Product data sheet

1 General description

UCODE 9xe offers high performance and features for use in the most demanding RFID tagging applications.

Particularly well suited for inventory management applications, for example, retail and fashion, baggage tagging, and smart logistics with its great RF performance for any given form factor, UCODE 9xe enables long read ranges and fast inventory of dense RFID tag populations. With its broadband design, it offers the possibility to manufacture true global RFID labels with great performance across worldwide regulations.

2 Features and benefits

2.1 Key features

- Read sensitivity -24 dBm
- Write sensitivity -22 dBm
- 128-bit EPC Memory
- Innovative functionality
 - Drop-in replacement to UCODE 9 due to similar assembled input capacitance
 - Self-Adjust
 - Memory Safeguard
 - Pre-serialization of 96-bit EPC
- Compatible with single-slit antenna
- 96-bit unique tag identifier (TID) factory locked, including 48-bit unique serial number
- EPC Gen2v2.1

2.1.1 Memory

- 128-bit of EPC memory
- Supports pre-serialization of 96-bit EPC
- 96-bit Tag IDentifier (TID) factory-locked
- 48-bit unique serial number factory-encoded into TID
- 32-bit kill password to permanently disable the tag
- Wide operating temperature range: -40 °C up to +85 °C
- Minimum 100k write cycle endurance

2.2 Supported features

- All mandatory commands of the EPCglobal Gen2v2.1 specification are implemented including:
 Kill Command
- The following optional commands are implemented in conformance with the EPC specification:
 BlockWrite (2 words, 32-bit)
- Self-Adjust for automated tag performance optimization

3 Applications

3.1 Target market

- Retail
 - Brick and mortar
 - E-commerce
 - Omnichannel
- Supply chain management
- Airline baggage tracking

3.2 Applications

- Highly accurate and fast inventory management, enabling omnichannel retail processes
- Tracking along the supply chain from source to store
- · High-speed store checkout process, bringing convenience to the customer
- Loss prevention
- After sales operations: return and warranty management

For other applications, contact NXP Semiconductors for support.

4 Ordering information

Type number	Package						
	Name	IC type	Description	Version			
SL3S1216FUD2/HAP	Wafer	UCODE 9xe	Die on sawn 12" 120 μm wafer 10 μm Polyimide spacer with Large Pads, Plasma Diced	Not applicable			

Table 1. Ordering information

5 Block diagram

The UCODE 9xe IC consists of three major blocks:

- Analog interface
- Digital control
- EEPROM

The analog part provides stable supply voltage and demodulates data received from the reader which is then processed by the digital part. Further, the modulation transistor of the analog part transmits data back to the reader.

The digital section includes the state machines, processes the protocol, and handles communication with the EEPROM, which contains the EPC and the user data.

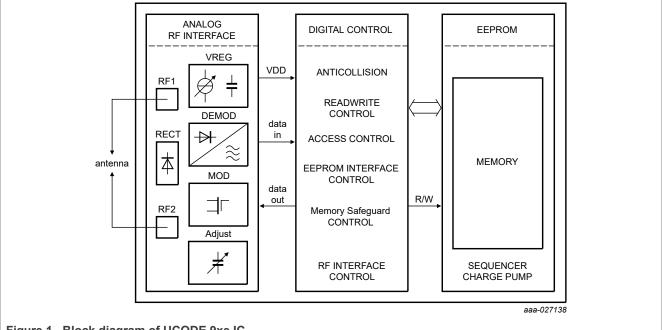
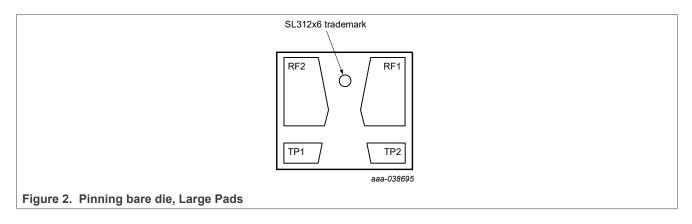
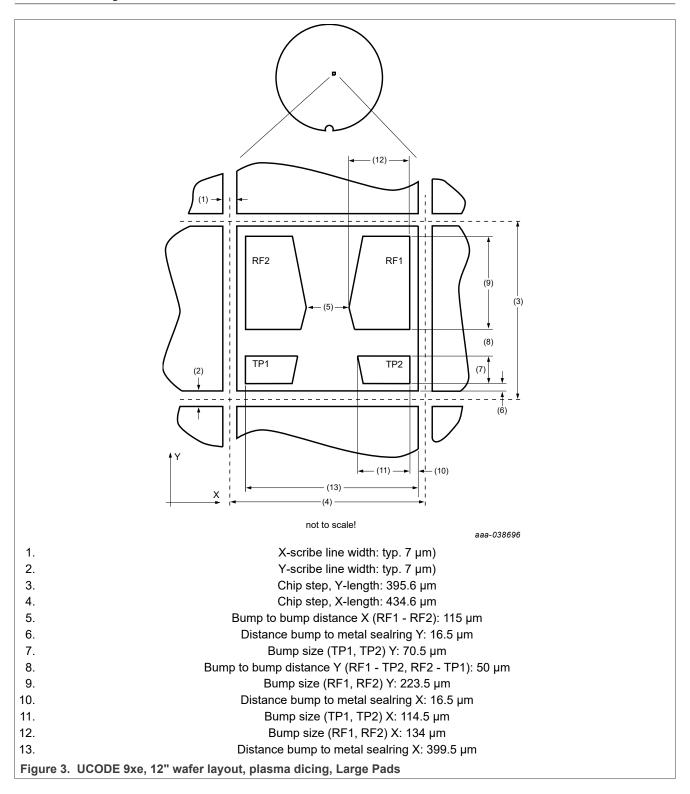



Figure 1. Block diagram of UCODE 9xe IC

6 Pinning information

6.1 Pin description


Table 2. Pin description bare die

Symbol	Description
TP1	test pad 1
RF1	antenna connector 1
TP2	test pad 2
RF2	antenna connector 2

SL3S1216

UCODE 9xe

7 Wafer layout

8 Mechanical specification

UCODE 9xe wafers are available in 120 μ m thickness. The 120 μ m thick wafer includes a 10 μ m Polyimide spacer resulting in less coupling between the antenna and the active circuit, leaving more room for process control (for example, pressure).

8.1 Wafer specification

8.1.1 12-inch Wafer

See [3].

Table 3.	12-inch specification, Plasma Dicing, Large Pads
Wafor	

Wafer	
Designation	each wafer is scribed with batch number and
	wafer number
Diameter	300 mm (12") unsawn
Thickness	120 μm ± 15 μm
Number of pads	4
Pad location	nondiagonal / placed in chip corners
Process	CMOS 0.14 µm
Batch size	25 wafers
Net printed dies per wafer	389411
Wafer backside	
Material	Si
Treatment	ground and stress release
Roughness	R _a max. 0.5 μm, R _t max. 5 μm
Chip dimensions	·
Die size excluding scribe	0.426 mm × 0.387 mm = 0.16 mm ²
Scribe line width:	X-dimension = 8.6 µm
	Y-dimension = 8.6 μm
Passivation on front	
Туре	Sandwich structure
Material	PE-Oxidee (on top)
Thickness	2.25 µm total thickness of passivation
Polyimide spacer	10 μm ± 2 μm
Au pads	
Pad material	> 99.9 % pure Au
Pad hardness	35 – 80 HV 0.005
Pad shear strength	> 70 MPa
Pad height	3 µm

 Table 3. 12-inch specification, Plasma Dicing, Large Pads...continued

Pad height uniformity					
– within a die	max. 2 μm				
– within a wafer	max. 4 μm				
Pad flatness	max. 3 μm				
Pad size					
– RF1, RF2 (max. details see wafer layout)	134 μm × 223.5 μm				
- TP1, TP2 (max. details see wafer layout)	114.5 μm × 70.5 μm				
Pad size variation	± 5 μm				

8.1.2 Fail die identification

No ink dots are applied to the wafer.

Electronic wafer mapping (SECS II format) covers the electrical test results and additionally the results of mechanical/visual inspection.

See [3].

8.1.3 Map file distribution

See [3].

9 Functional description

9.1 Air interface standards

The UCODE 9xe fully supports all parts of the "EPC[™] Radio-Frequency Identity Protocols Generation-2 UHF RFID, Specification for RFID Air Interface, Protocol for Communications at 860 MHz to 960 MHz, Version 2.1".

9.2 Power transfer

The interrogator provides an RF field that powers the tag, equipped with a UCODE 9xe. The antenna transforms the impedance of free space to the chip input impedance in order to get the maximum power for the UCODE 9xe on the tag.

The RF field, which is oscillating on the operating frequency provided by the interrogator, is rectified to provide a smoothed DC voltage to the analog and digital modules of the IC.

The antenna that is attached to the chip may use a DC connection between the two antenna pads. Therefore the UCODE 9xe also enables loop antenna design.

9.3 Data transfer

9.3.1 Interrogator to tag Link

An interrogator transmits information to the UCODE 9xe by modulating an UHF RF signal. The UCODE 9xe receives both information and operating energy from this RF signal. Tags are passive, meaning that they receive all of their operating energy from the interrogator's RF waveform.

An interrogator is using a fixed modulation and data rate for the duration of at least one inventory round. It communicates to the UCODE 9xe by modulating an RF carrier.

For further details, refer to [1].

9.3.2 Tag to interrogator Link

Upon transmitting a valid command, an interrogator receives information from a UCODE 9xe tag by transmitting an unmodulated RF carrier and listening for a backscattered reply. The UCODE 9xe backscatters by switching the reflection coefficient of its antenna between two states in accordance with the data being sent. For further details, refer to [1].

The UCODE 9xe communicates information by backscatter-modulating the amplitude and/or phase of the RF carrier. Interrogators shall be capable of demodulating either demodulation type.

The encoding format, selected in response to interrogator commands, is either FM0 baseband or Millermodulated subcarrier.

9.4 Supported commands

UCODE 9xe supports all **mandatory** EPCglobal v2.1 commands including

• KILL command

In addition, the UCODE 9xe supports the following **optional** commands:

• Block Write (32 bit)

9.5 UCODE 9xe memory

The UCODE 9xe memory is implemented according to EPCglobal v2.1:

Table 4.	UCODE	9xe	memorv	sections
	COOPL	UNC	memory	3000113

Name	Size	Bank
Reserved memory (32 bit Kill password) ^[1]	32 bit	00b
EPC (excluding 16 bit CRC-16 and 16-bit PC)	128 bit	01b
UCODE 9xe Configuration Word	16 bit	01b
TID (including permalocked unique 48-bit serial number)	96 bit	10b

[1] It is strongly recommended to use diversified passwords for individual tags

The logical address of all memory banks begins at zero (00h).

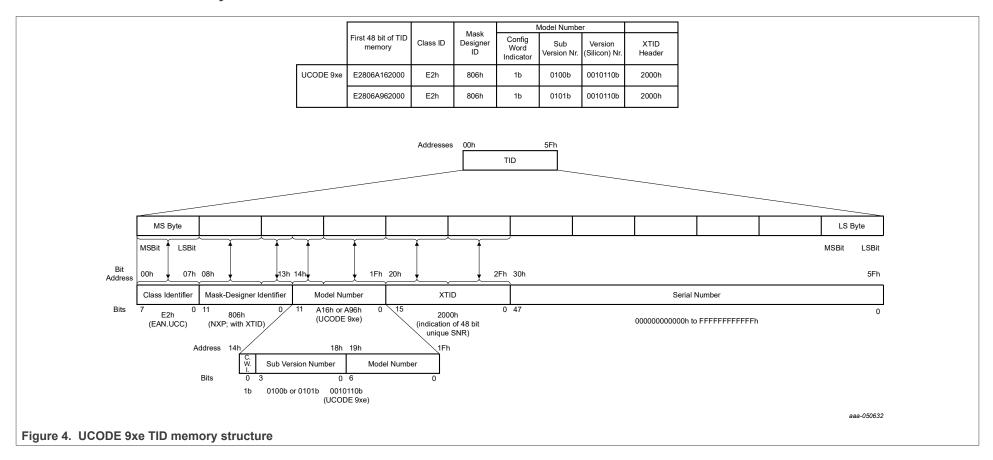
In addition to the four memory banks, one configuration word is available at EPC bank 01 address bit-200h. The configuration word is described in detail in <u>Section 9.6.1</u>

The TID complies to the GS1 EPC Tag Data Standard. See [2].

9.5.1 UCODE 9xe overall memory map

Bank	Address	Туре	Content	Initial	Remark
Bank 00	00h to 1Fh	reserved	Kill password	all 00h	unlocked memory
	20h to 3Fh	reserved	Access password	all 00h	hardwired to 0, locked memory
Bank 01 EPC	00h to 0Fh	EPC	CRC-16: refer to [1]		memory mapped calculated CRC
	10h to 14h	EPC	EPC length	00110b	unlocked memory
	15h	EPC	UMI	0b	hardwired to 0
	16h	EPC	XPC indicator	0b	hardwired to 0
	17h to 1Fh	EPC	numbering system indicator	00h	unlocked memory
	20h to 9Fh	EPC	EPC	[1]	unlocked memory
Bank 01	200h	EPC	RFU	0b	locked memory
Config Word	201h	EPC	RFU	0b	locked memory
	202h	EPC	EPC NOK	0b	indicator bit
	203h	EPC	RFU	0b	locked memory
	204h	EPC	RFU	0b	locked memory
	205h	EPC	RFU	0b	locked memory
	206h	EPC	RFU	0b	locked memory
	207h	EPC	Self-Adjust disable	0b	locked memory
	208h	EPC	RFU	0b	locked memory
	209h	EPC	max. backscatter strength	1b	locked memory
	20Ah	EPC	RFU	0b	locked memory
	20Bh	EPC	RFU	0b	locked memory
	20Ch	EPC	RFU	0b	locked memory
	20Dh	EPC	RFU	0b	locked memory
	20Eh	EPC	RFU	0b	locked memory
	20Fh	EPC	RFU	0b	locked memory
Bank 10	00h to 07h	TID	allocation class identifier	1110 0010b	locked memory
TID	08h to 13h	TID	tag mask designer identifier	1000 0000 0110b	locked memory
	14h	TID	config word indicator	1b ^[2]	locked memory
	15h to 1Fh	TID	tag model number	TMNR ^[3]	locked memory
	20h to 2Fh	TID	XTID header	2000h	locked memory
	30h to 5Fh	TID	serial number	SNR	locked memory

Table 5. UCODE 9xe overall memory map


[1] HEX E280 6A16 0000 nnnn nnnn nnnn 0000 0000 or HEX E280 6A96 0000 nnnn nnnn 0000 0000 where n are the nibbles of the SNR from the TID

[2] [3] Indicates the existence of a Configuration Word at the end of the EPC number

See Figure 4

SL3S1216 UCODE 9xe

9.5.2 UCODE 9xe TID memory details

9.6 Supported features

The UCODE 9xe is equipped with a Configuration Word, as mentioned in the memory map at address 200h of the EPC memory.

Bit 14h of the TID indicates the existence of a Configuration Word. This flag enables the selection of configuration word enhanced transponders in mixed tag populations.

9.6.1 UCODE 9xe features control mechanism

In UCODE 9xe the Configutation word is read only memory.

Indicator bit			Locked memory				
RFU	RFU	EPC NOK	RFU	RFU	RFU		Self-Adjust disable
0	1	2	3	4	5	6	7

Table 6. Configuration word UCODE 9xe

Table 7. Configuration word UCODE 9xe ... continued

Locked memory							
	max.backscatter strength	RFU	RFU	RFU	RFU	RFU	RFU
8	9	10	11	12	13	14	15

The configuration word contains:

• EPC NOK Indicator bit: cannot be changed by command

• Self-Adjust disable :cannot be changed by command

The self-adjust feature is permanently activated and can not be deactivated.

• max. backscatter strength :cannot be changed by command

The max. backscatter strength is permanently activated and can not be deactivated.

A SELECT on the Configuration word is treated as not-matching.

9.6.2 Self-Adjust

9.6.2.1 Description

The UCODE 9xe has an automatic mechanism implemented which adjusts the chip sensitivity to a maximum in the operated environment. This adjustment will be performed at start-up and selects between three different input capacitance values (center capacitance -60 fF / +100 fF). The feature is permanently enabled.

9.6.3 Memory Safeguard

9.6.3.1 Description

The Memory Safeguard of UCODE 9xe consist of two different countermeasures which ensures the integrity of the stored data:

ECC (Error correction code):

The implemented ECC is applied on the complete UCODE 9xe memory and requires no user action. With this feature, a single bit failure in the memory is detected and corrected automatically. In case of 2-bit fail, an indication as described below is given.

EPC Memory:

Config word bit 202h (EPC NOK) provides an indication that a 2-bit failure occurred in the EPC memory by changing its value to "1". In such a case, UCODE 9xe will respond with an EPC value of F's indicating a corrupted EPC. A read of the EPC memory content will provide the actual content.

Parity check:

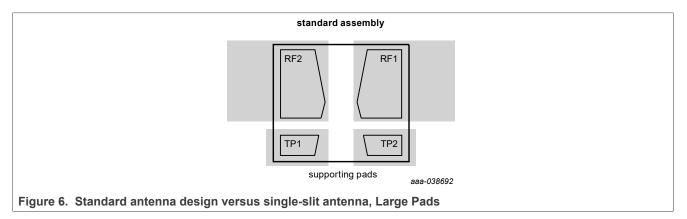
A parity check on the TID is implemented to offer the possibility to identify a change in the TID. The parity bit (Even parity) will be calculated and locked in the manufacturing process. For a check, the TID content needs to be read out and parity checked.

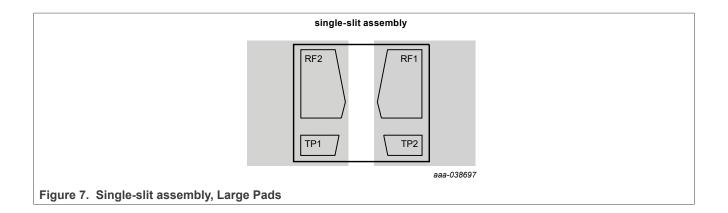
9.6.4 Pre-serialization of the 96-bit EPC

9.6.4.1 Description

UCODE 9xe is delivered with a pre-serialized content of the 96-bit EPC, which is the initial programmed length of the EPC.

The EPC content is identical to the TID content except of the 16-bit XTID content which is set to 16-bit 0's.

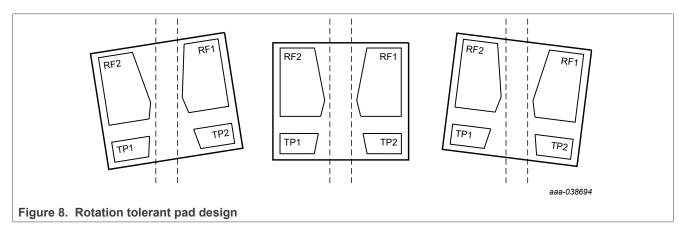

TID		Class Identifier	Mask-Designer Identifier	Model Number	XTID	Serial Number		
	Bits	7 0	11 0	11 0	15 (47 0		
		I			l			
		I				I		
serialized EPC		Class Identifier	Mask-Designer Identifier	Model Number	0000 0000 0000 0000	Serial Number		
	Bits	7 0	11 0	11 0	15 0	47 0		
						aaa-02714.		
Figure	Figure 5. Pre-serialization of 96-bit EPC							


9.6.5 Single-slit antenna solution

9.6.5.1 Description

In UCODE 9xe, the test pads TP1 and TP2 are electrically disconnected and therefore can be safely shortcircuited to the RF pads (RF1, RF2). See <u>Figure 6</u>.

Single-slit antenna enables easier assembly and antenna design. In addition to the standard antenna assembly, the related increased input capacitance (<u>Table 9</u>) can be used for optimization for different antenna design.



9.6.6 Large pads

9.6.6.1 Description

The large gold pads of UCODE 9xe enable more robust and reliable assembly. This pad design allows for more freedom in the placement accuracy (see Figure 8).

9.6.7 Permalock

UCODE 9xe permalock is implemented according to EPCglobal using the LOCK command with a payload of FFFFFh.

For any payload other than FFFFh UCODE 9xe backscatters an error code.

10 Limiting values

Table 8. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to RFN. ^{[1] [2]}

Symbol	Parameter	Conditions		Min	Мах	Unit
Bare die limitations						
T _{stg}	storage temperature			-55	+125	°C
T _{amb}	ambient temperature			-40	+85	°C
V _{ESD}	electrostatic discharge voltage	human body model (HBM) ^[3]	[4]	-	± 2	kV
Pad limitation	ns					
Pi	input power	maximum power dissipation, RF1/RF2 pad		-	100	mW

[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical Characteristics section of this specification is not implied.

[2] This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.

[3] According to ANSI/ESDA/JEDEC JS-001

[4] For ESD measurement, the die chip has been mounted into a CDIP8 package.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

11 **Characteristics**

11.1 UCODE 9xe bare die characteristics

Table 9. UCODE 9xe RF interface characteristics (RF1, RF2)

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _i	input frequency			840	-	960	MHz
P _{i(min)}	minimum input power	READ sensitivity	[1]	-	- 24	-	dBm
P _{i(min)}	minimum input power	WRITE sensitivity	[1]	-	-22	-	dBm
t 16bit	encoding speed	16-bit	[2]	-	0.6	-	ms
		32-bit (block write)	[2]	-	1	-	ms
Ci	chip input capacitance	parallel	[3] [4] [5]	-	0.700	-	pF
R _P	chip resistance	parallel	[4]	-	3.6	-	kΩ
Z	chip impedance	915 MHz	[3] [4] [5]	-	10-j248	-	Ω
Z	typical assembled impedance ^[6]	915 MHz	[7] [8] [5]	-	16-j237		Ω
Z	typical assembled impedance in case of single-slit antenna assembly ^[9]	915 MHz	[7] [10] [5]	-	10-j191	-	Ω

Tag sensitivity on a 2.15 dBi gain antenna When the memory content is "0000...".

Measured with a 50 Ω source impedance directly on the chip

[1] [2] [3] [4] At minimum operating power

[5] at center capacitor of Self-Adjust

[6] [7] See <u>Figure 6</u>)

The antenna shall be matched to this impedance [8] Assuming 35 fF additional assembly capacitance

[9] See Figure 7

[10] Assuming 210 fF additional assembly+test pad capacitance

Table 10. UCODE 9xe memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
EEPROM characteristics						
t _{ret}	retention time	T _{amb} ≤ 55 °C	20	-	-	year
		T _{amb} ≤ 125 °C	1	-	-	year
		T _{amb} ≤ 85 °C	10	-	-	year
N _{endu(W)}	write endurance		100k	-	-	cycle

12 Packing information

12.1 Wafer

See [3].

13 Abbreviations

Table 11. Abbreviations				
Acronym	Description			
CRC	cyclic redundancy check			
CW	continuous wave			
DSB-ASK	Double Side Band-Amplitude Shift Keying			
DC	direct current			
EAS	electronic article surveillance			
EEPROM	electrically erasable programmable read only memory			
EPC	electronic product code (containing header, domain manager, object class and serial number)			
FM0	bi-phase space modulation			
G2	Generation 2			
IC	Integrated Circuit			
PIE	pulse interval encoding			
PSF	product status flag			
RF	radio frequency			
UHF	ultra high frequency			
SECS	Semi Equipment Communication Standard			
TID	tag identifier			

14 References

- [1] EPCglobal: EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz 960 MHz, Version 2.1 (July 2018)
- [2] EPCglobal: EPC Tag Data Standard, Release 1.13 (November 2019)
- [3] Data sheet Delivery type description General specification for 12" wafer on UV-tape with electronic fail die marking, BU-S&C document number: 1862** ¹

^{1 ** ...} document version number

15 Revision history

Table 12. Revisio	on history		
Document ID	Release date	Data sheet status	Supersedes
SL3S1216 v.3.3	12 February 2025	Product data sheet	SL3S1216 v.3.2
Modifications:	Editorial changes. Document security status c 	hanged to "Public", no content change.	
SL3S1216 v.3.2	27 May 2024	Product data sheet	SL3S1216 v.3.1
Modifications:	Section 8.1.1 "12-inch Wafe Net printed dies per wafer.	er": Table 3 "12-inch specification, Plasma D	icing, Large Pads": Updated
SL3S1216 v.3.1	24 March 2023	Product data sheet	SL3S1216 v.3.0
Modifications:		overall memory map": updated. TID memory details": updated.	
SL3S1216 v.3.0	03 July 2022	Product data sheet	SL3S1216 v.2.0
SL3S1216 v.2.0	11 May 2022	Preliminary data sheet	SL3S1216 v.1.0
SL3S1216 v.1.0	04 April 2022	Objective data sheet	-

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>https://www.nxp.com</u>.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

SL3S1216

UCODE 9xe

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules,

regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

 $\ensuremath{\mathsf{NXP}}\xspace{\mathsf{B.V.}}$ — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V. **UCODE** — is a trademark of NXP B.V.

Tables

Tab. 1.	Ordering information4
Tab. 2.	Pin description bare die6
Tab. 3.	12-inch specification, Plasma Dicing, Large
	Pads
Tab. 4.	UCODE 9xe memory sections11
Tab. 5.	UCODE 9xe overall memory map12
Tab. 6.	Configuration word UCODE 9xe

Tab. 7.	Configuration word UCODE 9xe	
	continued	14
Tab. 8.	Limiting values	18
Tab. 9.	UCODE 9xe RF interface characteristics	
	(RF1, RF2)	19
Tab. 10.	UCODE 9xe memory characteristics	19
Tab. 11.	Abbreviations	21
Tab. 12.	Revision history	23

Figures

Fig. 1.	Block diagram of UCODE 9xe IC	5
Fig. 2.	Pinning bare die, Large Pads	.6
Fig. 3.	UCODE 9xe, 12" wafer layout, plasma	
	dicing, Large Pads	7
Fig. 4.	UCODE 9xe TID memory structure1	3

Fig. 5.	Pre-serialization of 96-bit EPC	15
Fig. 6.	Standard antenna design versus single-slit	
	antenna, Large Pads	16
Fig. 7.	Single-slit assembly, Large Pads	16
Fig. 8.	Rotation tolerant pad design	17

Contents

1	General description	1
2	Features and benefits	
2.1	Key features	
2.1.1	Memory	
2.2	Supported features	
3	Applications	
3.1	Target market	
3.2	Applications	
4	Ordering information	
5	Block diagram	
6	Pinning information	6
6.1	Pin description	6
7	Wafer layout	
8	Mechanical specification	
8.1	Wafer specification	8
8.1.1	12-inch Wafer	
8.1.2	Fail die identification	9
8.1.3	Map file distribution	
9	Functional description	10
9.1	Air interface standards	10
9.2	Power transfer	10
9.3	Data transfer	10
9.3.1	Interrogator to tag Link	10
9.3.2	Tag to interrogator Link	10
9.4	Supported commands	11
9.5	UCODE 9xe memory	11
9.5.1	UCODE 9xe overall memory map	12
9.5.2	UCODE 9xe TID memory details	13
9.6	Supported features	14
9.6.1	UCODE 9xe features control mechanism	14
9.6.2	Self-Adjust	15
9.6.2.1	Description	15
9.6.3	Memory Safeguard	15
9.6.3.1	Description	15
9.6.4	Pre-serialization of the 96-bit EPC	15
9.6.4.1	Description	15
9.6.5	Single-slit antenna solution	
9.6.5.1	Description	16
9.6.6	Large pads	17
9.6.6.1	Description	17
9.6.7	Permalock	17
10	Limiting values	18
11	Characteristics	
11.1	UCODE 9xe bare die characteristics	
12	Packing information	
12.1	Wafer	. 20
13	Abbreviations	
14	References	
15	Revision history	
	Legal information	
	U	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2025 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com