected in the following order:

1. GPIO0—always used

2. GPIO1

3. GPIO2

4. GPIO3

5. GPIO21

Table 2. Reset Master in EEPROM

Address Value Use

0x00 0xAA Training sequence for the reset hardware
0x01 0x55
0x02 0xAA
0x03 0xFF Header expected by the reset hardware
0x04 0xFF
0x05 0xFF
0x06 RCWLR
0x07
0x08
0x09
0x0A 0xFF Header expected by the reset hardware
0x0B 0xFF
0x0C 0xFF
0x0D RCWHR
0x0E
0x0F
0x10
0x11 0x00 Header expected by the reset hardware.
0x12 0x00 Header expected by the reset hardware.
0x13 0x00 Header expected by the reset hardware.
0x14 0x00 Header expected by the reset hardware.
0x15 0x00 Header expected by the reset hardware.
0x16 0x00 Header expected by the reset hardware.
0x17 0xFF Header expected by the reset hardware.

Using an I2C EEPROM During MSC8157 Initialization, Rev. 0

Freescale Semiconductor 5

Other Boot Ports

When up to five slaves are connected directly, the reset master deasserts the GPIO signals in order, thus
directly pulling each of the slave STOP_BS signals low in sequence. After all the slaves finish reading
their RCWs, the reset master drives all the GPIO signals high and then releases them together.

When there are more than five slaves, the reset master drives the value of the reset slave to be released for
each slave (for example, for slave 0 of 12, GPIO[3–0] equals 0000) and external logic drives the STOP_BS
signal low for the specified slave. After all slaves finish reading their RCWs, the reset master drives all the
GPIO pins high and then releases them together. If there are eight slaves, even though they can be coded
using only 3 GPIO lines (000 to 111), the requirement for “release all slaves” code requires the use of four
GPIO lines. The external logic decodes the value on the GPIO pins and drives the slave STOP_BS signals
accordingly.

1.3 Reset Slave
The reset hardware samples the value of STOP_BS and RCW_SRC during the PORESET sequence. If the
RCW source is an EEPROM and STOP_BS is high, the MSC8157 is a reset slave.

The hardware waits until STOP_BS is pulled low and then accesses an EEPROM at address 0x57. This
address actually accesses the reset master. The reset slave expects exactly the same data flow as the reset
master from the EEPROM (see Table 2). When the reset slave finishes its reset phase and starts executing
the boot code, it reads the boot port (BPRT) from RCWHR. If both the BPRT and the RCW source indicate
an EEPROM, the reset slave waits until the reset master pull its STOP_BS high before trying to access the
EEPROM to load the boot code.

2 Other Boot Ports
When booting across the Ethernet or serial RapidIO interface, the EEPROM provides support for system
configuration. Addresses 0x97–0x216 of the EEPROM are dedicated to store these configurations.

2.1 Support for Boot Over the Serial RapidIO Interface
During a boot over the serial RapidIO interface, it may be necessary to program the serial RapidIO
interface registers to configure the MSC8157 according to the system-specific analog parameters. A
dedicated BPRT (0x02 in the serial RapidIO interface with I2C) specifies whether the EEPROM
configuration space should be parsed before enabling the serial RapidIO lanes.

Table 3. Number of Reset Slaves versus the Number of GPIO Signals

Number of GPIOs
Number of slaves

Direct Connect External Logic

1 1 1

2 2 2
3 3 3, 6, 7
4 4 4, 8 9, 10,1 1, 12, 13, 14, 15

5 5 5

Using an I2C EEPROM During MSC8157 Initialization, Rev. 0

6 Freescale Semiconductor

Boot Over I2C

If the EEPROM must be parsed, the boot code checks for pairs of 32-bit address-data values. Each 32-bit
data set is written to the preceding address value. The boot code stops reading the EEPROM when the
address-data pair equals (0xFFFFFFFF, 0xFFFFFFFF). Because the configuration space has 384 bytes and
each address-data pair uses 8 bytes, the maximum number of such pairs is 47 (8 bytes are reserved for the
end flag).

2.2 Support for Boot Over Ethernet
During a boot over Ethernet, there are two options for configuring the MAC address:

• Predefined MAC address + Device ID. The predefined address is: 0x1E-F7-D5-00-00-00. The
device ID replaces the fifth byte of the predefined address (bolded in this example).

• MAC address is read from the EEPROM.

To support reading the MAC addresses from the EEPROM, the configuration space is divided into 6-byte
chunks, which yields 64 possible MAC addresses. When the BPRT is one of the Ethernet with I2C support
options (SGMII1, RGMII1, SGMII2 and RGMII2), the boot code reads the MAC address from the
EEPROM before configuring the QUICC Engine™ subsystem and accessing the dynamic host
configuration protocol (DHCP) server. The MAC address is selected based on the device ID. Thus, each
device reads from its specified address in the EEPROM as defined by 0x97 + (device ID × 6).

NOTE
The boot sequence resets the QUICC Engine subsystem at the end of the boot program.
Therefore, the last MAC address that was read is no longer configured in the device. The
user can reread the MAC address during the system initialization and thereby maintain a
single MAC address for boot and run-time operations.

3 Boot Over I2C
One of the boot port selections (BPRT = 0x0) uses an I2C EEPROM. The boot code expects to read
structures of data from the EEPROM starting at address 0x218. Each structure consists of a header, a
payload, and a checksum. As the boot code reads and parses each header, it determines whether the
structure targets the device. If it does, the program reads the payload into its location and then compares
the checksum with the one that the boot code calculated on the fly. If the structure is not intended for the
MSC8157, the boot code skips to the next structure in the EEPROM. The structure is described in Table 4:

Table 4. I2C EEPROM Data Structure

Region Size Description

Control 1 byte Bit 7. Check checksum.
Bit 6. Reserved.
Bit 5–0. Device ID or 3F (broadcast).

Payload Size 3 bytes Size of the payload in bytes

Next Block
Address

4 bytes Address of the next structure in the EEPROM.
 • 0x00000000. Concatenated to this structure.
 • 0xFFFFFFFF. Current structure is the last one.
 • Other. Absolute address in EEPROM.

Using an I2C EEPROM During MSC8157 Initialization, Rev. 0

Freescale Semiconductor 7

Boot Patch

The boot code uses the control byte to determine whether the boot code should read the payload. The
options are:

• Control[5–0] = RCWHR[DEVID]. The data structure is for this specific MSC8157 only.

• Control[5–0] = 0x3F. The data structure is for all MSC8157 devices connected to this EEPROM.

• Other. The data structure is not for this device. The boot code reads the value of the “Payload Size”
and “Next Block Address” to calculate the location of the next data structure in the EEPROM.

Because you can specify which MSC8157 should read which data structure, the EEPROM can contain
different programs in it for different devices. In such a case, use the first data structures as pointers to each
of the devices codes and include no payload data.

4 Boot Patch
Patch mode is enabled if RCWHR[BP] is set. When enabled, the boot program loads the patch code from
I2C EEPROM and executes it in the same way as boot-over-I2C. After the patch executes, the boot code
continues to load boot code from the boot port defined by RCWHR[BPRT].

NOTE

Boot patch cannot be used if the boot port is I2C. If the boot port is defined as I2C and
RCW[BP] is set, the boot code generates an error and the core goes into a Debug state.

5 I2C Bus Arbitration
The EEPROM master arbitrates the use of the I2C bus during the system initialization by having the boot
code poll the value on STOP_BS at specific points in the boot process. The EEPROM master toggles the
STOP_BS signals for the slaves to ensure that only one device accesses the I2C bus at any given time.

Destination
Address

4 bytes Address that the boot code should copy the payload to. This address is as seen
by the SC3580 core.

Payload 0 to 216 bytes Variable in length.

Checksum 2 bytes XOR of all bytes in the structure. Includes the header and payload.

Checksum 2 bytes XOR of all bytes in the structure. Includes the header and payload.

Table 4. I2C EEPROM Data Structure (continued) (continued)

Region Size Description

Document Number: AN4205
Rev. 0
11/2010

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners.

© 2011 Freescale Semiconductor, Inc.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	Using an I2C EEPROM During MSC8157 Initialization
	1 Reset Configuration Word (RCW) Basics
	1.1 EEPROM Initialization Requirements
	1.2 Reset Master
	1.3 Reset Slave

	2 Other Boot Ports
	2.1 Support for Boot Over the Serial RapidIO Interface
	2.2 Support for Boot Over Ethernet

	3 Boot Over I2C
	4 Boot Patch
	5 I2C Bus Arbitration

