

© 2017 NXP B.V.

Emulating SSI Using FlexIO

1. Introduction

An SSI (Serial Synchronous Interface) is a widely used

serial interface between an absolute position sensor and

a controller. While most Kinetis parts do not directly

support an SSI peripheral, one good solution is to use

FlexIO to emulate SSI to get the similar performance as

that of a dedicated SSI peripheral. This application note

shows how to configure FlexIO and to ensure that the

SSI function works well.

NXP Semiconductors Document Number: AN5397

Application Note Rev. 0 , 02/2017

Contents

1. Introduction .. 1
2. Overview of SSI .. 2
3. Emulating SSI ... 3

3.1. Master configuration ... 3
3.2. Slave configuration ... 7

4. Performance .. 9
5. References .. 9
6. Revision History ... 9

Overview of SSI

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

2 NXP Semiconductors

2. Overview of SSI

A Synchronous Serial Interface (SSI) is serial interface standard for industrial applications between a

master (such as a controller) and a slave (such as a sensor). In this case, the SSI uses Texas Instruments

synchronous serial frame format. It takes one serial clock period starting at its rising edge, prior to the

transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their

output data on the rising edge of SSInClk and latch data from the other device on the falling edge.

The typical SSI timing is shown in the following figure:

Figure 1. SSI timing (single transfer)

FlexIO emulates the SSI timing very effectively, as there is a high quality shifter and timer resource in

the FlexIO module which supports flexible configuration to implement different timing. The next

section details how to emulate the SSI master and slave function.

Emulating SSI

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

NXP Semiconductors 3

3. Emulating SSI

To emulate the SSI timing, as shown in Figure 1, requires an extra clock period for FSS signals (high

pulse). The data is valid when FSS is asserted. Transmit data on the clock rising edge, and latch the data

on the clock falling edge. The following two sub-sections detail the configuration of the master and

slave devices.

3.1. Master configuration

There are two configuration solutions to implement the SSI master function. The first is to take one

timer and three shifters, and the second is to use two timers and two shifters. The difference between the

two solutions is in FSS signals generation. The first solution uses one shifter output and one start signal

as FSS. The second solution is to use one timer to generate FSS signals. Due to synchronization delays

the setup time for the serial input data is 1.5 FlexIO clock cycles, so the maximum baud rate is divide by

4 of the FlexIO clock frequency.

The detailed configuration is as follows:

• Use the timers(n) to generate the clock of SSI (SSInClk), and the shifter(n) to enable start bit

transfer and transmit data on each rising edge of SSInClk. Use the shifter(n+1) to transfer the

start bit as the high pulse of SSInFss, and the shifter (n+2) to receive data on each falling edge of

SSInClk.

Emulating SSI

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

4 NXP Semiconductors

The master configuration diagram is shown in the following figure:

Figure 2. Master configuration (a)

The detailed configuration is as follows:

• Configure Timer (n) triggered by shifter (n) status flag, and configure as dual 8-bit counters

baud/bit mode.

• Configure Timer (n) enable on trigger high and disable on compare, enable start bit, and

decrement counter on FlexIO clock, shift clock equals timer (n) output.

• Configure shifter (n) triggered by timer (n), shift on the rising edge of shifter clock, enable

transmit mode.

• Configure shifter (n) transmitter outputs start bit with value 0.

• Configure shifter (n+1) triggered by timer (n), shift on the rising edge of shifter clock, enable

transmit mode.

• Configure shifter (n+1) transmitter outputs start bit with value 1 (to generate one high pulse).

• Configure shifter (n+2) triggered by timer(n), shift on the falling edge of shifter clock, enable

receive mode.

• Configure shifter (n+2) receiver/match store sets error flag if start bit is not 0.

Emulating SSI

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

NXP Semiconductors 5

The detailed register configuration is as follows:

• FlexIO_TIMCTL[2] = 0x5C30701 // select pin 7 as clock output

• FlexIO_TIMCFG[2] = 0x2202

• FlexIO_TIMCMP[2] = 0x0f04 // set baud rate equal to master

• FlexIO_SHIFTCTL[1] = 0x2030502 // select pin5 as Tx

• FlexIO_SHIFTCFG[1] = 2

• FlexIO_SHIFTCTL[2] = 0x2030602 // select pin6 as Fss

• FlexIO_SHIFTCFG[2] = 3

• FlexIO_SHIFTCTL[3] = 0x2800401 //select pin4 as Rx

• FlexIO_SHIFTCFG[3] = 2

 The output waveform is shown in the following figure:

Figure 3. Single frame format of master

Use the timers (n) to generate the SSI (SSInClk) clock, and timer (n+1) to count one clock period to get

one high pulse as SSInFss. Use the shifter(n) to transmit data on each rising edge of SSInClk, and the

shifter (n+1) to receive data on each falling edge of SSInClk.

Emulating SSI

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

6 NXP Semiconductors

The master configuration diagram is shown in the following figure:

Figure 4. Master configuration (b)

The detailed configuration is as follows:

• Configure Timer (n) triggered by shifter (n) status flag, and configure as dual 8-bit counters

baud/bit mode.

• Configure Timer (n) enable on trigger high and disable on compare, enable start bit and

decrement counter on FlexIO clock, Shift clock equals Timer output.

• Configure shifter (n) triggered by timer (n), shift on the rising edge of shifter clock, enable

transmit mode.

• Configure shifter (n) transmitter outputs start bit with value 0.

• Configure timer (n+1) triggered by timer (n), configure as single 16-bit counter mode.

• Configure timer (n+1) enable on timer (n) enable, and disable on compare, decrement counter on

trigger input (both edges).

• Configure timer (n+1) output is logic one when enabled and is not affected by timer reset.

• Configure shifter (n+1) triggered by timer (n), shift on the falling of shifter clock, enable receive

mode.

• Configure shifter (n+1) receiver/match store sets error flag if start bit is not 0

Emulating SSI

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

NXP Semiconductors 7

The detailed register configuration is as follows:

• FlexIO_TIMCTL[1] = 0x5C30701 //configure pin7 as clk

• FlexIO_TIMCFG[1] = 0x2202

• FlexIO_TIMCMP[1] = 0x0f04

• FlexIO_TIMCTL[2] = 0xb430603 //configure pin6 as Fss

• FlexIO_TIMCFG[2] = 0x102100

• FlexIO_TIMCMP[2] = 0x2

• FlexIO_SHIFTCTL[1] = 0x2030502 //configure pin5 as Tx

• FlexIO_SHIFTCFG[1] = 2

• FlexIO_SHIFTCTL[2] = 0x280401 //configure pin4 as Rx

• FlexIO_SHIFTCFG[2] = 2

The output waveform is the same as that in Figure 3.

3.2. Slave configuration

The slave device transmits data on the rising edge of the clock and latches data on the falling edge of the

clock after FSS assert. It uses one timer triggered by FSS, and the second timer to count the expected

value of the bit clock and generate the disable signal. The disable signal stores data for the shifter buffer,

and takes two shifters for transmitting and receiving data. Due to synchronization delays, the output

valid time for the serial output data is 2.5 FlexIO clock cycles, so the maximum baud rate is divide by 6

of the FlexIO clock frequency.

The following diagram show how it is configured:

Figure 5. Slave configuration diagram

NOTE

One limitation for this solution is that it asks the timer0 to configure the

same baud rate as the master, and does not support any clock stretch for

SSnClk, otherwise it may not achieve the correct result.

Emulating SSI

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

8 NXP Semiconductors

The detailed register configuration is as follows:

• Configure Timer (n) triggered by the falling edge of SSInFss (invert SSInFss, and enable timer

(n) on rising edge of trigger, disable timer(n) on compared).

• Configure TIMOD of Timer (n) is “Dual 8-bit counters baud/bit mode.” and set baud rate equal

to master’s speed and number bits is 8-bit or others, which is up to master bit format.

• Configure Timer (n) decrement counter on FlexIO clock,

• Configure Timer (n+1) triggered by the falling edge of SSInFss (invert SSInFss, and enable

timer (n+1) on rising edge of trigger, disable timer (n+1) on timer (n) disable.

• Configure TIMOD of Timer (n+1) is “single 16-bit counter mode” and set TIMCMP register to

0xF, or other value, which equal to expected bit number multiple 2 and decrease 1.

• Configure Timer (n+1) decrement counter on Pin input (both edges), Shift clock equals Pin

input.

• Configure shifter (n) triggered by timer (n+1) and enable shifter on negedge of shifter clock, and

enable receive mode.

• Configure shifter (n+1) triggered by timer (n+1) and enable shifter on rising edge of shifter

clock, and enable transmit mode.

The detailed Timer and shifter configuration is as follows:

• FlexIO_TIMCTL[0] = 0xCC00081 // select pin6 as Fss

• FlexIO_TIMCFG[0] = 0x1002600

• FlexIO_TIMCMP[0] = 0x0f04

• FlexIO_TIMCTL[1] = 0xCC00703 //select pin7 as clk input, select pin6 as Fss

• FlexIO_TIMCFG[1] = 0x201600

• FlexIO_TIMCMP[1] = 0x0f

• FlexIO_SHIFTCTL[0] = 0x1800501 // select pin5 as Rx

• FlexIO_SHIFTCFG[0] = 0

• FlexIO_SHIFTCTL[1] = 0x1030402 // select pin4 as Tx

• FlexIO_SHIFTCFG[1] = 0

Revision History

Emulating SSI Using FlexIO, Application Note, Rev. 0, 02/2017

NXP Semiconductors 9

4. Performance

DMA support is provided to reduce the CPU loading and improve the throughput performance, and it is

available to trigger a DMA request by shifter status flag. One example of enabling a DMA request of

shifter0 and shifter1 is as follows:

• FlexIO->SHIFTSDEN |= 0x03 // enable shifter0 and shifter1 status trigger DMA request.

If the FlexIO clock is approximately 48 MHz, then the SSI clock can be up to 12 MHz in the master

device, and 8 MHz in the slave device.

5. References

1. KL27P64M48SF2RM Reference Manual (document KL27P64M48SF2RM)

2. The Introduction of a Fallible FlexIO Configuration (document AN5396)

6. Revision History
Table 1. Revision history

Revision number Date Substantive changes

0 02/2017 Initial release

http://fsls.co/doc/KL27P64M48SF2RM
http://fsls.co/doc/AN5396

Document Number: AN5397
Rev. 0

02/2017

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further
notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of
the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in NXP data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions
of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, and
Tower, are trademarks of NXP B.V. All other product or service names are the property
of their respective owners.

ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or
its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2017 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Emulating SSI Using FlexIO
	1. Introduction
	2. Overview of SSI
	3. Emulating SSI
	3.1. Master configuration
	3.2. Slave configuration

	4. Performance
	5. References
	6. Revision History

