

© Freescale Semiconductor, Inc., 2007. All rights reserved.

 TM

ColdFire® DSP Library Reference Manual, Rev 0.4

ColdFire® DSP Library Reference Manual, Rev 0.4 ... 1

1. Introduction... 2

2. Acronyms.. 2

3. Background DSP Theory .. 2

3.1. Typical DSP Chain ... 2

3.2. Frequency Response ... 3

3.3. Sample Rate and Aliasing... 5

3.4. Digital Frequency.. 6

3.5. Analog vs. Digital Filters.. 6

3.6. IIR vs. FIR Filters ... 7

4. Software Architecture ... 7

4.1. Supported Platforms.. 8

4.2. Data Types .. 8

4.3. Data Structures.. 8

4.4. Initialization .. 9

4.5. Algorithm Execution... 9

4.6. Putting It All Together .. 9

5. Directory Structure.. 10

6. DSP Routines .. 10

6.1. IIR Filters: 2
nd

-6
th

 Orders.. 10

7. IIR Filter Configurations... 10

8. Hardware Validation... 13

9. Performance and Memory... 13

10. References... 13

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 2

1. Introduction
The ColdFire DSP Library contains digital signal processing algorithms optimized for the

ColdFire architecture. These algorithms are implemented directly in assembly for

computational efficiency and then encapsulated into a simple C interface. In addition, a

large number of predefined and pretested filter configurations are provided in order to

reduce the need for a user to design digital filters.

The library is designed to enable embedded sensor applications with basic signal

processing functionality, but without the need for a DSP co-processor. By taking

advantage of an on-chip multiply-accumulate unit (MAC), a ColdFire microcontroller

can efficiently execute DSP algorithms. A typical user may wish to sample an analog

sensor (such as an accelerometer) with an analog-to-digital converter (ADC) at a

particular rate, filter out unwanted signal components (such as high-frequency noise or

other interfering signals), and then use the result in the target application for monitoring,

status, data-logging, or control capabilities. The ColdFire DSP Library greatly simplifies

the digital filtering part of the process.

2. Acronyms
• DSP – digital signal processing

• MCU – microcontroller unit

• MAC – multiply-accumulate

• EMAC – extended multiply-accumulate

• ADC – analog-to-digital converter

• DAC – digital-to-analog converter

• IIR – infinite impulse response

• FIR – finite impulse response

• SRC – sample rate converter

3. Background DSP Theory
A brief discussion of basic DSP theory will help clarify the features and appropriate

applications of the library. Sample rate is a key component to understanding digital

frequency and aliasing, and its importance cannot be understated.

3.1. Typical DSP Chain
A typical DSP chain in a sensor system consists of an analog lowpass (anti-aliasing) filter

at the front-end, an ADC, one or more digital filters, a DAC, and finally another analog

lowpass filter at the back-end. The front-end analog lowpass filter attenuates frequencies

above Nyquist before sampling, limiting aliasing effects. The ADC samples and

quantizes the signal, the output of which can then be processed by the digital filters. If

necessary, a DAC converts the resulting digital signal to an analog signal. Finally, an

analog lowpass filter smoothes the output analog signal.

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 3

Figure 3-1: Typical DSP Chain

3.2. Frequency Response
The frequency response of a system describes how that system will respond to the

frequency content of the input signal. Given an input signal comprised of one or more

frequency components, the response shows how the system modifies each component

independently. Frequency is plotted on the x-axis and magnitude on the y-axis, both on

logarithmic scales. Because the y-axis units are typically dB, a value of zero indicates the

system allows a signal to pass through without any change in magnitude. Negative

numbers on the y-axis indicate attenuation or a reduced output signal, while positive

numbers indicate amplification. A value of -40 dB corresponds to 100x reduction in

amplitude, while +60 dB corresponds to 1000x amplification.

Examining the figure below, the magnitude of the response decreases as frequency

increases, demonstrating a lowpass filter. Signals with frequencies between DC and

approximately 100 Hz will be modified with a gain of approximately 1. Signal

components at a frequency of 10 kHz will be attenuated either by a factor of 0.01 (red

response) or 0.0001 (blue response). The blue line corresponds to a Butterworth filter,

while the red line is a Chebyshev filter. Both are lowpass filters, but they behave

somewhat differently. The Chebyshev filter falls off (decreases in magnitude) faster than

the Butterworth, but comes back up at higher frequencies.

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 4

Figure 3-2: Lowpass Filter Frequency Response

The next figure illustrates the frequency response of a highpass filter. The behavior is

opposite to before, attenuating low frequencies and passing high frequencies. Again, the

blue and red lines correspond to Butterworth and Chebyshev filters respectively.

Figure 3-3: Highpass Filter Frequency Response

In either case, the range of unattenuated frequencies is called the passband, and the range

of attenuated frequencies is called the stopband. By definition, the cutoff frequency

separates the two, at -3 dB.

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 5

3.3. Sample Rate and Aliasing
The process of sampling an analog signal limits the range of frequencies resolvable in the

digital domain. This limit is known as the Nyquist frequency and equals half the

sampling frequency. If the original analog signal contains any components above the

Nyquist frequency, they will be aliased after sampling. Aliasing causes high frequency

signals to appear as low frequency signals, an effect that cannot be undone. It is

impossible to determine which components of a sampled signal were present in the

original analog signal below Nyquist and which were folded into the resolvable

frequency range as a result of aliasing.

The following picture illustrates the effect of aliasing. The original analog signal contains

sinusoidal components at 2 Hz and 100 Hz, therefore sampling at any frequency less than

200 Hz causes aliasing. For example, if the signal is sampled at 110 Hz, the 100 Hz

component will alias to 10 Hz. Likewise, if the signal is sampled at 105 Hz, the 100 Hz

component will alias to 5 Hz. In both cases, the 2 Hz component is unaffected.

Figure 3-4: Aliasing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-8

-6

-4

-2

0

2

4

6

8

3sin(2π2t)+2sin(2π100t)

original signal

sampled at 110 Hz

sampled at 105 Hz

The exact nature of how signals are aliased is beyond the scope of this paper, but it is

sufficient in many applications to simply understand which signals will alias, i.e.,

anything above the Nyquist frequency.

Two solutions exist to the aliasing problem: sample at least twice as fast as the highest

possible frequency, or attenuate signals above the Nyquist frequency before sampling.

The first solution is computationally expensive and often unnecessary overkill, so the

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 6

second solution is usually preferred. An analog anti-aliasing filter reduces or removes

signals above the Nyquist frequency before sampling. It is important to note that this

must occur in the analog domain before sampling. Going back to the above example, this

would mean filtering out the 100 Hz component from the analog signal before sampling

at anything less than 200 Hz.

Figure 3-5: Anti-aliasing Filter

3.4. Digital Frequency
Digital signals have no concept of time – they are just a sequence of numbers. Likewise,

digital systems, such as the filters in the ColdFire DSP Library, process this sequence of

numbers (samples). Time and frequency are relative to the sampling rate, governed by the

following important relationship:

Equation 3-6: Relationship between Analog and Digital Frequency

nyquist

ana

s

ana

digtal
f

f

f

f
f

loglog

2

==

In other words, digital frequency is normalized by the Nyquist frequency and ranges from

zero to one
1
.

3.5. Analog vs. Digital Filters
An analog filter is realized by discrete circuit components such as amplifiers, resistors,

inductors and capacitors. Its frequency response is a function of these component values.

Tuning or adjusting an analog filter response requires replacing circuit components. In

1
 Some references may use digital frequencies that range from zero to π or 0.5, the upper limit

corresponding to the Nyquist frequency in both cases.

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 7

addition, parameter variations, temperature and other possibly time-varying sources can

significantly affect the frequency response of the analog filter.

A digital filter, on the other hand, is realized by data registers and an ALU. Tuning or

adjusting the filter is as simple as modifying register values. Frequency response is a

function of coefficient quantization and does not vary with time.

A significant advantage to digital filters is a consequence of normalized digital

frequency: the same filter can be used in very different applications because frequency is

relative. For example, consider sampling an analog signal at several different rates and

then processing with the same digital lowpass filter, defined by the filter cutoff at 0.2

(digital frequency). Depending on the sample rate, the signal may fall in the passband or

the stopband of the filter.

Table 3-1: Effects of Lowpass Digital Filter

Analog

Frequency

Sample

Rate

Digital

Frequency

Filter

Cutoff

Filter Effect

200 Hz 500 Hz 200/(500/2)=0.8 0.2 signal above cutoff, attenuated

200 Hz 1 kHz 200/(1000/2)=0.4 0.2 signal above cutoff, attenuated

200 Hz 4 kHz 200/(4000/2)=0.1 0.2 signal below cutoff, passed

through

3.6. IIR vs. FIR Filters
The current ColdFire DSP Library contains only IIR filters because of their significant

computational advantage over FIR filters. The major difference between FIR and IIR

filters is that the latter includes feedback terms.

Equation 3-1: IIR vs. FIR Filter Equations

∑

∑∑

=

−

=

−

=

−

=

+=

N

i

inin

N

i

ini

N

i

inin

xbyFIR

yaxbyIIR

0

10

:

:

The presence of feedback terms enables an IIR filter to achieve higher frequency

isolation with fewer operations and fewer coefficients (lower order N) than an FIR filter.

In general, IIR filters provide a higher rate of attenuation/unit frequency than FIR filters,

but at the cost of potential instability or high sensitivity of filter response to small

changes in filter coefficients. In the ColdFire DSP Library, this stability or sensitivity

issue has been eliminated by our pre-testing of every filter, running on ColdFire hardware

(not simulators).

4. Software Architecture
The core component of the ColdFire DSP Library is a group of DSP algorithms

implemented in assembly for optimal computational performance. In order to make these

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 8

assembly functions more user-friendly, custom data structures and initialization functions

are included. As a result, the assembly functions are C-callable with a minimum number

of arguments. The user must only initialize a data structure through the use of its

associated initialization routine, requiring no intimate knowledge of the data structure

implementation or the assembly code. With the assembly algorithms implemented as

functions rather than macros, the instruction code is not replicated in memory even if

called multiple times.

4.1. Supported Platforms
ColdFire ISA_A platforms with an on-board MAC are supported. The library was

developed and tested using M52221DEMO hardware evaluation board and Freescale

CodeWarrior 6.4 Integrated Development Environment (IDE). EMAC platforms are

supported as long as the assembler consistently uses the same accumulator (typically

ACC0). This was tested with CodeWarrior 6.4 on MCF5227x.

4.2. Data Types
The ColdFire DSP Library implements a 16-bit datapath, since most ADCs utilized in

sensor applications quantize analog data to 12 bits or less. In addition, the ColdFire MAC

is optimized for 16-bit multiply-accumulate operations. Longer or shorter word lengths

may be used, but must first be cast to a signed 16-bit integer.

It is important to remember that signed 16-bit integers use twos-complement format. Any

other data types, including floating-point or unsigned integers, are not compatible with

the library. Since sensors and ADCs often operate only on positive voltages, producing

an unsigned integer result, it may be required to add an offset to convert to signed twos-

complement format.

The DSP algorithms included in this library are linear systems, meaning that

superposition and scaling properties apply. The latter property, scaling, allows any fixed-

point scale factor to propagate through the system. That is, if an input is scaled by a

certain constant value, the output will also be scaled by that value. The system requires

no knowledge of the scaling constant.

4.3. Data Structures
In order to make DSP functions configurable across a variety of applications, they require

the ability to parse multiple parameters. For example, an IIR filter algorithm evaluates an

equation whose form does not change for different types of filters such as lowpass or

highpass or even different frequency cutoffs, as long as the order does not change. The

filter coefficients govern this behavior and are therefore supplied to the IIR function as

parameters, enabling the same instruction code to execute multiple filters with different

frequency responses. Note, however, that different order IIR filters are implemented

separately, so a 3
rd

 order IIR filter does not use the same assembly code as a 4
th

 order IIR

filter.

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 9

Each assembly routine uses its own custom data structure in order to maximize data

memory efficiency. It parses the data structure elements internally since it is aware of

element sizes, offsets, and relative order. An important consequence of this assembly-

level parsing is that data structure definitions cannot be modified in any way, including

element order and size.

In general, DSP algorithms utilize state, which means that data structures must be

maintained outside the scope of the assembly functions. For example, a 3
rd

 order IIR filter

uses three previous input and output values to compute the next output. Consequently, the

data structure associated with a 3
rd

 order IIR filter includes an input/output buffer to save

these previous values for the subsequent assembly function call.

Although every data structure is different, two common elements exist – input address

and output value. The input address points to the location of the input data sample, while

the output value contains the actual output data. The use of a pointer for the input allows

various DSP functions to be chained together in numerous series or parallel

configurations. As a result, the output of a 3
rd

 order IIR filter can be cascaded to the input

of a 4
th

 order IIR filter or even another instance of a 3
rd

 order IIR filter.

4.4. Initialization
The most visible component of the library is the set of data structure initialization

functions. These functions allow a user to configure DSP algorithms by setting options

such as filter coefficients and fixed-point scale factors. In addition, they load the input

pointer entry and clear any buffer entries. Because every data structure is implemented

differently, each has a separate initialization function that performs specific operations.

Note that initialization should occur only once for each instance of a data structure, prior

to executing the assembly algorithm.

4.5. Algorithm Execution
The actual DSP algorithms are implemented in optimized assembly, but have a simple C-

callable interface. They accept just a single argument, a pointer to the appropriate type of

data structure, and return void. Algorithms preserve core register state (D0-D7/A0-A7)

but do not preserve MAC state (ACCx/MACSR). In general, one call to a DSP algorithm

produces one new output value. While the initialization routine executes once, the

assembly function usually executes in a loop. It parses the elements in the data structure

as necessary, evaluates the algorithm, and then places the result back into the data

structure.

4.6. Putting It All Together
A typical real-time sensor application will first initialize a data structure, enable a timer-

based interrupt handler, and fall into an infinite-wait loop or background process. The

DSP work then occurs in the timer-based interrupt handler – periodically sampling an

ADC and calling the assembly function. The rate of the interrupt defines the sample rate

and therefore Nyquist frequency.

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 10

5. Directory Structure
The files included in the library are organized as follows:

Table 5-1: Directory Structure

Directory Filename Description

dsp_library.h top-level header file

dsp_library_defines.h pre-processor defines

dsp_library_structures.h data structure definitions

dsp_library_init.h initialization function prototypes

dsp_library_asm_macros.h assembly-level macros

dsp_library_asm_functions.h assembly function prototypes

headers

dsp_library_c_functions.h miscellaneous C function prototypes

iir_filters.h external declarations for IIR filter

configuration parameters

filters

iir_filters.c definitions of IIR filter configuration

parameters

dsp_library_init.c initialization functions

dsp_library_c_functions.c miscellaneous C functions

iir2_asm.s 2
nd

 order IIR filter assembly code

iir3_asm.s 3
rd

 order IIR filter assembly code

iir4_asm.s 4
th

 order IIR filter assembly code

iir5_asm.s 5
th

 order IIR filter assembly code

functions

iir6_asm.s 6
th

 order IIR filter assembly code

6. DSP Routines
The following sections describe the DSP algorithms included in the library, their

associated data structures, and function calls.

6.1. IIR Filters: 2nd-6th Orders
Separate assembly routines exist for each order of IIR filter between two and six

inclusive. Consequently, separate data structures and initialization routines exist as well,

although the general form of each is essentially the same. Each IIR filter order evaluates

the following equation where N is the order.

Equation 6-1: N

th
 Order IIR Filter

∑∑
=

−

−

=

−

−
+=

N

i

ini

A
N

i

ini

B

n yaxby
10

22

Table 6-1: Nth Order IIR Data Structure

Name Type Offset Description, N={2,3,4,5,6}

output int16 0 Filter output data

diff_sf uint8 2 Difference between numerator and denominator

coefficient scale factors

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 11

Name Type Offset Description, N={2,3,4,5,6}

ABsfdiff −=_

den_sf uint8 3 Denominator coefficient scale factor

Asfden =_

input int16 * 4 Pointer to filter input data

flags uint32 8 Not used

coef int32 * 12 Pointer to coefficient array

{ }010 ,,,,...,)]1(2[* aaabbNcoef NN=+

order uint32 16 Filter order, N

buffer[2N] int16 20 Buffer to hold previous input and output values

{ }NnNnnnnn yxyxyxNbuffer
−−−−−−

= ,,...,,,,]2[2211

There exist two types of routines that accept an IIR data structure argument, one to

initialize the data structure and another to evaluate the IIR filter equation in assembly.

Although these functions are implemented separately for each order, the prototypes all

use the same format.

Table 6-2: N

th
 Order IIR Function Calls

Purpose Prototype, N={2,3,4,5,6}

Data Structure Initialization void iirN_init(IIRN_STRUCT *x, int16 *input, int16

*coef, uint8 num_sf, uint8 den_sf, uint8 order)

Assembly Algorithm void iirN_asm(IIRN_STRUCT *x)

The following table delineates IIR order-specific names for data structures, initialization

functions, and assembly routines.

Table 6-3: IIR Order-Specific Structures and Functions

Order Data Structure Initialization Assembly Algorithm

2 IIR2_STRUCT iir2_init iir2_asm

3 IIR3_STRUCT iir3_init iir3_asm

4 IIR4_STRUCT iir4_init iir4_asm

5 IIR5_STRUCT iir5_init iir5_asm

6 IIR6_STRUCT iir6_init iir6_asm

7. IIR Filter Configurations
The ColdFire DSP Library includes a large set of IIR filter configurations that span a

wide range of applications. These predefined configurations allow a user to quickly

select a specific frequency response by making three simple decisions.

Table 7-1: IIR Filter Decisions

Parameter Options Implications

Shape lowpass, highpass,

bandpass, notch

Shape of frequency response, i.e., are high

frequencies passed through or attenuated

Order 2,3,4,5,6 Rolloff steepness. Higher orders roll off faster

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 12

Parameter Options Implications

but require more MCU bandwidth

Cutoff varies by order, most

cover 0.20-0.80 range

in 0.05 increments

Digital cutoff frequency (-3dB). Related to

analog frequency by sample rate,

nyquist

ana

s

ana

digtal
f

f

f

f
f

loglog

2

==

The following table identifies all filter configurations included in the library. Each

combination of filter shape, order and cutoff constitutes a single filter configuration. Each

configuration comes with four parameters – filter coefficients array, numerator scale

factor, denominator scale factor, and filter order. The configurations below are all

characterized as Butterworth IIR filters.

Table 7-2: IIR Filter Configurations

Shape Order Minimum Cutoff Cutoff Increment Maximum Cutoff

2 0.20 0.05 0.85

3 0.20 0.05 0.85

4 0.25 0.05 0.80

5 0.25 0.05 0.80

lowpass

6 0.25 0.05 0.75

2 0.20 0.05 0.80

3 0.20 0.05 0.80

4 0.25 0.05 0.75

5 0.25 0.05 0.75

highpass

6 0.25 0.05 0.75

bandpass 4 0.20 0.05 0.80

notch 4 0.20 0.05 0.80

A straightforward naming convention identifies the order, shape, and frequency cutoff of

each filter: butter[ORDER]_[SHAPE]_[CUTOFF(S)]. Rather than listing the name of

every filter parameter included in the library, the following table demonstrates several

examples. For each of four parameters that constitute a single filter configuration, the

base name is appended by the parameter name.

Table 7-3: Naming Convention Examples

Parameter Name Description

butter2_lp_0_20_coef array of coefficients for a 2
nd

 order Butterworth lowpass

filter, digital cutoff frequency is 0.20

butter3_hp_0_75_num_sf numerator coefficients scale factor for a 3rd order

Butterworth highpass filter, digital cutoff frequency is

0.75

butter4_bp_0_20_0_25_den_sf denominator coefficients scale factor for a 4
th

 order

Butterworth bandpass filter, digital cutoff frequencies

are 0.20 and 0.25

ColdFire® DSP Library Reference Manual, Rev 0.4

Freescale Semiconductor 13

Parameter Name Description

butter4_nt_0_30_0_35_order order of a 4
th

 order Butterworth notch filter, digital

cutoff frequencies are 0.30 and 0.35

Accumulator saturation can cause the filter response to become nonlinear, therefore input

magnitudes of 12 bits or less are recommended for 4-6
th

 order filters and 13 bits or less

for 2-3
rd

 order filters. This is not a strict requirement since occasional spikes in the input

data will be tolerated. A large persistent input (i.e. a step with 15 bits of magnitude), on

the other hand, will see a large steady-state error in the output.

8. Hardware Validation
All filter definitions have been tested in hardware for the recommended input ranges.

They have been validated against a floating-point model to have minimal fixed-point

errors, in both the RMS and absolute maximum measures. Filter definitions that are

highly susceptible to fixed-point errors are intentionally excluded from the library.

Hence, very low or very high digital frequency cutoffs, especially for higher order filters,

are excluded.

9. Performance and Memory
The following table outlines the execution latencies and memory footprints for each

assembly-level algorithm included in the library. Execution time is measured at the

parent function level, including latencies required to jump into and out of the subroutine

as well as overhead from saving and restoring processor state. The instruction code is

instantiated in SRAM for minimal memory latency. Performance was measured with a

M52221DEMO board. Note that execution times may vary on an EMAC platform.

Table 9-1: Algorithm Performance and Memory

Assembly

Algorithm

Execution Time

(cycles)

Assembly Code Size

(Bytes)

Data Structure Size

(Bytes)

iir2_asm 126 142 28

iir3_asm 135 154 32

iir4_asm 139 164 36

iir5_asm 148 174 40

iir6_asm 149 176 44

10. References
1. A. Oppenheim, R. Schafer, and J. Buck, Discrete-Time Signal Processing, 2

nd

Edition, Prentice Hall, 1999.

2. Freescale Semiconductor, ColdFire Family Programmer’s Reference Manual, Rev. 3,

2005.

