
1CPM Interrupt Controller 12-

CPM Interrupt Controller

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2CPM Interrupt Controller 12-

What is the CPIC?
Definition The CPIC is the focal point for all interrupts associated with the CPM. It accepts and

prioritizes all the internal and external interrupts from all functional blocks associated
with the CPM.

Example

CPIC Features

CPM

Port C[4:15]

Timer1

Timer2

Timer3

Timer4

SCC1

SCC2

SCC3

SCC4

SMC1

SMC2

SPI

I2C

PIP

IDMA1

IDMA2

SDMA

RISC Timers

To SIU Interrupt Controller

CPIC

Bolded names are sub-block maskable interrupt sources.

Important functions of the CPIC are:
• Asserts an interrupt to the SIU interrupt controller at a user programmable level.
• Generates a unique vector number for each interrupt source.
• Prioritizes the interrupts for which it is responsible.
 - Highest priority interrupt source is programmable by the user.
 - Programmable priority between SCCs.
 - Two priority schemes for the SCCs.

V
N

To EPPC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3CPM Interrupt Controller 12-

What is a Sub-Block Maskable Interrupt?
Definition If an interrupt source is maskable within the particular sub-block of which it is a part, it

is referred to as sub-block maskable.

Example,
SMCx

76543

BRK - BSY TX RX

76543

BRK - BSY TX RX

SMCEx SMCMx

SMCx Interrupt to CPIC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4CPM Interrupt Controller 12-

Programming Model
CICR - CPM Interrupt Configuration Register

1514131211109876543210

SCdP

P. 814

31302928272625242322212019181716

IRL0_IRL2 - SPS

SCcP SCbP SCaP

HP0_HP4 IEN

CIPR - CPM Interrupt Pending Register

1514131211109876543210

P. 816

31302928272625242322212019181716

-PC11 -PC10 PC9 PC8 PC7 -

PC15 SCC2SCC1 SCC3 SCC4 PC14 Timer
1 PC13 PC12 IDMA

1SDMA - I2CIDMA
2

Timer
2 R_TT

Timer
3

Timer
4 PC4PC5SMC2

/PIPSMC1SPIPC6

CIMR - CPM Interrupt Mask Register

1514131211109876543210

P. 816

31302928272625242322212019181716

-PC11 -PC10 PC9 PC8 PC7 -

PC15 SCC2SCC1 SCC3 SCC4 PC14 Timer
1 PC13 PC12 IDMA

1SDMA - I2CIDMA
2

Timer
2 R_TT

Timer
3

Timer
4 PC4PC5SMC2

/PIPSMC1SPIPC6

CISR - CPM In-Service Register

1514131211109876543210

P. 816

31302928272625242322212019181716

-PC11 -PC10 PC9 PC8 PC7 -

PC15 SCC2SCC1 SCC3 SCC4 PC14 Timer
1 PC13 PC12 IDMA

1SDMA - I2CIDMA
2

Timer
2 R_TT

Timer
3

Timer
4 PC4PC5SMC2

/PIPSMC1SPIPC6

CIVR - CPM Interrupt Vector Register

1514131211109876543210

P. 814

VN 0 IACK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5CPM Interrupt Controller 12-

How to Prioritize the SCCs (1 of 2)

Introduction The SCCs must be prioritized relative to each other. The user controls the order of
priority in the CICR, fields SCdP, SCcP, SCbP, and SCaP.

Highest PriorityLowest

SCaP CICRSCbPSCcPSCdPCodeSCC

SCC1 00

SCC2 01

SCC3 10

SCC4 11

Priority
Matrix

Highest PriorityLowest

SCaP CICRSCbPSCcPSCdPCodeSCC

SCC1 00

SCC2 01

SCC3 10

SCC4 11

Example
Problem: Set the priority so that SCC1 is highest, SCC3 is second hightest, SCC2 second
lowest, and SCC4 the lowest.

00

10

01

11

pdpr->CICR.SCaP = 0;
pdpr->CICR.SCbP = 2;
pdpr->CICR.SCcP = 1;
pdpr->CICR.SCdP = 3;

Exercise Set the priority so that SCC2 is the highest priority, SCC3 is second highest, SCC4 is the
second lowest, and SCC1 is the lowest.

pdpr->CICR.SCaP = _;
pdpr->CICR.SCbP = _;
pdpr->CICR.SCcP = _;
pdpr->CICR.SCdP = _;

Comment SCaP, SCbP, SCcP, and SCdP should all have different numbers.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6CPM Interrupt Controller 12-

How to Prioritize the SCCs (2 of 2)
Introduction In addition to being prioritized relative to each other, the SCCs can be grouped together

in the priority list or spread out.

Priority

Highest

Grouped
Priority Interrupt Source

PC15

SCCa

SCCb

SCCc

SCCd

Spread
Priority Priority

Highest

Interrupt Source

PC15

SCCa

SCCb

SCCc

SCCd

pdpr->CICR.SPS = 0;

pdpr->CICR.SPS = 1;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7CPM Interrupt Controller 12-

How to Specify the Highest Priority Interrupt Source
Introduction The user must specify which interrupt source is to be given top priority. This is done by

writing the 5-bit interrupt vector number to CICR.HP0_HP4. A priority list is on p. 810.

Example Problem: make the SDMA interrupt the highest priority.

pdpr->CICR.HP0_HP4 = 0x16;

Exercise Make PC15 the highest priority interrupt..

pdpr->CICR.HP0_HP4 = ____;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8CPM Interrupt Controller 12-

How the CPIC Processes an Interrupt Input
Introduction The CPIC receives an interrupt from one of its 29 sources, processes it, and, assuming

no masking, asserts its programmed interrupt level to the SIU interrupt controller.

Flow Diagram
of How the

CPIC Processes
an Interrupt

Start

CPM interrupt
occurs

Sub-block
maskable

?

Event
masked

?

N

Y Y End

N

Set bit in
CIPR

Bit set
in CIMR

?

Y

N End

>= priority
bit set in CISR

?

N

Y

To the SIU
interrupt controller

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9CPM Interrupt Controller 12-

How the SIU Processes an Interrupt Input

Start

SIU interrupt
occurs

Bit set in
SIMASK

?

Y

N End

Set bit in
SIPEND

Introduction The SIU receives an interrupt from one of 8 external sources or 1 of 8 internal sources
and, assuming no masking, assertes the IREQ input to the PowerPC.

To IREQ of
the PowerPC

Flow Diagram
of How the

SIU Processes
an Interrupt

PowerPC
Action

Following the assertion of IREQ, the PowerPC completes the present instruction and
program control goes to offset 0x500 in the exception vector table.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10CPM Interrupt Controller 12-

How to Initialize a CPM for Interrupts

Step Action Example

3 Initialize SI Edge/Level Reg, SIEL pdpr->SIEL.WM5 = 1;
/*WAKEUP 860 FOR LEVEL
 5 INTERRUPT*/

Introduction Here we describe the steps in initializing the CPM on the MPC860 for interrupts.

Action Here are the steps in initialization :

EDx:edge or level interrupt input
WMx:exit low power mode

where x is 0 to 7

pdpr->SIMASK.ASTRUCT.IRM6 = 1;
/*ENABLE IRQ6 INTERRUPTS */

4

Assumptions - IMMR has been initialized previously. If not, the user must initialize it.
- Except for the above, reset conditions exist.

5 Enable CPM Interrupts pdpr->CICR.IEN = 1;
/* ENABLE CPM INTERRUPTS */

Initialize SI Mask Reg, SIMASK

IRMx:enable external interrupt input
LVMx:enable internal interrupt input

where x is 0 to 7

1 Initialize CPM Intrpt Config Reg, CICR pdpr->CICR.HP0_HP4 = 0x16;
/* SDMA HIGHEST PRIORITY
 INTERRUPT */SCdP: lowest priority SCC

SCcP: 2nd lowest priority SCC
SCbP: 2nd highest priority SCC
SCaP: highest priority SCC
IRL0_IRL2: CPM intrpt level
HP0_HP4: highest priority intrpt source
SPS: spread priority

2 Initialize Interrupt Mask Reg, CIMR

SCC1-4
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT
SPI
I2C

pdpr->CIMR.SCC2 = 1;
/* ENABLE SCC2 INTRPTS */

6 Initialize Enable Interrupts, EIE asm (“ mtspr 80,0”);;
/* ENABLE INTERRUPTS */

(817)

(814)

(191)

(191)

(814)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

11CPM Interrupt Controller 12-

How to Handle a CPIC Interrupt (1 of 2)

5 Request the vector number via the CPM
Interrupt Vector Reg, CIVR

pdpr->CIVR.IACK = 1;
/* REQUEST VECTOR NUMBER*/

First Steps in
Servicing CPM

Interrupts

• The first steps in servicing a CPM interrupt:

6 if (pdpr->CIVR.VN == 0x10
 i2cesr();
/* I2C VEC NUM, GO TO I2CESR*/

7 If this is a submodule maskable event
source, read the event register.

er = pdpr->SCCE2;
/* GET EVENT REGISTER */

8 If this is a submodule maskable event
source, clear the known events.

pdpr->SCCE2 = er;
/* CLEAR EVENT REGISTER */

2 Clear the service bit in the SI Pending
Register, SIPEND

pdpr->SIPEND = 1<<(31-6);
/* CLEAR IRQ3 PENDING BIT*/

1 Read the interrupt code in the SI vector
register, SIVEC, and go to service routine
for that code.

if (pdpr->SIVEC.IC == 0x38)
 irq7esr();
/* IF IRQ7, GO TO IRQ7ESR */

3 Required only if service routine is to be
recoverable and lower priority interrupts
are to be masked.

sptr++ = pdpr->SIMASK.ASINT;
/* STACK SIMASK REG */
pdpr->SIMASK.ASINT &=
 0xF0000000;
/* MASK INTRPTS 2-7 */

Save the SI mask reg, SIMASK
Mask lower interrupt levels

4 Required only if service routine is to be
recoverable.

asm (“ mfspr r9,26”);
asm (“ stwu r9,-8(r1)”);
asm (“ mfspr r9,27”);
asm (“ stw r9,4(r1)”);
asm (“ mtspr 80,0”);

Save SRR0 & SRR1 on the stack
Enable interrupts

Read the interrupt vector in the CPM
interrupt vector reg, CIVR, and go to
service routine for that vector number.

(192)

(191)

(191)

(819)

(819)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12CPM Interrupt Controller 12-

How to Handle a CPIC Interrupt (2 of 2)

1 Clear the bit in the in-service reg, CISR pdpr->CISR = 1<<(31-6);
/* CLEAR TIMER 1 BIT */

Last Steps in
Servicing CPM

Interrupts

• The last steps in servicing a CPM interrupt:

2 Required only if service routine was made
recoverable.

asm (“ mtspr 82,0”);
asm (“ lwz r9,4(r1)”);
asm (“ mtspr 27,r9”);
asm (“ lwz r9,0(r1)”);
asm (“ addi r1,r1,8;”)
asm (“ mtspr 26,r9”);

Disable interrupts
Restore SRR0 & SRR1 on the stack

3 Required only if service routine was made
recoverable and lower priority interrupts
were masked.

pdpr->SIMASK.ASINT = --sptr;
/* RESTORE SIMASK REG */

Restore the SI mask reg, SIMASK

(818)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

13CPM Interrupt Controller 12-

pc8.c

MOTOROLA
Motorola Technical Training - MPC860 Course
Phoenix, Arizona

Title:

Handling an 860 CPM Interrupt

Creation Date: Jan. 10, 1996 From:

Author: Bob Bratt

Description:

The results of this routine are:
1. Initializes the exception vector area with a service routine.
2. The service routine jumps to a function based on the interrupt
 code.
3. The function increments a counter each time an external interrupt
 level 1 occurs.
Assumptions:
1. IMMR has been previously initialized.
2. Except for 1, reset conditions exist.
Objective:

If the program executes properly, the LED counter is equal to the
number of times that the black button on the UDLP1 has been pressed.

Equipment:

MPC860ADS board and UDLP1

UDLP1 Switch Settings: N/A

Connections:

Updates:

MPC860ADS board and a UDLP1 are connected through P13.

MC68360 Course

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14CPM Interrupt Controller 12-

pc8.c (1 of 2)

/* Equipment : 860ADS Evaluation Board and */
/* UDLP1 Universal Development Lab Board */
/* Pins 2 and 3 of JP2 must be jumpered */
/* Connected: P10-C15 of ADS to J4-11 of UDLP1 */
/* (PC8.C) */

#include "mpc860.h" /* DUAL PORT RAM EQUATES */
struct dprbase *pdpr; /* PNTR TO DUAL PORT RAM */
static int buffer[10]; /* STACK BUFER FOR SIMASK*/
static int sp = 0; /* STACK BUFFER POINTER */

main()
{
 void intbrn(); /* EXCEPTION SERVICE RTN */
 int *ptrs,*ptrd; /* SOURCE & DEST POINTERS*/
 char intlvl = 4; /* INTERRUPT LEVEL */

 pdpr = (struct dprbase *) (getimmr() & 0xFFFF0000);
 /* INIT PNTR TO DPRBASE */
 ptrs = (int *) intbrn; /* INIT SOURCE POINTER */
 ptrd = (int *)(getevt() + 0x500); /* INIT DEST POINTER */
 do /* MOVE ESR TO EVT */
 *ptrd++ = *ptrs; /* MOVE UNTIL */
 while (*ptrs++ != 0x4c000064); /* RFI INTRUCTION */
 pdpr->CICR.IRL0_IRL2 = (unsigned) (intlvl);
 /* CPM INTERRUPTS LEVEL 4*/
 pdpr->CICR.HP0_HP4 = 0x1F; /* NO INT PRIORITY CHANGE*/
 pdpr->PDDAT = 0; /* CLEAR PORT D DATA REG */
 pdpr->PDDIR = 0xff; /* MAKE PORT D8-15 OUTPUT*/
 pdpr->PCINT |= 0x80; /* CONFIG PC8 INTRPT EDGE*/
 pdpr->CIMR.PC8 = 1; /* ENABLE PORT C,8 INTRPT*/
 pdpr->SIMASK.ASTRUCT.LVM4 = 1; /* ENABLE IRQ4 INTERRUPTS*/
 pdpr->CICR.IEN = 1; /* ENABLE CPM INTERRUPTS */
 asm(" mtspr 80,0"); /* ENABLE INTERRUPTS */
 while (1==1);
}

#pragma interrupt intbrn
void intbrn()
{
 void cpmesr();

 asm (" stwu r9,-4(r1)"); /* PUSH GPR9 ONTO STACK */
 switch (pdpr->SIVEC.IC) /* PROCESS INTERRUPT CODE*/
 {
 case 0x24: asm (" mfspr r9,8"); /* PUSH LR ONTO STACK */
 asm (" stwu r9,-4(r1)");
 asm (" bla cpmesr"); /* PROCESS IRQ1 CODE */
 asm (" lwz r9,0(r1)"); /* PULL LR FROM STACK */
 asm (" addi r1,r1,4"); /* RESTORE STACK POINTR*/
 asm (" mtspr 8,r9");
 break;
 default:;
 }

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

15CPM Interrupt Controller 12-

pc8.c (2 of 2)

 asm (" lwz r9,0(r1)"); /* PULL GPR9 FROM STACK */
 asm (" addi r1,r1,4"); /* RESTORE STACK POINTER */
}

void cpmesr()
{
 unsigned v1; /* TEMPORARY STORAGE */
 pdpr->CIVR.IACK = 1; /* REQUEST VECTOR NUMBER */
 v1 = pdpr->CIVR.VN; /* COPY VECTOR NUMBER */
 buffer[sp++] = pdpr->SIMASK.ASINT; /* STACK SIMASK */
 pdpr->SIMASK.ASINT &= 0xFFC<<(31-9); /* MASK INTS 5-7*/
 asm (" mfspr r9,26"); /* PUSH SRR0 ONTO STACK */
 asm (" stwu r9,-8(r1)");
 asm (" mfspr r9,27"); /* PUSH SRR1 ONTO STACK */
 asm (" stw r9,4(r1)");
 asm (" mtspr 80,0"); /* ENABLE INTERRUPTS */
 switch (v1) /* PROCESS VECTOR NUMBER */
 {
 case 0xA: /* PC8 VECTOR NUMBER */
 pdpr->PDDAT += 1; /* INCREMENT DISPLAY */�
 pdpr->CISR = 1<<(31-21); /* CLEAR IN-SRVCE BIT*/
 break;
 default:;
 }
 asm (" mtspr 82,0"); /* MAKE NON-RECOVERABLE */
 asm (" lwz r9,4(r1)"); /* PULL SRR1 FROM STACK */
 asm (" mtspr 27,r9");
 asm (" lwz r9,0(r1)"); /* PULL SRR0 FROM STACK */
 asm (" addi r1,r1,8");
 asm (" mtspr 26,r9");
 pdpr->SIMASK.ASINT = buffer[--sp]; /* RESTORE SIU MASK REG */
}

getimmr()
{
 asm(" mfspr 3,638");
}

getevt() /* GET EVT LOCATION */
{
 if ((getmsr() & 0x40) == 0) /* IF MSR.IP IS 0 */
 return (0); /* THEN EVT IS IN LOW MEM*/
 else /* ELSE */
 return (0xFFF00000); /* EVT IS IN HIGH MEM */
}

getmsr() /* GET MACHINE STATE REG VALUE */
{
 asm(" mfmsr 3"); /* LOAD MACHINE STATE REG TO r3 */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

