
RS08
Core Reference

freescale.com

Manual
RS08RM
Rev 1.0
04/2006

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://freescale.com

The following revision history table summarizes changes contained in this document.

Revision
Number

Revision
Date Description of Changes

1.0 4/2006 Initial public release version

This product incorporates SuperFlash® technology licensed from SST.

Freescale‚ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2006. All rights reserved.

http://www.freescale.com

RS08 Core Reference Manual

List of Sections
Section 1. General Information and Block Diagram . . .11

Section 2. Central Processor Unit (CPU) 17

Section 3. Development Support55

Appendix A. Instruction Set Details 85

Appendix B. Code Examples .147

Appendix C. Assembler and Disassembler
Style Guide. .151
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 3

RS08 Core Reference Manual

Table of Contents
Section 1. General Information and Block Diagram

1.1 Introduction to the RS08 Family of Microcontrollers11

1.2 Memory Map for the RS08 Family .12

1.3 RS08 Core Paging Scheme .14

Section 2. Central Processor Unit (CPU)

2.1 Introduction .17

2.2 Programmer’s Model and CPU Registers.17
2.2.1 Accumulator (A) .18
2.2.2 Program Counter (PC) .19
2.2.3 Shadow Program Counter (SPC) .19
2.2.4 Condition Code Register (CCR) .20
2.2.5 Indexed Data Register (D[X]) .22
2.2.6 Index Register (X) .22
2.2.7 Indexed/Indirect Addressing. .22
2.2.8 Page Select Register (PAGESEL) .23

2.3 Addressing Modes .24
2.3.1 Inherent Addressing Mode (INH) .25
2.3.2 Relative Addressing Mode (REL) .25
2.3.3 Immediate Addressing Mode (IMM)26
2.3.4 Tiny Addressing Mode (TNY) .27
2.3.5 Short Addressing Mode (SRT) .27
2.3.6 Direct Addressing Mode (DIR) .28
2.3.7 Extended Addressing Mode (EXT).28
2.3.8 Indexed Addressing Mode

(IX, Implemented by Pseudo Instructions)28

2.4 Special Operations .29
2.4.1 Reset Sequence. .29
2.4.2 Interrupts .30
2.4.3 Wait and Stop Mode. .30
2.4.4 Active Background Mode .30

2.5 Instruction Set Description by Instruction Types.31
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 5

Table of Contents
2.5.1 Data Movement Instructions. .33
2.5.1.1 Loads and Stores .34
2.5.1.2 Bit Set and Bit Clear. .35
2.5.1.3 Memory-to-Memory Moves .36
2.5.2 Math Instructions .36
2.5.2.1 Add, and Subtract .36
2.5.2.2 Increment, Decrement, and Clear 37
2.5.2.3 Compare .37
2.5.3 Logical Operation Instructions .38
2.5.3.1 AND, OR, Exclusive-OR, and Complement38
2.5.4 Shift and Rotate Instructions .39
2.5.5 Jump, Branch, and Loop Control Instructions 39
2.5.5.1 Unconditional Jump and Branch 40
2.5.5.2 Simple Branches .41
2.5.5.3 Unsigned Branches .41
2.5.5.4 Bit Condition Branches. .43
2.5.5.5 Loop Control. .43
2.5.6 Subroutine-Related Instructions .43
2.5.7 Miscellaneous Instructions .44

2.6 Summary Instruction Table. .45

Section 3. Development Support

3.1 Introduction .55

3.2 Features .56

3.3 RS08 Background Debug Controller (BDC)56
3.3.1 BKGD Pin Description .58
3.3.2 Communication Details .59
3.3.3 SYNC and Serial Communication Timeout 62

3.4 BDC Registers and Control Bits .63
3.4.1 BDC Status and Control Register (BDCSCR) 64
3.4.2 BDC Breakpoint Match Register .65

3.5 RS08 BDC Commands. .66
3.5.1 SYNC .69
3.5.2 BDC_RESET .70
3.5.3 BACKGROUND .70
3.5.4 READ_STATUS .71
3.5.5 WRITE_CONTROL .72
3.5.6 READ_BYTE .73
3.5.7 READ_BYTE_WS .74
RS08 Core Reference Manual, Rev 1.0
6 Freescale Semiconductor

3.5.8 WRITE_BYTE .74
3.5.9 WRITE_BYTE_WS .75
3.5.10 READ_BKPT .76
3.5.11 WRITE_BKPT .76
3.5.12 GO .77
3.5.13 TRACE1 .77
3.5.14 READ_BLOCK .78
3.5.15 WRITE_BLOCK .78
3.5.16 READ_A .79
3.5.17 WRITE_A .79
3.5.18 READ_CCR_PC .79
3.5.19 WRITE_CCR_PC .80
3.5.20 READ_SPC .81
3.5.21 WRITE_SPC .81

3.6 BDC Hardware Breakpoint .81

3.7 BDM in Stop and Wait Modes. .82

3.8 BDC Command Execution .83

Appendix A. Instruction Set Details
A.1 Introduction .85
A.2 Nomenclature .85
A.3 Convention Definitions .89
A.4 Use of ‘X’, ‘,X’ and ‘D[X]’ as instruction operands.89
A.5 Instruction Set. .90

ADC Add with CarryADC .91
ADD Add without CarryADD .92
AND Logical ANDAND .93
ASLA Arithmetic Shift LeftASLA .94
BCC Branch if Carry Bit ClearBCC95
BCLR n Clear Bit n in MemoryBCLR n .96
BCLR n Clear Bit n in MemoryBCLR n .97
BCS Branch if Carry Bit SetBCS .98
BEQ Branch if EqualBEQ .99
BGND BackgroundBGND .100
BHS Branch if Higher or SameBHS101
BLO Branch if LowerBLO .102

(Pseudo Instruction, same as BCS) 102
BNE Branch if Not EqualBNE .103
BRA Branch AlwaysBRA .104
BRA Branch AlwaysBRA .105
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 7

Table of Contents
BRN Branch NeverBRN .106
BRCLR n Branch if Bit n in Memory ClearBRCLR n 107
BRCLR n Branch if Bit n in Memory ClearBRCLR n 108
BRSET n Branch if Bit n in Memory SetBRSET n109
BRSET n Branch if Bit n in Memory SetBRSET n110
BSET n Set Bit n in MemoryBSET n. .111
BSET n Set Bit n in MemoryBSET n. .112
BSR Branch to SubroutineBSR .113
CBEQ Compare and Branch if EqualCBEQ114
CLC Clear Carry BitCLC .115
CLR ClearCLR .116
CMP Compare Accumulator with MemoryCMP117
COMA Complement (One’s Complement) COMA 118
DBNZ Decrement and Branch if Not ZeroDBNZ119
DEC DecrementDEC .120
EOR Exclusive-OR Memory with AccumulatorEOR 121
INC IncrementINC .122
JMP JumpJMP .123
JSR Jump to SubroutineJSR .124
LDA Load Accumulator from MemoryLDA125
LDX Load X Index Register from MemoryLDX 126
LSLA Logical Shift LeftLSLA .127
LSRA Logical Shift RightLSRA .128
MOV MoveMOV .129
NOP No OperationNOP. .130
ORA Inclusive-OR Accumulator and MemoryORA131
ROLA Rotate Left through CarryROLA132
RORA Rotate Right through CarryRORA133
RTS Return from SubroutineRTS.134
SBC Subtract with CarrySBC .135
SEC Set Carry BitSEC .136
SHA Swap Shadow PC High with ASHA 137
SLA Swap Shadow PC Low with SLA138
STA Store Accumulator in MemorySTA.139
STOP Stop ProcessingSTOP .140
STX Store X (Index Register Low) in MemorySTX 141
SUB SubtractSUB. .142
TAX Transfer A to X .143
TST Test for Zero .144
TXA Transfer X to A .145
WAIT Stop CPU ClockWAIT .146
RS08 Core Reference Manual, Rev 1.0
8 Freescale Semiconductor

Appendix B. Code Examples
B.1 Illegal Table .147
B.2 lda .148
B.3 probe. .148
B.4 walk. .149

Appendix C. Assembler and Disassembler Style Guide
C.1 Support Notes for RS08 Tools .151
C.1.1 Pseudo Instructions .151
C.1.2 Tiny and Short Addressing .151
C.1.3 Forcing Tiny/Short and Direct Addressing152
C.1.4 Unsupported Instructions .152
C.1.5 Tiny, Short, and Direct Address Usage Statistics.153

C.2 Debugger and Disassembly .153
C.2.1 HC(S)08 Style .153
C.2.2 RS08 Style .154
C.2.3 Native RS08 Style .154

C.3 Compilers .154
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 9

RS08 Core Reference Manual

Section 1. General Information and Block Diagram
1.1 Introduction to the RS08 Family of Microcontrollers

Freescale’s RS08 Family of microcontrollers (MCUs) uses a reduced
version of the HCS08 central processor unit (CPU). The RS08 Family is
targeted for small embedded applications. When working with an
individual member of the RS08 Family of MCUs, refer to the device data
sheet for information specific to the MCU.

Each MCU device in the RS08 Family consists of the RS08 core plus
several memory and peripheral modules. The RS08 core consists of:

• RS08 CPU (reduced HCS08)

• Background debug controller (BDC)

• Chip-level address decoder

The RS08 CPU executes a subset of HCS08 instructions, with minor
extensions. See Section 8, “Central Processor Unit (RS08CPUV1),” for
more information.

The background debug controller (BDC) is built into the CPU core to
allow easier access to address generation circuits and CPU register
information. The BDC includes one hardware breakpoint. The BDC
allows access to internal register and memory locations via a single pin
on the MCU. See Section Chapter 12, “Development Support,” for more
information.

The core includes support for various interrupts for wakeup after
STOP/WAIT instruction execution and various reset sources. The
peripheral modules provide local interrupt enable circuitry and flag
registers. See Section Chapter 8, “Central Processor Unit
(RS08CPUV1),” for more information.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 11

General Information and Block Diagram
1.2 Memory Map for the RS08 Family

A portion of the memory map has been standardized. The most
frequently used registers for input/output (I/O) ports and control and
status registers for peripheral modules are located between $0010 and
$001E. The space from $0000 to $000E and $0020 to $01FF are
reserved for static RAM memory. A space between $0200 to $03FF is
reserved for high-page registers.

The RS08 has also introduced a standard paging scheme for the CPU
to access the whole 16K memory space using a 64-byte page window
located at $00C0 to $00FF. Details are described in the following
section.

Figure 1-1 shows the memory map of a typical RS08 Family device.
RS08 Core Reference Manual, Rev 1.0
12 Freescale Semiconductor

Memory Map for the RS08 Family
Figure 1-1. Typical RS08 Memory Map

D[X]
REGISTER X

FAST ACCESS RAM

14 BYTES

FREQUENTLY USED REGISTERS

HIGH PAGE REGISTERS

$000E
$000F

$0000

$000D

$0010

$001E

$0200

$023F

RAM

48 BYTES

$0020

$004F

PAGING WINDOW

$00C0

$00FF

FLASH

$3800

$3FFB

2044 BYTES

UNIMPLEMENTED

UNIMPLEMENTED

NVOPT$3FFC
$3FFD
$3FFF

FLASH

PAGESEL$001F

UNIMPLEMENTED

PAGESEL REGISTER

$00

$08 (reset value)

$E0

CONTENT
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 13

General Information and Block Diagram
1.3 RS08 Core Paging Scheme

Because the RS08 core does not support extended memory access for
data access beyond the first 256 bytes (commonly known as direct or
page 0), a paging scheme has been implemented. This scheme
segments the full 16-Kbyte address map of the RS08 core into 256
pages of 64 bytes each. The direct/page 0 address range
($0000–$00FF) is mapped into the first four 64-byte pages. The range
of pages of typical interest for a 2-Kbyte FLASH device with FLASH
located at $3800–3FFF is provided in Table 1-1:

To access the data in different pages, the 64-byte high page access
window located at $00C0–$00FF must be used in the direct page. To
position the high page access window to the desired address range
within the 16K address space of the RS08, the PAGESEL register
(location $001F) must be set with the appropriate value. As soon as the
PAGESEL register has been written with the appropriate value,
subsequent accesses to the high page access window will address the
area determined by the PAGESEL register.

The following code example shows the procedure to access the first,
eighth, and ninth byte of FLASH memory starting at location $3800 using
the high page access window and indexed addressing mode.

Table 1-1. RS08 Paging Scheme

Page Number Address

0 $0000–$003F

1 $0040–$007F

2 $0080–$00BF

3 $00C0–$00FF

4–7 $0100–$01FF

8 $0200–$023F

9–223 $0240–$37C0

224 $3800–$383F

225–255 $3840–$3FFF
RS08 Core Reference Manual, Rev 1.0
14 Freescale Semiconductor

RS08 Core Paging Scheme
PAGESEL:EQU $001F ;Page select reg. for High Page Access Window
HPAWS: EQU $00C0 ;Start address of High Page Access Window

;Set High Page Access Window to point to first page of flash
MOV #$E0,PAGESEL
LDA $00C0 ;Read contents of first byte in flash

;Use the Index register to access the 8th byte of the flash ($3807)
LDX #$C7
LDA ,X

;Move 9th byte of Flash to $0000 (location $3808)
INCX
LDA ,X
STA $00
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 15

General Information and Block Diagram
RS08 Core Reference Manual, Rev 1.0
16 Freescale Semiconductor

RS08 Core Reference Manual

Section 2. Central Processor Unit (CPU)
2.1 Introduction

The RS08 CPU has been developed to target extremely low-cost
embedded applications using a process-independent design
methodology, allowing it to keep pace with rapid developments in silicon
processing technology.

The main features of the RS08 core are:

• Streamlined programmer’s model

• Subset of HCS08 instruction set with minor instruction extensions

• Minimal instruction set for cost-sensitive embedded applications

• New instructions for shadow program counter manipulation, SHA
and SLA

• New short and tiny addressing modes for code size optimization

• 16K bytes accessible memory space

• Reset will fetch the first instruction from $3FFD

• Low-power modes supported through the execution of the STOP
and WAIT instructions

• Debug and FLASH programming support using the background
debug controller module

• Illegal address and opcode detection with reset

2.2 Programmer’s Model and CPU Registers

Figure 2-1 shows the programmer’s model for the RS08 CPU. These
registers are not located in the memory map of the microcontroller. They
are built directly inside the CPU logic.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 17

Central Processor Unit (CPU)
Figure 2-1. CPU Registers

In addition to the CPU registers, there are three memory mapped
registers that are tightly coupled with the core address generation during
data read and write operations. They are the indexed data register
(D[X]), the index register (X), and the page select register (PAGESEL).
These registers are located at $000E, $000F, and $001F, respectively.

Figure 2-2. Memory Mapped Registers

2.2.1 Accumulator (A)

This general-purpose 8-bit register is the primary data register for RS08
MCUs. Data can be read from memory into A with a load accumulator
(LDA) instruction. The data in A can be written into memory with a store
accumulator (STA) instruction. Various addressing mode variations
allow a great deal of flexibility in specifying the memory location involved
in a load or store instruction. Exchange instructions allow values to be

PC

SPC

CARRY
ZERO

0

0

0

7

13

13

ACCUMULATOR A

SHADOW PROGRAM COUNTER

8 7
PROGRAM COUNTER

CCRCZCONDITION CODE REGISTER

07

07

07
INDEXED DATA REGISTER D[X] (location $000E)

INDEX REGISTER X (location $000F)

PAGE SELECT REG PAGESEL (location $001F)
RS08 Core Reference Manual, Rev 1.0
18 Freescale Semiconductor

Programmer’s Model and CPU Registers
exchanged between A and SPC high (SHA) and also between A and
SPC low (SLA).

Arithmetic, shift, and logical operations can be performed on the value in
A as in ADD, SUB, RORA, INCA, DECA, AND, ORA, EOR, etc. In some
of these instructions, such as INCA and LSLA, the value in A is the only
input operand and the result replaces the value in A. In other cases, such
as ADD and AND, there are two operands: the value in A and a second
value from memory. The result of the arithmetic or logical operation
replaces the value in A.

Some instructions, such as memory-to-memory move instructions
(MOV), do not use the accumulator. DBNZ also relieves A because it
allows a loop counter to be implemented in a memory variable rather
than the accumulator.

During reset, the accumulator is loaded with $00.

2.2.2 Program Counter (PC)

The program counter is a 14-bit register that contains the address of the
next instruction or operand to be fetched.

During normal execution, the program counter automatically increments
to the next sequential memory location each time an instruction or
operand is fetched. Jump, branch, and return operations load the
program counter with an address other than that of the next sequential
location. This is called a change-of-flow.

During reset, the program counter is loaded with $3FFD and the
program will start execution from this specific location.

2.2.3 Shadow Program Counter (SPC)

The shadow program counter is a 14-bit register. During a subroutine
call using either a JSR or a BSR instruction, the return address will be
saved into the SPC. Upon completion of the subroutine, the RTS
instruction will restore the content of the program counter from the
shadow program counter.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 19

Central Processor Unit (CPU)
During reset, the shadow program counter is loaded with $3FFD.

2.2.4 Condition Code Register (CCR)

The 2-bit condition code register contains two status flags. The content
of the CCR in the RS08 is not directly readable. The CCR bits can be
tested using conditional branch instructions such as BCC and BEQ.
These two register bits are directly accessible through the BDC
interface. The following paragraphs provide detailed information about
the CCR bits and how they are used. Figure 2-3 identifies the CCR bits
and their bit positions.

Figure 2-3. Condition Code Register (CCR)

The status bits (Z and C) are cleared to 0 after reset.

The two status bits indicate the results of arithmetic and other
instructions. Conditional branch instructions will either branch to a new
program location or allow the program to continue to the next instruction
after the branch, depending on the values in the CCR status bit.
Conditional branch instructions, such as BCC, BCS, and BNE, cause a
branch depending on the state of a single CCR bit.

Often, the conditional branch immediately follows the instruction that
caused the CCR bit(s) to be updated, as in this sequence:

 cmp #5 ;compare accumulator A to 5
 blo lower ;branch if A smaller 5

more: deca ;do this if A not higher than or same as 5
lower:

Other instructions may be executed between the test and the conditional
branch as long as the only instructions used are those which do not
disturb the CCR bits that affect the conditional branch. For instance, a
test is performed in a subroutine or function and the conditional branch

CARRY
ZERO

CCRCZCONDITION CODE REGISTER
RS08 Core Reference Manual, Rev 1.0
20 Freescale Semiconductor

Programmer’s Model and CPU Registers
is not executed until the subroutine has returned to the main program.
This is a form of parameter passing (that is, information is returned to the
calling program in the condition code bits).

Z — Zero Flag

The Z bit is set to indicate the result of an operation was $00.

Branch if equal (BEQ) and branch if not equal (BNE) are simple
branches that branch based solely on the value in the Z bit. All
load, store, move, arithmetic, logical, shift, and rotate instructions
cause the Z bit to be updated.

C — Carry

After an addition operation, the C bit is set if the source operands
were both greater than or equal to $80 or if one of the operands
was greater than or equal to $80 and the result was less than $80.
This is equivalent to an unsigned overflow. A subtract or compare
performs a subtraction of a memory operand from the contents of
a CPU register so after a subtract operation, the C bit is set if the
unsigned value of the memory operand was greater than the
unsigned value of the CPU register. This is equivalent to an
unsigned borrow or underflow.

Branch if carry clear (BCC) and branch if carry set (BCS) are
branches that branch based solely on the value in the C bit. The C
bit is also used by the unsigned branches BLO and BHS. Add,
subtract, shift, and rotate instructions cause the C bit to be
updated. The branch if bit set (BRSET) and branch if bit clear
(BRCLR) instructions copy the tested bit into the C bit to facilitate
efficient serial-to-parallel conversion algorithms. Set carry (SEC)
and clear carry (CLC) allow the carry bit to be set or cleared
directly. This is useful in combination with the shift and rotate
instructions and for routines that pass status information back to a
main program, from a subroutine, in the C bit.

The C bit is included in shift and rotate operations so those
operations can easily be extended to multi-byte operands. The
shift and rotate operations can be considered 9-bit shifts that
include an 8-bit operand or CPU register and the carry bit of the
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 21

Central Processor Unit (CPU)
CCR. After a logical shift, C holds the bit that was shifted out of the
8-bit operand. If a rotate instruction is used next, this C bit is
shifted into the operand for the rotate, and the bit that gets shifted
out the other end of the operand replaces the value in C so it can
be used in subsequent rotate instructions.

2.2.5 Indexed Data Register (D[X])

This 8-bit indexed data register allows the user to access the data in the
direct page address space indexed by X. This register resides at the
memory mapped location $000E. For details on the D[X] register, please
refer to Section 2.3.8, “Indexed Addressing Mode (IX, Implemented by
Pseudo Instructions).”

2.2.6 Index Register (X)

This 8-bit index register allows the user to index or address any location
in the direct page address space. This register resides at the memory
mapped location $000F. For details on the X register, please refer to
Section 2.3.8, “Indexed Addressing Mode (IX, Implemented by Pseudo
Instructions).”

2.2.7 Indexed/Indirect Addressing

Register D[X] and register X together perform the indirect data access.
Register D[X] is mapped to address $000E. Register X is located in
address $000F. The 8-bit register X contains the address that is used
when register D[X] is accessed. Register X is cleared to zero upon reset.
By programming register X, any location on the first page
($0000–$00FF) can be read/written via register D[X]. Figure 2-4 shows
the relationship between D[X] and register X. For example, in HC08/S08
syntax lda ,x is comparable to lda D[X] in RS08 coding when register X
has been programmed with the index value.

The physical location of $000E is in RAM. Accessing the location
through D[X] returns $000E RAM content when register X contains $0E.
The physical location of $000F is register X, itself. Reading the location
RS08 Core Reference Manual, Rev 1.0
22 Freescale Semiconductor

Programmer’s Model and CPU Registers
through D[X] returns register X content; writing to the location modifies
register X.

Figure 2-4. Indirect Addressing Registers

2.2.8 Page Select Register (PAGESEL)

This 8-bit page select register allows the user to access all memory
locations in the entire 16K-byte address space through a page window
located from $00C0 to $00FF. This register resides at the memory
mapped location $001F.The paging scheme is shown in Figure 2-5.

D[X]

Register X

Content of this location can be accessed via D[X]

$000E

$000F

$00FF

Address indicated in

$0100

Register X can specify
any location between
$0000–$00FF

Register X

$0000
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 23

Central Processor Unit (CPU)
Figure 2-5. RS08 Paging Scheme

2.3 Addressing Modes

Whenever the MCU reads information from memory or writes
information into memory, an addressing mode is used to determine the
exact address where the information is read from or written to. This
section explains several addressing modes and how each is useful in
different programming situations.

Every opcode tells the CPU to perform a certain operation in a certain
way. Many instructions, such as load accumulator (LDA), allow several
different ways to specify the memory location to be operated on, and
each addressing mode variation requires a separate opcode. All of these
variations use the same instruction mnemonic, and the assembler
knows which opcode to use based on the syntax and location of the
operand field. In some cases, special characters are used to indicate a
specific addressing mode (such as the # [pound] symbol, which
indicates immediate addressing mode). In other cases, the value of the
operand tells the assembler which addressing mode to use. For

01 Page FF

$0000

$003F
$0040

$007F
$0080

$00BF
$00C0

$00FF
$0100

$013F

$0140

$017F
$0180

$3FC0

$3FFF

Direct Page
Addressing

Page 00

Page 01

Page 02

Page 04

Page 05

Page FF

Page 00 Page

PAGESEL Page Select Register

Location of
Address
Being Accessed

= PAGESEL Register (8-bit)

These Six Bits Provided by Instruction in Addressing Mode
or X in Indexed Addressing Mode.

x x x x x x
RS08 Core Reference Manual, Rev 1.0
24 Freescale Semiconductor

Addressing Modes
example, the assembler chooses short addressing mode instead of
direct addressing mode if the operand address is from $0000 to $001F.
Besides allowing the assembler to choose the addressing mode based
on the operand address, assembler directives can also be used to force
direct or tiny/short addressing mode by using the “>” or “<” prefix before
the operand, respectively.

Some instructions use more than one addressing mode. For example,
the move instructions use one addressing mode to access the source
value from memory and a second addressing mode to access the
destination memory location. For these move instructions, both
addressing modes are listed in the documentation. All branch
instructions use relative (REL) addressing mode to determine the
destination for the branch, but BRCLR, BRSET, CBEQ, and DBNZ also
must access a memory operand. These instructions are classified by the
addressing mode used for the memory operand, and the relative
addressing mode for the branch offset is assumed.

The discussion in the following paragraphs includes how each
addressing mode works and the syntax clues that instruct the assembler
to use a specific addressing mode.

2.3.1 Inherent Addressing Mode (INH)

This addressing mode is used when the CPU inherently knows
everything it needs to complete the instruction and no addressing
information is supplied in the source code. Usually, the operands that the
CPU needs are located in the CPU’s internal registers, as in LSLA,
CLRA, INCA, SLA, RTS, and others. A few inherent instructions,
including no operation (NOP) and background (BGND), have no
operands.

2.3.2 Relative Addressing Mode (REL)

Relative addressing mode is used to specify the offset address for
branch instructions relative to the program counter. Typically, the
programmer specifies the destination with a program label or an
expression in the operand field of the branch instruction; the assembler
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 25

Central Processor Unit (CPU)
calculates the difference between the location counter (which points at
the next address after the branch instruction at the time) and the address
represented by the label or expression in the operand field. This
difference is called the offset and is an 8-bit two’s complement number.
The assembler stores this offset in the object code for the branch
instruction.

During execution, the CPU evaluates the condition that controls the
branch. If the branch condition is true, the CPU sign-extends the offset
to a 14-bit value, adds the offset to the current PC, and uses this as the
address where it will fetch the next instruction and continue execution
rather than continuing execution with the next instruction after the
branch. Because the offset is an 8-bit two’s complement value, the
destination must be within the range –128 to +127 locations from the
address that follows the last byte of object code for the branch
instruction.

A common method to create a simple infinite loop is to use a branch
instruction that branches to itself. This is sometimes used to end short
code segments during debug. Typically, to get out of this infinite loop,
use the debug host (through background commands) to stop the
program, examine registers and memory, or to start execution from a
new location. This construct is not used in normal application programs
except in the case where the program has detected an error and wants
to force the COP watchdog timer to timeout. (The branch in the infinite
loop executes repeatedly until the watchdog timer eventually causes
a reset.)

2.3.3 Immediate Addressing Mode (IMM)

In this addressing mode, the operand is located immediately after the
opcode in the instruction stream. This addressing mode is used when
the programmer wants to use an explicit value that is known at the time
the program is written. A # (pound) symbol is used to tell the assembler
to use the operand as a data value rather than an address where the
desired value should be accessed.

The size of the immediate operand is always 8 bits. The assembler
automatically will truncate or extend the operand as needed to match the
RS08 Core Reference Manual, Rev 1.0
26 Freescale Semiconductor

Addressing Modes
size needed for the instruction. Most assemblers generate a warning if a
16-bit operand is provided.

It is the programmer’s responsibility to use the # symbol to tell the
assembler when immediate addressing should be used. The assembler
does not consider it an error to leave off the # symbol because the
resulting statement is still a valid instruction (although it may mean
something different than the programmer intended).

2.3.4 Tiny Addressing Mode (TNY)

TNY addressing mode is capable of addressing only the first 16 bytes in
the address map, from $0000 to $000F. This addressing mode is
available for INC, DEC, ADD, and SUB instructions. A system can be
optimized by placing the most computation-intensive data in this area of
memory.

Because the 4-bit address is embedded in the opcode, only the least
significant four bits of the address must be included in the instruction;
this saves program space and execution time. During execution, the
CPU adds 10 high-order 0s to the 4-bit operand address and uses the
combined 14-bit address ($000x) to access the intended operand.

2.3.5 Short Addressing Mode (SRT)

SRT addressing mode is capable of addressing only the first 32 bytes in
the address map, from $0000 to $001F. This addressing mode is
available for CLR, LDA, and STA instructions. A system can be
optimized by placing the most computation-intensive data in this area of
memory.

Because the 5-bit address is embedded in the opcode, only the least
significant five bits of the address must be included in the instruction; this
saves program space and execution time. During execution, the CPU
adds nine high-order 0s to the 5-bit operand address and uses the
combined 14-bit address ($000x or $001x) to access the intended
operand.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 27

Central Processor Unit (CPU)
2.3.6 Direct Addressing Mode (DIR)

DIR addressing mode is used to access operands located in direct
address space ($0000 through $00FF).

During execution, the CPU adds six high-order 0s to the low byte of the
direct address operand that follows the opcode. The CPU uses the
combined 14-bit address ($00xx) to access the intended operand.

2.3.7 Extended Addressing Mode (EXT)

In the extended addressing mode, the 14-bit address of the operand is
included in the object code in the low-order 14 bits of the next two bytes
after the opcode. This addressing mode is only used in JSR and JMP
instructions for jump destination address in RS08 MCUs.

2.3.8 Indexed Addressing Mode (IX, Implemented by Pseudo Instructions)

Indexed addressing mode is sometimes called indirect addressing mode
because an index register is used as a reference to access the intended
operand.

An important feature of indexed addressing mode is that the operand
address is computed during execution based on the current contents of
the X index register located in $000F of the memory map rather than
being a constant address location that was determined during program
assembly. This allows writing of a program that accesses different
operand locations depending on the results of earlier program
instructions (rather than accessing a location that was determined when
the program was written).

The index addressing mode supported by the RS08 Family uses the
register X located at $000F as an index and D[X] register located at
$000E as the indexed data register. By programming the index register
X, any location in the direct page can be read/written via the indexed
data register D[X].
RS08 Core Reference Manual, Rev 1.0
28 Freescale Semiconductor

Special Operations
These pseudo instructions can be used with all instructions supporting
direct, short, and tiny addressing modes by using the D[X] as the
operand.

2.4 Special Operations

Most of what the CPU does is described by the instruction set, but a few
special operations must be considered, such as how the CPU starts at
the beginning of an application program after power is first applied. After
the program begins running, the current instruction normally determines
what the CPU will do next. Two exceptional events can cause the CPU
to temporarily suspend normal program execution:

• Reset events force the CPU to start over at the beginning of the
application program, which forces execution to start at $3FFD.

• A host development system can cause the CPU to go to active
background mode rather than continuing to the next instruction in
the application program.

2.4.1 Reset Sequence

Processing begins at the trailing edge of a reset event. The number of
things that can cause reset events can vary slightly from one RS08
derivative to another; however, the most common sources are: power-on
reset, the external RESET pin, low-voltage reset, COP watchdog
timeout, illegal opcode detect, and illegal address access. For more
information about how the MCU recognizes reset events and determines
the difference between internal and external causes, refer to the Resets
and Interrupts chapter in the technical data sheet for the specific RS08
derivative.

Reset events force the MCU to immediately stop what it is doing and
begin responding to reset. Any instruction that was in process will be
aborted immediately without completing any remaining clock cycles. A
short sequence of activities is completed to decide whether the source
of reset was internal or external and to record the cause of reset. For the
remainder of the time, the reset source remains active and the internal
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 29

Central Processor Unit (CPU)
clocks are stopped to save power. At the trailing edge of the reset event,
the clocks resume and the CPU exits from the reset condition. The
program counter is reset to $3FFD and an instruction fetch will be started
after the release of reset.

For the device to execute code from the on-chip memory starting from
$3FFD after reset, care should be taken to not force the BKDG pin low
on the end of reset because this will force the device into active
background mode where the CPU will wait for a command from the
background communication interface.

2.4.2 Interrupts

The interrupt mechanism in RS08 is not used to interrupt the normal flow
of instructions; it is used to wake up the RS08 from wait and stop modes.
In run mode, interrupt events must be polled by the CPU. The interrupt
feature is not compatible with Freescale’s HC05, HC08, or HCS08
Families.

2.4.3 Wait and Stop Mode

Wait and stop modes are entered by executing a WAIT or STOP
instruction, respectively. In these modes, the clocks to the CPU are shut
down to save power and CPU activity is suspended. The CPU remains
in this low-power state until an interrupt or reset event wakes it up.
Please refer to the device specific documentation for the effects of wait
and stop on other device peripherals.

2.4.4 Active Background Mode

Active background mode refers to the condition in which the CPU has
stopped executing user program instructions and is waiting for serial
commands from the background debug system. Refer to Section 3,
“Development Support,” for detailed information on active background
mode.
RS08 Core Reference Manual, Rev 1.0
30 Freescale Semiconductor

Instruction Set Description by Instruction Types
2.5 Instruction Set Description by Instruction Types

In this section, the instruction is listed by type.

;This defines the labels used in the code examples
;
1000 org $1000
1000 0008 tinyaddr equ $08
1000 001a shortaddr equ $1A
1000 008c directaddr equ $8C
1000 005a mask equ $5a

Instruction Set Summary Nomenclature

The nomenclature listed here is used in the instruction descriptions in
Table 2-12 through Table 2-13.

Operators

() = Contents of register or memory location shown inside
parentheses

← = Is loaded with (read: “gets”)
⇔ = Exchange with
& = Boolean AND
| = Boolean OR

⊕ = Boolean exclusive-OR
: = Concatenate

+ = Add

CPU registers

A = Accumulator
CCR = Condition code register

PC = Program counter
PCH = Program counter, higher order (most significant) six

bits
PCL = Program counter, lower order (least significant) eight

bits
SPC = Shadow program counter

SPCH = Shadow program counter, higher order (most
significant) six bits

SPCL = Shadow program counter, lower order (least
significant) eight bits
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 31

Central Processor Unit (CPU)
Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

rel = The relative offset, which is the two’s complement
number stored in the last byte of machine code
corresponding to a branch instruction

X = Pseudo index register, memory location $000F
,X or D[X] = Memory location $000E pointing to the memory

location defined by the pseudo index register (location
$000F)

Condition code register (CCR) bits

Z = Zero indicator
C = Carry/borrow

CCR activity notation

– = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
↕ = Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order eight bits of a direct address $0000–$00FF
(high byte assumed to be $00)

ii = One byte of immediate data
hh = High-order 6-bit of 14-bit extended address prefixed

with 2-bit of 0
ll = Low-order byte of 14-bit extended address
rr = Relative offset

Source form

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.

n — Any label or expression that evaluates to a single
integer in the range 0–7.
RS08 Core Reference Manual, Rev 1.0
32 Freescale Semiconductor

Instruction Set Description by Instruction Types
opr8i — Any label or expression that evaluates to an 8-bit
immediate value.

opr4a — Any label or expression that evaluates to a Tiny
address (4-bit value). The instruction treats this 4-bit
value as the low order four bits of an address in the
16-Kbyte address space ($0000–$000F). This 4-bit is
embedded in the low order 4 bits in the opcode.

opr5a — Any label or expression that evaluates to a Short
address (5-bit value). The instruction treats this 5-bit
value as the low order five bits of an address in the
16-Kbyte address space ($0000–$001F). This 5-bit
value is embedded in the low order 5 bits in the
opcode.

opr8a — Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order eight bits of an address in the 16-Kbyte address
space ($0000–$00FF).

opr16a — Any label or expression that evaluates to a 14-bit
value. On the RS08 Family, the upper two bits are
always 0s. The instruction treats this combined value
as an address in the 16-Kbyte address space.

rel — Any label or expression that refers to an address that
is within –128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.

Address modes

INH = Inherent (no operands)
IMD = Immediate to Direct (in MOV instruction)
IMM = Immediate
DD = Direct to Direct (in MOV instruction)
DIR = Direct
SRT = Short
TNY = Tiny
EXT = Extended
REL = 8-bit relative offset

2.5.1 Data Movement Instructions

This group of instructions is used to move data between memory and
CPU registers, or between memory locations. Load, store, and move
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 33

Central Processor Unit (CPU)
instructions automatically update the Z flag based on the value of the
data. This allows conditional branching with BEQ and BNE immediately
after a load, store, or move instruction without having to do a separate
test or compare instruction.

2.5.1.1 Loads and Stores

1000 a6 5a lda #mask ;Immediate
1002 b6 8c lda directaddr ;Direct address
1004 da lda shortaddr ;Short address
1005 ce lda ,X ;Indexed
1006 3e 5a 0f ldx #mask ;MOVE Immediate,direct
1009 4e 8c 0f ldx directaddr ;MOVE direct,direct
100c b7 8c sta directaddr ;Direct address
100e fa sta shortaddr ;Short address
100f ee sta ,X ;Indexed
1010 4e 0f 8c stx directaddr ;MOVE direct,direct

Table 2-1. Load and Store Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C
LDA #opr8i
LDA opr8a
LDA opr5a
LDA ,X (1)

1. This is a pseudo instruction supported by the normal RS08 instruction set.

Load Accumulator from
Memory A ← (M) ↕ –

IMM
DIR
SRT
IX

A6
B6

Cx/Dx
CE

ii
dd

2
3
3
3

LDX #opr8i (1)

LDX opr8a (1)

LDX ,X (1)
Load Index Register from
Memory $0F ← (M) ↕ –

IMD
DIR
IX

3E
4E
4E

ii 0F
dd 0F
0E 0F

4
5
5

STA opr8a
STA opr5a
STA ,X (1)

STA X

Store Accumulator in
Memory M ← (A) ↕ –

DIR
SRT
IX
SRT

B7
Ex / Fx

EE
EF

dd 3
2
2
2

STX opr8a (1) Store Index Register in
Memory M ← (X) ↕ – DIR 4E 0F dd 5

TAX(1) Transfer A to X X ← (A) ↕ – INH EF 2

TXA(1) Transfer X to A A ← (X) ↕ – INH CF 3
RS08 Core Reference Manual, Rev 1.0
34 Freescale Semiconductor

Instruction Set Description by Instruction Types
2.5.1.2 Bit Set and Bit Clear
1013 11 8c bclr 0,directaddr ;Direct address
1015 1f 0f bclr 7,X ;Indexed
1017 10 08 bset 0,tinyaddr ;Direct address
1019 1e 0f bset 7,X ;Indexed

Table 2-2. BSET, BCLR, and Move Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

BCLR n,opr8a

BCLR n,D[X]

BCLR n,X

Clear Bit n in Memory Mn ← 0 – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F
11
13
15
17
19
1B
1D
1F
11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd
0E
0E
0E
0E
0E
0E
0E
0E
0F
0F
0F
0F
0F
0F
0F
0F

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

BSET n,opr8a

BSET n,D[X]

BSET n,X

Set Bit n in Memory Mn ← 1 – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E
10
12
14
16
18
1A
1C
1E
10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd
0E
0E
0E
0E
0E
0E
0E
0E
0F
0F
0F
0F
0F
0F
0F
0F

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

MOV opr8a,opr8a
MOV #opr8i,opr8a
MOV D[X],opr8a
MOV opr8a,D[X]
MOV #opr8i,D[X]

Move (M)destination ← (M)source ↕ –

DD
IMD
IX/DIR
DIR/IX
IMM/IX

4E
3E
4E
4E
3E

dd dd
ii dd
0E dd
dd 0E
ii 0E

5
4
5
5
4

RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 35

Central Processor Unit (CPU)
2.5.1.3 Memory-to-Memory Moves
101b 3e 5a 1a mov #mask,shortaddr ;MOVE Immediate,direct
101e 4e 08 1a mov tinyaddr,shortaddr ;MOVE direct,direct

2.5.2 Math Instructions

Math instructions include the traditional add and subtract operations, a
collection of utility instructions including increment, decrement, clear,
and compare. The compare instruction is actually subtract operation
where the CCR bits are affected but the result is not written back to a
CPU register.

2.5.2.1 Add, and Subtract

1021 a9 5a adc #mask ;Immediate
1023 b9 8c adc directaddr ;Direct address
1025 b9 0e adc ,X ;Indexed
1029 ab 5a add #mask ;Immediate
102b bb 8c add directaddr ;Direct address
102d 68 add tinyaddr ;Tiny address
102e 6e add ,X ;Indexed
1030 a2 5a sbc #mask ;Immediate
1032 b2 8c sbc directaddr ;Direct address
1034 b2 0e sbc ,X ;Indexed
1038 a0 5a sub #mask ;Immediate
103a b0 8c sub directaddr ;Direct address
103c 78 sub tinyaddr ;Tiny address
103d 7e sub ,X ;Indexed

Table 2-3. Add, and Subtract Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C
ADC #opr8i
ADC opr8a
ADC ,X (1)

ADC X

1. This is a pseudo instruction supported by the normal RS08 instruction set.

Add with Carry A ← (A) + (M) + (C)

A ← (A) + (X) + (C)

↕ ↕

IMM
DIR
IX
DIR

A9
B9
B9
B9

ii
dd
0E
0F

2
3
3
3

ADD #opr8i
ADD opr8a
ADD opr4a
ADD ,X (1)

ADD X

Add without Carry A ← (A) + (M) ↕ ↕

IMMDIR
TNY
IX
DIR

AB
BB
6x
6E
6F

ii
dd

2
3
3
3
3

SBC #opr8i
SBC opr8a
SBC ,X (1)

SBC X

Subtract with Carry A ← (A) – (M) – (C)

A ← (A) – (X) – (C)

↕ ↕

IMM
DIR
IX
DIR

A2
B2
B2
B2

ii
dd
0E
0F

2
3
3
3

SUB #opr8i
SUB opr8a
SUB opr4a
SUB ,X (1)

SUB X

Subtract A ← (A) – (M)

A ← (A) – (X)

↕ ↕

IMM
DIR
TNY
IX
DIR

A0
B0
7x
7E
7F

ii
dd

2
3
3
3
3

RS08 Core Reference Manual, Rev 1.0
36 Freescale Semiconductor

Instruction Set Description by Instruction Types
2.5.2.2 Increment, Decrement, and Clear
103f 3c 8c inc directaddr ;Direct address
1041 28 inc tinyaddr ;Tiny address
1042 2e inc ,X ;Indexed
1043 4c inca ;Inherent
1044 2f incx ;Inherent
1045 3a 8c dec directaddr ;Direct address
1047 58 dec tinyaddr ;Tiny address
1048 5e dec ,X ;Indexed
1049 4a deca ;Inherent
104a 5f decx ;Inherent
104b 3f 8c clr directaddr ;Direct address
104d 9a clr shortaddr ;Short address
104e 8e clr ,X ;Indexed
104f 4f clra ;Inherent
1050 8f clrx ;Inherent

2.5.2.3 Compare
1051 a1 5a cmp #mask ;Immediate
1053 b1 8c cmp directaddr ;Direct address
1055 b1 0e cmp ,X ;Indexed
1057 b1 0f cmpx ;Inherent

Table 2-4. Other Arithmetic Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C
INC opr8a
INC opr4a
INC ,X (1)

INCA
INCX (1)

1. This is a pseudo instruction supported by the normal RS08 instruction set.

Increment
M ← (M) + $01

A ← (A) + $01
X ← (X) + $01

↕ –

DIR
TNY
IX
INH
INH

3C
2x
2E
4C
2F

dd 5
4
4
1
4

DEC opr8a
DEC opr4a
DEC ,X (1)

DECA
DECX (1)

Decrement
M ← (M) – $01

A ← (A) – $01
X ← (X) – $01

↕ –

DIR
TNY
IX
INH
INH

3A
5x
5E
4A
5F

dd 5
4
4
1
4

CLR opr8a
CLR opr5a
CLR ,X (1)

CLRA
CLRX (1)

Clear
M ← $00

A ← $00
X ← $00

1 –

DIR
SRT
IX
INH
INH

3F
8x / 9x

8E
4F
8F

dd 3
2
2
1
2

CMP #opr8i
CMP opr8a
CMP ,X (1)

CMP X (1)

Compare Accumulator
with Memory

(A) – (M)

(A) – (X)

↕ ↕

IMM
DIR
IX
INH

A1
B1
B1
B1

ii
dd
0E
0F

2
3
3
3

TST opr8a (1)

TST ,X (1)

TSTA (1)

TSTX (1)
Test for Zero

(M) – $00

(A) – $00
(X) – $00

↕ –

DD
IX
INH
INH

4E
4E
AA
4E

dd dd
0E 0E
00
0F 0F

5
5
2
5

RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 37

Central Processor Unit (CPU)
2.5.3 Logical Operation Instructions

These instructions perform eight bitwise Boolean operations in parallel.
For the complement instruction, each bit of the register operand is
inverted. The other logical instructions involve two operands, one in the
accumulator (A) and the other in memory. Immediate, direct, or indexed
addressing modes may be used to access the memory operand. Each
bit of the accumulator is ANDed, ORed, or exclusive-ORed with the
corresponding bit of the memory operand. The result of the logical
operation is stored into the accumulator, overwriting the original
operand.

2.5.3.1 AND, OR, Exclusive-OR, and Complement
1059 a4 5a and #mask ;Immediate
105b b4 8c and directaddr ;Direct address
105d b4 0e and ,X ;Indexed
1061 aa 5a ora #mask ;Immediate
1063 ba 8c ora directaddr ;Direct address
1065 ba 0e ora ,X ;Indexed
1069 a8 5a eor #mask ;Immediate
106b b8 8c eor directaddr ;Direct address
106d b8 0e eor ,X ;Indexed
1071 43 coma ;Inherent

Table 2-5. Logical Operation Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C
AND #opr8i
AND opr8a
AND ,X (1)

AND X

Logical AND A ← (A) & (M)

A ← (A) & (X)

↕ –

IMM
DIR
IX
DIR

A4
B4
B4
B4

ii
dd
0E
0F

2
3
3
3

ORA #opr8i
ORA opr8a
ORA ,X (1)

ORA X

Inclusive OR
Accumulator and
Memory

A ← (A) | (M)
A ← (A) | (X) ↕ –

IMM
DIR
IX
DIR

AA
BA
BA
BA

ii
dd
0E
0F

2
3
3
3

EOR #opr8i
EOR opr8a
EOR ,X (1)

EOR X

Exclusive OR
Memory with
Accumulator

A ← (A ⊕ M)

A ← (A ⊕ X)

↕ –

IMM
DIR
IX
DIR

A8
B8
B8
B8

ii
dd
0E
0F

2
3
3
3

COMA Complement
(One’s Complement) A ← (A) ↕ 1 INH 43 1

1. This is a pseudo instruction supported by the normal RS08 instruction set.
RS08 Core Reference Manual, Rev 1.0
38 Freescale Semiconductor

Instruction Set Description by Instruction Types
2.5.4 Shift and Rotate Instructions

All of the shift and rotate instructions operate on a 9-bit field consisting
of an 8-bit value in A and the C bit in the CCR. Drawings are provided in
the instruction descriptions to show where the C bit fits into the shift or
rotate operation. The logical shift instructions are simple shifts which
shift a zero into the first bit of the value and shift the last bit into the carry
bit.

The arithmetic left shift pseudo instruction is also available because its
operation is identical to logical shift left.

1072 48 lsla ;Inherent
1073 44 lsra ;Inherent
1074 49 rola ;Inherent
1075 46 rora ;Inherent

2.5.5 Jump, Branch, and Loop Control Instructions

The instructions in this group cause a change of flow which means that
the CPU loads a new address into the program counter so program

Table 2-6. Shift and Rotate Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

ASLA(1)

1. This is a pseudo instruction supported by the normal RS08 instruction set.

Arithmetic Left Shift ↕ ↕ INH 48 1

LSLA Logical Shift Left ↕ ↕ INH 48 1

LSRA Logical Shift Right ↕ ↕ INH 44 1

ROLA Rotate Left through Carry ↕ ↕ INH 49 1

RORA Rotate Right through
Carry ↕ ↕ INH 46 1

C

b0b7

0

C

b0b7

0

b0b7

C0

C

b0b7

b0b7

C

RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 39

Central Processor Unit (CPU)
execution continues at a location other than the next memory location
after the current instruction.

Jump instructions cause an unconditional change in the execution
sequence to a new location in a program. Branch and loop control
instructions cause a conditional change in the execution sequence.
Branch and loop control instructions use relative addressing mode to
conditionally branch to a location that is relative to the location of the
branch. Processor status indicators in the CCR control whether a
conditional branch or loop control instruction will branch to a new
address or simply continue to the next instruction in the program. BRA
is a special case because the branch always occurs, and BRN is special
because the branch is never taken (this is functionally equivalent to a
2-byte, 3-cycle NOP).

2.5.5.1 Unconditional Jump and Branch

Jump (JMP), and branch always (BRA) are unconditional and do not
depend on the state of any CCR bits. Jump may be used to go to any
memory location in the 16-Kbyte address space while branch
instructions are limited to destinations within –128 to +127 locations from
the address immediately after the branch offset byte.

1076 bc 10 b5 jmp extended ;Extended address
1079 30 fe bra * ;Relative

Table 2-7. Jump and Branch Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C
JMP opr16a Jump PC ← Effective Address – – EXT BC hh ll 4

BCC rel Branch if Carry Bit Clear PC ← (PC) + $0002 + rel, if (C) = 0 – – REL 34 rr 3

BCS rel Branch if Carry Bit Set
(Same as BLO) PC ← (PC) + $0002 + rel, if (C) = 1 – – REL 35 rr 3

BEQ rel Branch if Equal PC ← (PC) + $0002 + rel, if (Z) = 1 – – REL 37 rr 3

BHS rel (1) Branch if Higher or Same
(Same as BCC) PC ← (PC) + $0002 + rel, if (C) = 0 – – REL 34 rr 3

BLO rel (1) Branch if Lower (Same
as BCS) PC ← (PC) + $0002 + rel, if (C) = 1 – – REL 35 rr 3

BNE rel Branch if Not Equal PC ← (PC) + $0002 + rel, if (Z) = 0 – – REL 36 rr 3

BRA rel Branch Always PC ← (PC) + $0002 + rel – – REL 30 rr 3

BRN rel (1) Branch Never PC ← (PC) + $0002 – – REL 30 00 3

. This is a pseudo instruction supported by the normal RS08 instruction set.
RS08 Core Reference Manual, Rev 1.0
40 Freescale Semiconductor

Instruction Set Description by Instruction Types
2.5.5.2 Simple Branches

The simple branches depend only on the state of a single condition bit in
the CCR.

107b 37 fe beq * ;Relative
107d 36 fe bne * ;Relative
107f 34 fe bcc * ;Relative
1081 35 fe bcs * ;Relative

2.5.5.3 Unsigned Branches

Branch if lower (BLO), and branch if higher or same (BHS) are used after
operations involving unsigned numbers. The simple branches, branch if
equal (BEQ) and branch if not equal (BNE), can also be used after
operations involving unsigned numbers.

1083 34 fe bhs * ;Relative
1085 35 fe blo * ;Relative

Table 2-8. Simple Branch Summary

Branch
Condition

Branch
if True

Branch
if False

Z BEQ BNE

C BCS BCC
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 41

Central Processor Unit (CPU)
Table 2-9. Bit Branches and Loop Control Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

BRCLR n,opr8a,rel

BRCLR n,D[X],rel (1)

BRCLR n,X,rel (1)

1. This is a pseudo instruction supported by the normal RS08 instruction set.

Branch if Bit n in Memory
Clear PC ← (PC) + $0003 + rel, if (Mn) = 0 – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F
01
03
05
07
09
0B
0D
0F
01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

BRSET n,opr8a,rel

BRSET n,D[X],rel (1)

BRSET n,X,rel (1)

Branch if Bit n in Memory
Set PC ← (PC) + $0003 + rel, if (Mn) = 1 – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E
00
02
04
06
08
0A
0C
0E
00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

CBEQA #opr8i,rel
CBEQ opr8a,rel
CBEQ ,X,rel (1),(2)

CBEQ X,rel (1)

Compare and Branch if
Equal

PC ← (PC) + $0003 + rel, if (A) – (M) = $00
PC ← (PC) + $0003 + rel, if (A) – (M) = $00
PC ← (PC) + $0003 + rel, if (A) – (X) = $00

– –

IMM
DIR
IX
DIR

41
31
31
31

ii rr
dd rr
0E rr
0F rr

4
5
5
5

DBNZ opr8a,rel
DBNZ ,X,rel (1)

DBNZA rel
DBNZX rel

Decrement and Branch if
Not Zero

A←(A) – $01 or M←(M) - $01
PC ← (PC)+$0003+ rel if (result) ≠ 0 forDBNZ

direct
PC ← (PC) + $0002 + rel if (result) ≠ 0 for

DBNZA
X←(X) – $01

PC ← (PC) + $0003 + rel if (result) ≠ 0

– –

DIR
IX
INH
INH

3B
3B
4B
3B

dd rr
0E rr
rr
0F rr

7
7
4
7

RS08 Core Reference Manual, Rev 1.0
42 Freescale Semiconductor

Instruction Set Description by Instruction Types
2.5.5.4 Bit Condition Branches

These branch instructions test a single bit in a memory operand in direct
addressing space ($0000–$00FF) and BRSET branches if the tested bit
is set while BRCLR branches if the bit was clear. Although this seems
like a limited number of locations, it includes all of the I/O and control
register space and a significant portion of the RAM where program
variables may be located. By having separate opcodes for each bit
position, these instructions are particularly efficient, requiring only three
bytes of object code and five bus cycles.

1087 01 08 fd brclr 0,tinyaddr,* ;Direct address
108a 0f 0e fd brclr 7,D[X],* ;Indexed
108d 00 08 fd brset 0,tinyaddr,* ;Direct address
1090 0e 0e fd brset 7,D[X],* ;Indexed

2.5.5.5 Loop Control

The CBEQ instructions compare the contents of the accumulator to a
memory location and branch if they are equal to each other. CBEQA
allows A to be compared against an immediate operand.

The DBNZ instructions decrement A or a memory location and then
branch if the decremented value is still not zero. This provides an
efficient way to implement a loop counter.

1093 31 08 fd cbeq tinyaddr,* ;Direct address
1096 31 0e fd cbeq ,X,* ;Indexed
1099 31 0e fd cbeq [X],* ;Indexed
109c 41 5a fd cbeqa #mask,* ;Immediate
109f 3b 08 fd dbnz tinyaddr,* ;Direct address
10a5 4b fe dbnza * ;Relative

2.5.6 Subroutine-Related Instructions

Jump-to-subroutine (JSR) and branch-to-subroutine (BSR) instructions
are used to go to a sequence of instructions (a subroutine) somewhere
else in a program. Normally, at the end of the subroutine, a
return-from-subroutine (RTS) instruction causes the CPU to return to the
next instruction after the JSR or BSR that called the subroutine.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 43

Central Processor Unit (CPU)
10a7 ad fe bsr * ;Relative
10a9 bd 10 b5 jsr extended ;Extended address
10ac be rts ;Inherent
10ad 45 sha ;Inherent
10ae 42 sla ;Inherent

2.5.7 Miscellaneous Instructions

10af ac nop ;Inherent
10b0 39 sec ;Inherent
10b1 38 clc ;Inherent
10b2 bf bgnd ;Inherent
10b3 af wait ;Inherent
10b4 ae stop ;Inherent

Table 2-10. Subroutine-Related Instructions

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

BSR rel Branch Subroutine
PC ← (PC) + 2

Push PC to shadow PC
PC ← (PC) + rel

– – REL AD rr 3

JSR opr16a Jump to Subroutine
PC ← (PC) + 3

Push PC to shadow PC
PC ← Effective Address

– – EXT BD hh ll 4

RTS Return from Subroutine Pull PC from shadow PC – – INH BE 3

SHA Swap Shadow PC High
with A A ⇔ SPCH – – INH 45 1

SLA Swap Shadow PC Low
with A A ⇔ SPCL – – INH 42 1

Table 2-11. Miscellaneous Instructions

Source
Form Description Operation

Effect
on

CCR
A

d
d

re
ss

M
o

d
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C
NOP No Operation None – – INH AC 1

SEC Set Carry Bit C ← 1 – 1 INH 39 1

CLC Clear Carry Bit C ← 0 – 0 INH 38 1

BGND Background Enter Background Debug Mode – – INH BF 5+

WAIT Put MCU into wait mode – – INH AF 2+

STOP Put MCU into stop mode – – INH AE 2+
RS08 Core Reference Manual, Rev 1.0
44 Freescale Semiconductor

Summary Instruction Table
2.6 Summary Instruction Table

Instruction Set Summary Nomenclature

The nomenclature listed here is used in the instruction descriptions in
Table 2-12 through Table 2-13.

Operators

() = Contents of register or memory location shown inside
parentheses

← = Is loaded with (read: “gets”)
⇔ = Exchange with
& = Boolean AND
| = Boolean OR

⊕ = Boolean exclusive-OR
: = Concatenate

+ = Add

CPU registers

A = Accumulator
CCR = Condition code register

PC = Program counter
PCH = Program counter, higher order (most significant) six

bits
PCL = Program counter, lower order (least significant) eight

bits
SPC = Shadow program counter

SPCH = Shadow program counter, higher order (most
significant) six bits

SPCL = Shadow program counter, lower order (least
significant) eight bits

Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

rel = The relative offset, which is the two’s complement
number stored in the last byte of machine code
corresponding to a branch instruction
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 45

Central Processor Unit (CPU)
X = Pseudo index register, memory location $000F
,X or D[X] = Memory location $000E pointing to the memory

location defined by the pseudo index register (location
$000F)

Condition code register (CCR) bits

Z = Zero indicator
C = Carry/borrow

CCR activity notation

– = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
↕ = Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order eight bits of a direct address $0000–$00FF
(high byte assumed to be $00)

ii = One byte of immediate data
hh = High-order 6-bit of 14-bit extended address prefixed

with 2-bit of 0
ll = Low-order byte of 14-bit extended address
rr = Relative offset

Source form

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.

n — Any label or expression that evaluates to a single
integer in the range 0–7.

x — Any label or expression that evaluates to a single
hexadecimal integer in the range $0–$F.

opr8i — Any label or expression that evaluates to an 8-bit
immediate value.
RS08 Core Reference Manual, Rev 1.0
46 Freescale Semiconductor

Summary Instruction Table
opr4a — Any label or expression that evaluates to a Tiny
address (4-bit value). The instruction treats this 4-bit
value as the low order four bits of an address in the
16-Kbyte address space ($0000–$000F). This 4-bit
value is embedded in the low order four bits in the
opcode.

opr5a — Any label or expression that evaluates to a Short
address (5-bit value). The instruction treats this 5-bit
value as the low order five bits of an address in the
16-Kbyte address space ($0000–$001F). This 5-bit
value is embedded in the low order 5 bits in the
opcode.

opr8a — Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order eight bits of an address in the 16-Kbyte address
space ($0000–$00FF).

opr16a — Any label or expression that evaluates to a 14-bit
value. On the RS08 core, the upper two bits are
always 0s. The instruction treats this value as an
address in the 16-Kbyte address space.

rel — Any label or expression that refers to an address that
is within –128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.

Address modes

INH = Inherent (no operands)
IMD = Immediate to Direct (in MOV instruction)
IMM = Immediate
DD = Direct to Direct (in MOV instruction)
DIR = Direct
SRT = Short
TNY = Tiny
EXT = Extended
REL = 8-bit relative offset
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 47

Central Processor Unit (CPU)
Table 2-12. Instruction Set Summary (Sheet 1 of 5)

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C
ADC #opr8i
ADC opr8a
ADC ,X (1)

ADC X

Add with Carry A ← (A) + (M) + (C)

A ← (A) + (X) + (C)

↕ ↕

IMM
DIR
IX
DIR

A9
B9
B9
B9

ii
dd
0E
0F

2
3
3
3

ADD #opr8i
ADD opr8a
ADD opr4a
ADD ,X (1)

ADD X

Add without Carry A ← (A) + (M) ↕ ↕

IMM
DIR
TNY
IX
DIR

AB
BB
6x
6E
6F

ii
dd

2
3
3
3
3

AND #opr8i
AND opr8a
AND ,X (1)

AND X

Logical AND A ← (A) & (M)

A ← (A) & (X)

↕ –

IMM
DIR
IX
DIR

A4
B4
B4
B4

ii
dd
0E
0F

2
3
3
3

ASLA(1) Arithmetic Shift Left ↕ ↕ INH 48 1

BCC rel Branch if Carry Bit Clear PC ← (PC) + $0002 + rel, if (C) = 0 – – REL 34 rr 3

BCLR n,opr8a

BCLR n,D[X]

BCLR n,X

Clear Bit n in Memory Mn ← 0 – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F
11
13
15
17
19
1B
1D
1F
11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd
0E
0E
0E
0E
0E
0E
0E
0E
0F
0F
0F
0F
0F
0F
0F
0F

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

BCS rel Branch if Carry Bit Set
(Same as BLO) PC ← (PC) + $0002 + rel, if (C) = 1 – – REL 35 rr 3

BEQ rel Branch if Equal PC ← (PC) + $0002 + rel, if (Z) = 1 – – REL 37 rr 3

BGND Background Enter Background Debug Mode – – INH BF 5+

BHS rel (1) Branch if Higher or Same
(Same as BCC) PC ← (PC) + $0002 + rel, if (C) = 0 – – REL 34 rr 3

BLO rel (1) Branch if Lower (Same
as BCS) PC ← (PC) + $0002 + rel, if (C) = 1 – – REL 35 rr 3

BNE rel Branch if Not Equal PC ← (PC) + $0002 + rel, if (Z) = 0 – – REL 36 rr 3

BRA rel Branch Always PC ← (PC) + $0002 + rel – – REL 30 rr 3

BRN rel (1) Branch Never PC ← (PC) + $0002 – – REL 30 00 3

1. This is a pseudo instruction supported by the normal RS08 instruction set.
2. This instruction is different from that of the HC08 and HCS08 in that the RS08 does not auto-increment the index register.

C

b0b7

0

RS08 Core Reference Manual, Rev 1.0
48 Freescale Semiconductor

Summary Instruction Table
BRCLR n,opr8a,rel

BRCLR n,D[X],rel

BRCLR n,X,rel

Branch if Bit n in Memory
Clear PC ← (PC) + $0003 + rel, if (Mn) = 0 – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F
01
03
05
07
09
0B
0D
0F
01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

BRSET n,opr8a,rel

BRSET n,D[X],rel

BRSET n,X,rel

Branch if Bit n in Memory
Set PC ← (PC) + $0003 + rel, if (Mn) = 1 – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E
00
02
04
06
08
0A
0C
0E
00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0E rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr
0F rr

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

Table 2-12. Instruction Set Summary (Sheet 2 of 5)

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

1. This is a pseudo instruction supported by the normal RS08 instruction set.
2. This instruction is different from that of the HC08 and HCS08 in that the RS08 does not auto-increment the index register.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 49

Central Processor Unit (CPU)
BSET n,opr8a

BSET n,D[X]

BSET n,X

Set Bit n in Memory Mn ← 1 – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
IX (b0)
IX (b1)
IX (b2)
IX (b3)
IX (b4)
IX (b5)
IX (b6)
IX (b7)
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E
10
12
14
16
18
1A
1C
1E
10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd
0E
0E
0E
0E
0E
0E
0E
0E
0F
0F
0F
0F
0F
0F
0F
0F

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

BSR rel Branch Subroutine
PC ← (PC) + 2

Push PC to shadow PC
PC ← (PC) + rel

– – REL AD rr 3

CBEQA #opr8i,rel
CBEQ opr8a,rel
CBEQ ,X,rel (1),(2)

CBEQ X,rel (1)

Compare and Branch if
Equal

PC ← (PC) + $0003 + rel, if (A) – (M) = $00
PC ← (PC) + $0003 + rel, if (A) – (M) = $00
PC ← (PC) + $0003 + rel, if (A) – (X) = $00

– –

IMM
DIR
IX
DIR

41
31
31
31

ii rr
dd rr
0E rr
0F rr

4
5
5
5

CLC Clear Carry Bit C ← 0 – 0 INH 38 1

CLR opr8a
CLR opr5a
CLR ,X (1)

CLRA
CLRX (1)

Clear
M ← $00

A ← $00
X ← $00

1 –

DIR
SRT
IX
INH
INH

3F
8x / 9x

8E
4F
8F

dd 3
2
2
1
2

CMP #opr8i
CMP opr8a
CMP ,X (1)

CMP X (1)

Compare Accumulator
with Memory

(A) – (M)

(A) – (X)

↕ ↕

IMM
DIR
IX
INH

A1
B1
B1
B1

ii
dd
0E
0F

2
3
3
3

COMA Complement
(One’s Complement) A ← (A) ↕ 1 INH 43 1

DBNZ opr8a,rel
DBNZ ,X,rel (1)

DBNZA rel
DBNZX rel (1)

Decrement and Branch if
Not Zero

A←(A) – $01 or M←(M) - $01
PC ← (PC)+$0003+ rel if (result) ≠ 0 forDBNZ

direct
PC ← (PC) + $0002 + rel if (result) ≠ 0 for

DBNZA
X←(X) – $01

PC ← (PC) + $0003 + rel if (result) ≠ 0

– –

DIR
IX
INH
INH

3B
3B
4B
3B

dd rr
0E rr
rr
0F rr

7
7
4
7

DEC opr8a
DEC opr4a
DEC ,X (1)

DECA
DEC X

Decrement
M ← (M) – $01

A ← (A) – $01
X ← (X) – $01

↕ –

DIR
TNY
IX
INH
DIR

3A
5x
5E
4A
5F

dd 5
4
4
1
4

EOR #opr8i
EOR opr8a
EOR ,X (1)

EOR X

Exclusive OR
Memory with
Accumulator

A ← (A ⊕ M)

A ← (A ⊕ X)

↕ –

IMM
DIR
IX
DIR

A8
B8
B8
B8

ii
dd
0E
0F

2
3
3
3

Table 2-12. Instruction Set Summary (Sheet 3 of 5)

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

1. This is a pseudo instruction supported by the normal RS08 instruction set.
2. This instruction is different from that of the HC08 and HCS08 in that the RS08 does not auto-increment the index register.
RS08 Core Reference Manual, Rev 1.0
50 Freescale Semiconductor

Summary Instruction Table
INC opr8a
INC opr4a
INC ,X (1)

INCA
INCX (1)

Increment
M ← (M) + $01

A ← (A) + $01
X ← (X) + $01

↕ –

DIR
TNY
IX
INH
INH

3C
2x
2E
4C
2F

dd 5
4
4
1
4

JMP opr16a Jump PC ← Effective Address – – EXT BC hh ll 4

JSR opr16a Jump to Subroutine
PC ← (PC) + 3

Push PC to shadow PC
PC ← Effective Address

– – EXT BD hh ll 4

LDA #opr8i
LDA opr8a
LDA opr5a
LDA ,X (1)

Load Accumulator from
Memory A ← (M) ↕ –

IMM
DIR
SRT
IX

A6
B6

Cx/Dx
CE

ii
dd

2
3
3
3

LDX #opr8i (1)

LDX opr8a (1)

LDX ,X (1)
Load Index Register from
Memory $0F ← (M) ↕ –

IMD
DIR
IX

3E
4E
4E

ii 0F
dd 0F
0E 0E

4
5
5

LSLA Logical Shift Left ↕ ↕ INH 48 1

LSRA Logical Shift Right ↕ ↕ INH 44 1

MOV opr8a,opr8a
MOV #opr8i,opr8a
MOV D[X],opr8a
MOV opr8a,D[X]
MOV #opr8i,D[X]

Move (M)destination ← (M)source ↕ –

DD
IMD
IX/DIR
DIR/IX
IMM/IX

4E
3E
4E
4E
3E

dd dd
ii dd
0E dd
dd 0E
ii 0E

5
4
5
5
4

NOP No Operation None – – INH AC 1

ORA #opr8i
ORA opr8a
ORA ,X (1)

ORA X

Inclusive OR
Accumulator and
Memory

A ← (A) | (M)
A ← (A) | (X) ↕ –

IMM
DIR
IX
DIR

AA
BA
BA
BA

ii
dd
0E
0F

2
3
3
3

ROLA Rotate Left through Carry ↕ ↕ INH 49 1

RORA Rotate Right through
Carry ↕ ↕ INH 46 1

RTS Return from Subroutine Pull PC from shadow PC – – INH BE 3

SBC #opr8i
SBC opr8a
SBC ,X (1)

SBC X

Subtract with Carry A ← (A) – (M) – (C)

A ← (A) – (X) – (C)

↕ ↕

IMM
DIR
IX
DIR

A2
B2
B2
B2

ii
dd
0E
0F

2
3
3
3

SEC Set Carry Bit C ← 1 – 1 INH 39 1

SHA Swap Shadow PC High
with A A ⇔ SPCH – – INH 45 1

SLA Swap Shadow PC Low
with A A ⇔ SPCL – – INH 42 1

STA opr8a
STA opr5a
STA ,X (1)

STA X

Store Accumulator in
Memory M ← (A) ↕ –

DIR
SRT
IX
SRT

B7
Ex / Fx

EE
EF

dd 3
2
2
2

Table 2-12. Instruction Set Summary (Sheet 4 of 5)

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

1. This is a pseudo instruction supported by the normal RS08 instruction set.
2. This instruction is different from that of the HC08 and HCS08 in that the RS08 does not auto-increment the index register.

C

b0b7

0

b0b7

C0

C

b0b7

b0b7

C

RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 51

Central Processor Unit (CPU)
STX opr8a (1) Store Index Register in
Memory M ← (X) ↕ – DIR 4E 0F dd 5

STOP Put MCU into stop mode – – INH AE 2+

SUB #opr8i
SUB opr8a
SUB opr4a
SUB ,X (1)

SUB X

Subtract A ← (A) – (M)

A ← (A) – (X)

↕ ↕

IMM
DIR
TNY
IX
DIR

A0
B0
7x
7E
7F

ii
dd

2
3
3
3
3

TAX(1) Transfer A to X X ← (A) ↕ – INH EF 2

TST opr8a (1)

TSTA (1)

TST ,X (1)

TSTX (1)
Test for Zero

(M) – $00
(A) – $00
(X) – $00

↕ –

DD
INH
IX
INH

4E
AA
4E
4E

dd dd
00
0E 0E
0F 0F

5
2
5
5

TXA(1) Transfer X to A A ← (X) ↕ – INH CF 3

WAIT Put MCU into WAIT
mode – – INH AF 2+

Table 2-12. Instruction Set Summary (Sheet 5 of 5)

Source
Form Description Operation

Effect
on

CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

Z C

1. This is a pseudo instruction supported by the normal RS08 instruction set.
2. This instruction is different from that of the HC08 and HCS08 in that the RS08 does not auto-increment the index register.
RS08 Core Reference Manual, Rev 1.0
52 Freescale Semiconductor

Summary Instruction Table

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

2

T

Table 2-13. Opcode Map
DIR DIR TNY DIR/REL INH TNY TNY TNY SRT SRT IMM/INH DIR/EXT SRT SRT SRT SRT

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
5

BRSET0
3 DIR

5
BSET0

2 DIR

4
INC

1 TNY

3
BRA

2 REL

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
SUB

2 IMM

3
SUB

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

1
5

BRCLR0
3 DIR

5
BCLR0

2 DIR

4
INC

1 TNY

5
CBEQ

3 DIR

4
CBEQA

3 IMM

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
CMP

2 IMM

3
CMP

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

2
5

BRSET1
3 DIR

5
BSET1

2 DIR

4
INC

1 TNY

1
SLA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
SBC

2 IMM

3
SBC

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

3
5

BRCLR1
3 DIR

5
BCLR1

2 DIR

4
INC

1 TNY

1
COMA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

4
5

BRSET2
3 DIR

5
BSET2

2 DIR

4
INC

1 TNY

3
BCC

2 REL

1
LSRA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
AND

2 IMM

3
AND

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

5
5

BRCLR2
3 DIR

5
BCLR2

2 DIR

4
INC

1 TNY

3
BCS

2 REL

1
SHA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

6
5

BRSET3
3 DIR

5
BSET3

2 DIR

4
INC

1 TNY

3
BNE

2 REL

1
RORA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
LDA

2 IMM

3
LDA

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

7
5

BRCLR3
3 DIR

5
BCLR3

2 DIR

4
INC

1 TNY

3
BEQ

2 REL

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

3
STA

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

8
5

BRSET4
3 DIR

5
BSET4

2 DIR

4
INC

1 TNY

1
CLC

1 INH

1
LSLA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
EOR

2 IMM

3
EOR

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

9
5

BRCLR4
3 DIR

5
BCLR4

2 DIR

4
INC

1 TNY

1
SEC

1 INH

1
ROLA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
ADC

2 IMM

3
ADC

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

A
5

BRSET5
3 DIR

5
BSET5

2 DIR

4
INC

1 TNY

5
DEC

2 DIR

1
DECA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
ORA

2 IMM

3
ORA

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

B
5

BRCLR5
3 DIR

5
BCLR5

2 DIR

4
INC

1 TNY

6
DBNZ

3 DIR

4
DBNZA

2 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2
ADD

2 IMM

3
ADD

2 DIR

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

C
5

BRSET6
3 DIR

5
BSET6

2 DIR

4
INC

1 TNY

5
INC

2 DIR

1
INCA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

1
NOP

1 INH

4
JMP

3 EXT

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

D
5

BRCLR6
3 DIR

5
BCLR6

2 DIR

4
INC

1 TNY

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

3
BSR

2 REL

4
JSR

3 EXT

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

E
5

BRSET7
3 DIR

5
BSET7

2 DIR

4
INC

1 TNY

4
MOV

3 IMD

5
MOV

3 DD

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2+
STOP

1 INH

3
RTS

1 INH

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

F
5

BRCLR7
3 DIR

5
BCLR7

2 DIR

4
INC

1 TNY

3
CLR

2 DIR

1
CLRA

1 INH

4
DEC

1 TNY

3
ADD

1 TNY

3
SUB

1 TNY

2
CLR

1 SRT

2
CLR

1 SRT

2+
WAIT

1 INH

5+
BGND

1 INH

3
LDA

1 SRT

3
LDA

1 SRT

2
STA

1 SRT
STA

1 SR

INH Inherent REL Relative
IMM Immediate SRT Short
DIR Direct TNY Tiny
EXT Extended
DD Direct-Direct IMD Immediate-Direct

High Byte of Opcode in Hexadecimal B

Gray box is decoded as illegal instruction

Low Byte of Opcode in Hexadecimal 0
3

SUB
2 DIR

RS08 Cycles
Opcode Mnemonic
Number of Bytes /
Addressing Mode

LOW

HIGH
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 53

Central Processor Unit (CPU)
RS08 Core Reference Manual, Rev 1.0
54 Freescale Semiconductor

RS08 Core Reference Manual

Section 3. Development Support
3.1 Introduction

Development support systems in the RS08 Family include the RS08
background debug controller (BDC).

The BDC provides a single-wire debug interface to the target MCU. This
interface provides a convenient means for programming the on-chip
FLASH and other nonvolatile memories. Also, the BDC is the primary
debug interface for development and allows non-intrusive access to
memory data and traditional debug features such as CPU register
modify, breakpoint, and single-instruction trace commands.

In the RS08 Family, address and data bus signals are not available on
external pins. Debug is done through commands fed into the target MCU
via the single-wire background debug interface, including resetting the
device without using a reset pin.

Figure 3-1. Connecting MCU to Host for Debugging

MCU

USER PCB

COMMAND TRANSLATOR

TARGET RS08 POD HOST

RS-232
USB, Ethernet
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 55

Development Support
3.2 Features

Features of the RS08 background debug controller (BDC) include:

• Uses a single pin for background debug serial communications

• Non-intrusive of user memory resources; BDC registers are not
located in the memory map

• SYNC command to determine target communications rate

• Non-intrusive commands allow access to memory resources while
CPU is running user code without stopping applications

• Active background mode commands for CPU register access

• GO and TRACE1 commands

• BACKGROUND command can wake CPU from wait or stop
modes

• BDC_RESET command allows host to reset MCU without using a
reset pin

• One hardware address breakpoint built into BDC

• RS08 clock source runs in stop mode if BDM enabled to allow
debugging when CPU is in stop mode

• COP watchdog suspended while in active background mode

3.3 RS08 Background Debug Controller (BDC)

All MCUs in the RS08 Family contain a single-wire background debug
interface which supports in-circuit programming of on-chip non-volatile
memory and sophisticated debug capabilities. Unlike debug interfaces
on earlier 8-bit MCUs, this debug system provides for minimal
interference with normal application resources. It does not use any user
memory or locations in the memory map. It requires use of only the
output-only BKGD pin. This pin will be shared with simple user
output-only functions (typically port, comparator outputs, etc.), which
can be easily debugged in normal user mode.
RS08 Core Reference Manual, Rev 1.0
56 Freescale Semiconductor

RS08 Background Debug Controller (BDC)
RS08 BDM commands are divided into two groups:

• Active background mode commands require that the target MCU
is in active background mode (the user program is not running).
The BACKGROUND command causes the target MCU to enter
active background mode. Active background mode commands
allow the CPU registers to be read or written and allow the user to
trace one (TRACE1) user instruction at a time or GO to the user
program from active background mode.

• Non-intrusive commands can be executed at any time even while
the user program is running. Non-intrusive commands allow a
user to read or write MCU memory locations or access status and
control registers within the background debug controller (BDC).

Typically, a relatively simple interface pod is used to translate
commands from a host computer into commands for the custom serial
interface to the single-wire background debug system. Depending on
the development tool vendor, this interface pod may use a standard
RS-232 serial port, a parallel printer port, or some other type of
communication such as Ethernet or a universal serial bus (USB) to
communicate between the host PC and the pod.

Figure 3-2 shows the standard header for connection of a RS08 BDM
pod. A pod is a small interface device that connects a host computer
such as a personal computer to a target RS08 system. BKGD and GND
are the minimum connections required to communicate with a target
MCU. The pseudo-open-drain RESET signal is included in the connector
to allow a direct hardware method for the host to force or monitor (if
RESET is available as output) a target system reset.

The RS08 BDM pods supply the VPP voltage to the RS08 MCU when
in-circuit programming is required. The VPP connection from the pod is
shared with RESET as shown in Figure 3-2. For VPP requirements see
the FLASH specifications in the MCU electricals appendix.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 57

Development Support
Figure 3-2. Standard RS08 BDM Tool Connector

Background debug controller (BDC) serial communications use a
custom serial protocol that was first introduced on the M68HC12 Family
of microcontrollers. This protocol requires that the host knows the
communication clock rate, which is determined by the target BDC clock
rate. If a host is attempting to communicate with a target MCU that has
an unknown BDC clock rate, a SYNC command may be sent to the
target MCU to request a timed sync response signal from which the host
can determine the correct communication speed.

For RS08 MCUs, the BDC clock is the same frequency as the MCU bus
clock. For a detailed description of the communications protocol, refer to
Section 3.3.2, “Communication Details."

3.3.1 BKGD Pin Description

BKGD is the single-wire background debug interface pin. BKGD is a
pseudo-open-drain pin that contains an on-chip pullup, therefore it
requires no external pullup resistor. Unlike typical open-drain pins, the
external resistor capacitor (RC) time constant on this pin, which is
influenced by external capacitance, plays almost no role in signal rise
time. The custom protocol provides for brief, actively driven speedup
pulses to force rapid rise times on this pin without risking harmful drive
level conflicts. Refer to Section 3.3.2, “Communication Details," for more
detail.

The primary function of this pin is bidirectional serial communication of
background debug commands and data. During reset, this pin selects
between starting in active background mode and normal user mode
running an application program. This pin is also used to request a timed
sync response pulse to allow a host development tool to determine the
target BDC clock frequency.

2

4

65

3
1

RESET/VPP

BKGD GND

VDD

NO CONNECT

NO CONNECT
RS08 Core Reference Manual, Rev 1.0
58 Freescale Semiconductor

RS08 Background Debug Controller (BDC)
By controlling the BKGD pin and forcing an MCU reset (issuing a
BDC_RESET command, or through a power-on reset (POR)), the host
can force the target system to reset into active background mode rather
than start the user application program. This is useful to gain control of
a target MCU whose FLASH program memory has not yet been
programmed with a user application program.

When no debugger pod is connected to the 6-pin BDM interface
connector, the internal pullup on BKGD determines the normal operating
mode.

On some RS08 devices, the BKGD pin may be shared with an
alternative output-only function. To support BDM debugging, the user
must disable this alternative function. Debugging of the alternative
function should be done in normal user mode without using BDM.

3.3.2 Communication Details

The BDC serial interface requires the host to generate a falling edge on
the BKGD pin to indicate the start of each bit time. The host provides this
falling edge whether data is transmitted or received.

The BDC serial communication protocol requires the host to know the
target BDC clock speed. Commands and data are sent most significant
bit first (MSB-first) at 16 BDC clock cycles per bit. The interface times out
if 512 BDC clock cycles occur between falling edges from the host. Any
BDC command that was in progress when this timeout occurs is aborted
without affecting the memory or operating mode of the target MCU
system.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 59

Development Support
Figure 3-3 shows an external host transmitting a logic 1 or 0 to the BKGD
pin of a target MCU. The host is asynchronous to the target so there is
a 0-to-1 cycle delay from the host-generated falling edge to where the
target perceives the beginning of the bit time. Ten target BDC clock
cycles later, the target senses the bit level on the BKGD pin. Typically,
the host actively drives the pseudo-open-drain BKGD pin during
host-to-target transmissions to speed up rising edges. Because the
target does not drive the BKGD pin during the host-to-target period,
there is no need to treat the line as an open-drain signal during this
period.

Figure 3-3. BDC Host-to-Target Serial Bit Timing

EARLIEST START

TARGET SENSES BIT LEVEL

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

BDC CLOCK
(TARGET MCU)

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED START
OF BIT TIME

OF NEXT BIT
RS08 Core Reference Manual, Rev 1.0
60 Freescale Semiconductor

RS08 Background Debug Controller (BDC)
Figure 3-4 shows the host receiving a logic 1 from the target MCU.
Because the host is asynchronous to the target, there is a 0-to-1 cycle
delay from the host-generated falling edge on BKGD to the perceived
start of the bit time in the target. The host holds the BKGD pin low long
enough for the target to recognize it (at least two target BDC cycles). The
host must release the low drive before the target drives a brief
active-high speedup pulse seven cycles after the perceived start of the
bit time. The host should sample the bit level approximately 10 cycles
after it started the bit time.

Figure 3-4. BDC Target-to-Host Serial Bit Timing (Logic 1)

HOST SAMPLES BKGD PIN

10 CYCLES

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN

TARGET MCU
SPEEDUP PULSE

PERCEIVED START
OF BIT TIME

HIGH IMPEDANCE

HIGH IMPEDANCE HIGH IMPEDANCE

BKGD PIN
R-C RISE

10 CYCLES
EARLIEST START

OF NEXT BIT
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 61

Development Support
Figure 3-5 shows the host receiving a logic 0 from the target MCU.
Because the host is asynchronous to the target, there is a 0-to-1 cycle
delay from the host-generated falling edge on BKGD to the start of the
bit time as perceived by the target. The host initiates the bit time but the
target finishes it. Because the target wants the host to receive a logic 0,
it drives the BKGD pin low for 13 BDC clock cycles, then briefly drives it
high to speed up the rising edge. The host samples the bit level
approximately 10 cycles after starting the bit time.

Figure 3-5. BDM Target-to-Host Serial Bit Timing (Logic 0)

3.3.3 SYNC and Serial Communication Timeout

The host initiates a host-to-target serial transmission by generating a
falling edge on the BKGD pin. If BKGD is kept low for more than
128 target clock cycles, the target understands that a SYNC command
was issued. In this case, the target will keep waiting for a rising edge on
BKGD to answer the SYNC request pulse. If the rising edge is not
detected, the target will keep waiting indefinitely, without any timeout
limit. When a rising edge on BKGD occurs after a valid SYNC request,
the BDC will drive the BKGD pin low for exactly 128 BDC cycles.

10 CYCLES

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN

TARGET MCU
DRIVE AND

PERCEIVED START
OF BIT TIME

HIGH IMPEDANCE

BKGD PIN

10 CYCLES

SPEEDUP PULSE

SPEEDUP
PULSE

EARLIEST START
OF NEXT BIT

HOST SAMPLES BKGD PIN
RS08 Core Reference Manual, Rev 1.0
62 Freescale Semiconductor

BDC Registers and Control Bits
Consider now the case where the host returns BKGD to logic 1 before
128 cycles. This is interpreted as a valid bit transmission, and not as a
SYNC request. The target will keep waiting for another falling edge
marking the start of a new bit. If, however, a new falling edge is not
detected by the target within 512 clock cycles since the last falling edge,
a timeout occurs and the current command is discarded without affecting
memory or the operating mode of the MCU. This is referred as a
soft-reset to the BDC.

If a read command is issued but the data is not retrieved within 512 serial
clock cycles, a soft-reset will occur causing the command to be
disregarded. The data is not available for retrieving after the timeout has
occurred. A soft-reset is also used to end a READ_BLOCK or
WRITE_BLOCK command.

The following describes the actual bit-time requirements for a host to
guarantee logic 1 or 0 bit transmission without the target timing out or
interpreting the bit as a SYNC command:

• To send a logic 0, BKGD must be kept low for a minimum of
12 BDC cycles and up to 511 BDC cycles except for the first bit of
a command sequence, which will be detected as a SYNC request.

• To send a logic 1, BKGD must be held low for at least four BDC
cycles, be released by the eighth cycle, and be held high until at
least the sixteenth BDC cycle.

• Subsequent bits must occur within 512 BDC cycles of the last bit
sent.

3.4 BDC Registers and Control Bits

The BDC contains two non-CPU accessible registers:

• The BDC status and control register (BDCSCR) is an 8-bit register
containing control and status bits for the background debug
controller.

• The BDC breakpoint register (BDCBKPT) holds a 16-bit
breakpoint match address.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 63

Development Support
These registers are accessed with dedicated serial BDC commands and
are not located in the memory space of the target MCU (so they do not
have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these
registers may be read or written at any time. For example, the ENBDM
control bit may not be written while the MCU is in active background
mode. This prevents the ambiguous condition of the control bit
forbidding active background mode while the MCU is already in active
background mode. Also, the status bits (BDMACT, WS, and WSF) are
read-only status indicators and can never be written by the
WRITE_CONTROL serial BDC command.

3.4.1 BDC Status and Control Register (BDCSCR)

This register can be read or written by serial BDC commands
(READ_STATUS and WRITE_CONTROL) but is not accessible to user
programs because it is not located in the normal memory map of the
MCU.

7 6 5 4 3 2 1 0

R
ENBDM

BDMACT
BKPTEN FTS

0 WS WSF 0

W

Normal
Reset

0 0 0 0 0 0 0 0

Reset in
Active BDM:

1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 3-6. BDC Status and Control Register (BDCSCR)
RS08 Core Reference Manual, Rev 1.0
64 Freescale Semiconductor

BDC Registers and Control Bits
3.4.2 BDC Breakpoint Match Register

This 16-bit register holds the 14-bit address for the hardware breakpoint
in the BDC. The BKPTEN and FTS control bits in BDCSCR are used to
enable and configure the breakpoint logic. Dedicated serial BDC
commands (READ_BKPT and WRITE_BKPT) are used to read and

Table 3-1. BDCSCR Register Field Descriptions

Field Description

7
ENBDM

Enable BDM (Permit Active Background Mode) — Typically, this bit is written to 1 by the debug host shortly
after the beginning of a debug session or whenever the debug host resets the target and remains 1 until a normal
reset clears it. If the application can go into stop mode, this bit is required to be set if debugging capabilities are
required.
0 BDM cannot be made active (non-intrusive commands still allowed).
1 BDM can be made active to allow active background mode commands.

6
BDMACT

Background Mode Active Status — This is a read-only status bit.
0 BDM not active (user application program running).
1 BDM active and waiting for serial commands.

5
BKPTEN

BDC Breakpoint Enable — If this bit is clear, the BDC breakpoint is disabled and the FTS (force tag select)
control bit and BDCBKPT match register are ignored
0 BDC breakpoint disabled.
1 BDC breakpoint enabled.

4
FTS

Force/Tag Select — When FTS = 1, a breakpoint is requested whenever the CPU address bus matches the
BDCBKPT match register. When FTS = 0, a match between the CPU address bus and the BDCBKPT register
causes the fetched opcode to be tagged. If this tagged opcode ever reaches the end of the instruction queue,
the CPU enters active background mode rather than executing the tagged opcode.
0 Tag opcode at breakpoint address and enter active background mode if CPU attempts to execute that

instruction.
1 Breakpoint match forces active background mode at next instruction boundary (address need not be an

opcode).

2
WS

Wait or Stop Status — When the target CPU is in wait or stop mode, most BDC commands cannot function.
However, the BACKGROUND command can be used to force the target CPU out of wait or stop and into active
background mode where all BDC commands work. Whenever the host forces the target MCU into active
background mode, the host should issue a READ_STATUS command to check that BDMACT = 1 before
attempting other BDC commands.
0 Target CPU is running user application code or in active background mode (was not in wait or stop mode when

background became active).
1 Target CPU is in wait or stop mode, or a BACKGROUND command was used to change from wait or stop to

active background mode.

1
WSF

Wait or Stop Failure Status — This status bit is set if a memory access command failed due to the target CPU
executing a wait or stop instruction at or about the same time. The usual recovery strategy is to issue a
BACKGROUND command to get out of wait or stop mode into active background mode, repeat the command
that failed, then return to the user program. (Typically, the host would restore CPU registers and stack values and
re-execute the wait or stop instruction.)
0 Memory access did not conflict with a wait or stop instruction.
1 Memory access command failed because the CPU entered wait or stop mode.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 65

Development Support
write the BDCBKPT register. Breakpoints are normally set while the
target MCU is in active background mode before running the user
application program. However, because READ_BKPT and
WRITE_BKPT are non-intrusive commands, they could be executed
even while the user program is running. For additional information about
setup and use of the hardware breakpoint logic in the BDC, refer to
Section 3.6, “BDC Hardware Breakpoint."

3.5 RS08 BDC Commands

BDC commands are sent serially from a host computer to the BKGD pin
of the target MCU. All commands and data are sent MSB-first using a
custom BDC communications protocol. Active background mode
commands require that the target MCU is currently in the active
background mode while non-intrusive commands may be issued at any
time whether the target MCU is in active background mode or running a
user application program.

Table 3-2 shows all RS08 BDC commands, a shorthand description of
their coding structure, and the meaning of each command.

Coding Structure Nomenclature

The following nomenclature is used in Table 3-2 to describe the coding
structure of the BDC commands.

Commands begin with an 8-bit command code in the
host-to-target direction (most significant bit first)

/ = Separates parts of the command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0
A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

W

Any
 Reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 3-7. BDC Breakpoint Match Register (BDCBKPT)
RS08 Core Reference Manual, Rev 1.0
66 Freescale Semiconductor

RS08 BDC Commands
d = Delay 16 to 511 target BDC clock cycles

soft-reset = Delay of at least 512 BDC clock cycles from last host
falling-edge

AAAA = 16-bit address in the host-to-target direction1

RD = Eight bits of read data in the target-to-host direction

WD = Eight bits of write data in the host-to-target direction

RD16 = 16 bits of read data in the target-to-host direction

WD16 = 16 bits of write data in the host-to-target direction

SS = the contents of BDCSCR in the target-to-host direction
(STATUS)

CC = Eight bits of write data for BDCSCR in the
host-to-target direction (CONTROL)

RBKP = 16 bits of read data in the target-to-host direction (from
BDCBKPT breakpoint register)

WBKP = 16 bits of write data in the host-to-target direction (for
BDCBKPT breakpoint register)

1. The RS08 CPU uses only 14 bits of address and occupies the lower 14 bits of the 16-bit AAAA
address field. The values of address bits 15 and 14 in AAAA are truncated and thus do not
matter.

Table 3-2. RS08 BDC Command Summary

Command
Mnemonic

Active Background
Mode/

Non-Intrusive

Coding
Structure

Description

SYNC Non-intrusive n/a(1) Request a timed reference pulse to deter-
mine target BDC communication speed

BDC_RESET Any CPU mode 18(2) Request an MCU reset

BACKGROUND Non-intrusive 90/d
Enter active background mode if enabled
(ignore if ENBDM bit equals 0)

READ_STATUS Non-intrusive E4/SS Read BDC status from BDCSCR

WRITE_CONTROL Non-intrusive C4/CC Write BDC controls in BDCSCR

READ_BYTE Non-intrusive E0/AAAA/d/RD Read a byte from target memory

READ_BYTE_WS Non-intrusive E1/AAAA/d/SS/RD Read a byte and report status

WRITE_BYTE Non-intrusive C0/AAAA/WD/d Write a byte to target memory

WRITE_BYTE_WS Non-intrusive C1/AAAA/WD/d/SS Write a byte and report status

READ_BKPT Non-intrusive E2/RBKP Read BDCBKPT breakpoint register

WRITE_BKPT Non-intrusive C2/WBKP Write BDCBKPT breakpoint register
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 67

Development Support
GO
Active background
mode

08/d
Go to execute the user application pro-
gram starting at the address currently in
the PC

TRACE1
Active background
mode

10/d
Trace one user instruction at the address
in the PC, then return to active back-
ground mode

READ_BLOCK
Active background
mode

80/AAAA/d/RD(3)
Read a block of data from target memory
starting from AAAA continuing until a
soft-reset is detected

WRITE_BLOCK
Active background
mode

88/AAAA/WD/d(4)
Write a block of data to target memory
starting at AAAA continuing until a
soft-reset is detected

READ_A
Active background
mode

68/d/RD Read accumulator (A)

WRITE_A
Active background
mode

48/WD/d Write accumulator (A)

READ_CCR_PC
Active background
mode

6B/d/RD16(5)
Read the CCR bits z, c concatenated with
the 14-bit program counter (PC)
RD16=zc:PC

WRITE_CCR_PC
Active background
mode

4B/WD16/d(6)
Write the CCR bits z, c concatenated with
the 14-bit program counter (PC)
WD16=zc:PC

READ_SPC
Active background
mode

6F/d/RD16(7)
Read the 14-bit shadow program counter
(SPC)
RD16=0:0:SPC

WRITE_SPC
Active background
mode

4F/WD16/d(8)

Write 14-bit shadow program counter
(SPC)
WD16 = x:x:SPC, the two most significant
bits shown by “x” are ignored by target

1. The SYNC command is a special operation which does not have a command code.
2. 18 was HCS08 BDC command for TAGGO.
3. Each RD requires a delay between host read data byte and next read, command ends when target detects a soft-reset.
4. Each WD requires a delay between host write data byte and next byte, command ends when target detects a soft-reset.
5. HCS08 BDC had separate READ_CCR and READ_PC commands, the RS08 BDC combined this commands.
6. HCS08 BDC had separate WRITE_CCR and WRITE_PC commands, the RS08 BDC combined this commands.
7. 6F is READ_SP (read stack pointer) for HCS08 BDC.
8. 4F is WRITE_SP (write stack pointer) for HCS08 BDC.

Table 3-2. RS08 BDC Command Summary (Continued)

Command
Mnemonic

Active Background
Mode/

Non-Intrusive

Coding
Structure

Description
RS08 Core Reference Manual, Rev 1.0
68 Freescale Semiconductor

RS08 BDC Commands
3.5.1 SYNC

The SYNC command is unlike other BDC commands because the host
does not necessarily know the correct communications speed to use for
BDC communications until after it has analyzed the response to the
SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest
possible BDC clock (the slowest clock)

• Drives BKGD high for a brief speedup pulse to get a fast rise time
(this speedup pulse is typically one cycle of the fastest clock in the
system)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a
much longer low time than would ever occur during normal BDC
communications):

• Waits for BKGD to return to a logic 1

• Delays 16 cycles to allow the host to stop driving the high speedup
pulse

• Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on
BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse
and determines the correct speed for subsequent BDC communications.
Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication
protocol can easily tolerate speed errors of several percent.

Request a timed pulse (128 BDC clock cycles) from target Non-Intrusive
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 69

Development Support
3.5.2 BDC_RESET

Provided the BKGD pin is available, the target MCU can be reset to enter
active background mode by the BDC_RESET command followed
immediately by asserting the BKGD pin low until the MCU reset
sequence finishes. If BKGD is left high after a BDC_RESET, the target
MCU will reset into normal user mode. Systems that can place the CPU
into wait or stop mode require ENBDM to be set to allow the BDC clocks
to remain active while the CPU is in stop mode.

3.5.3 BACKGROUND

Provided ENBDM is set, the BACKGROUND command causes the
target MCU to enter active background mode as soon as the current
CPU instruction finishes.

If ENBDM is clear (its default value), the BACKGROUND command will
be ignored by the BDC. The host should attempt to enable ENBDM
using WRITE_STATUS and verify that ENBDM is set using
READ_STATUS before issuing a BACKGROUND command.

If the target application uses wait or stop mode, it may not be possible to
enter active background mode without causing a wakeup using an
external interrupt.

Reset the MCU Any CPU Mode

$18(1)

1. $18 is the HCS08 BDC command for TAGGO

pod → target
D
L
Y

Enter Active Background Mode (if Enabled) Non-intrusive

$90

pod → target
D
L
Y

RS08 Core Reference Manual, Rev 1.0
70 Freescale Semiconductor

RS08 BDC Commands
A delay of 16 BDC clock cycles is required after the BACKGROUND
command to allow the target MCU to finish its current CPU instruction
and enter active background mode before a new BDC command can be
accepted.

Normally, the development host would set ENBDM once at the
beginning of a debug session or after a target system reset, and then
leave the ENBDM bit set during debugging operations. During
debugging, the host would use GO and TRACE1 commands to move
from active background mode to normal user program execution and
would use BACKGROUND commands or breakpoints to return to active
background mode. This method of debugging allow the host debugger
to enter active background mode even if the CPU enters wait or stop
mode.

3.5.4 READ_STATUS

This command allows a host to read the contents of the BDC status and
control register (BDCSCR). This register is not in the memory map of the
target MCU and is accessible only through READ_STATUS and
WRITE_CONTROL serial BDC commands.

The most common use for this command is to allow the host to
determine whether the target MCU is executing normal user program
instructions or if it is in active background mode. For example, during a
typical debug session, the host might set breakpoints in the user
program and then use a GO command to begin normal user program
execution. The host would then periodically execute READ_STATUS
commands to determine when a breakpoint has been encountered and
the target processor has gone into active background mode. After the
target has entered active background mode, the host reads the contents
of target CPU registers.

Read Status from BDCSCR Non-intrusive

$E4 Read BDCSCR (8)

pod → target target → pod
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 71

Development Support
READ_STATUS can also be used to check whether the target MCU has
gone into wait or stop mode. During a debug session, the host or user
may decide that it has taken too long to reach a breakpoint in the user
program. The host could then issue a READ_STATUS command and
check the WS status bit to determine whether the target MCU is still
running user code or whether it has entered wait or stop mode. If WS = 0
and BDMACT = 0, meaning it is running user code and is not in wait or
stop, the host might choose to issue a BACKGROUND command to stop
the user program and enter active background mode where the host can
check the CPU registers and find out what the target program is doing.

3.5.5 WRITE_CONTROL

This command is used to enable active background mode and control
the hardware breakpoint logic in the BDC by writing to control bits in the
BDC status and control register (BDCSCR). This register is not in the
memory map of the target MCU and is only accessible through
READ_STATUS and WRITE_CONTROL serial BDC commands. Some
bits in BDCSCR have write restrictions (such as status bits BDMACT,
WS, and WSF, which are read-only status indicators, and ENBDM,
which cannot be cleared while BDM is active.

The ENBDM control bit defaults to 0 (active background mode not
allowed) when the target MCU is reset in normal operating mode.
WRITE_CONTROL is used to enable the active background mode. This
is normally done once and ENBDM is left enabled throughout the debug
session. However, the debug system may want to change ENBDM to 0
and measure true stop current in the target system (because
ENBDM = 1 prevents the clock generation circuitry from disabling the
internal clock oscillator or crystal oscillator to allow the BDC clock to
continue when the CPU executes a STOP instruction).

The breakpoint enable (BKPTEN) and force/tag select (FTS) control bits
are used to control the hardware breakpoint logic in the BDC. This is a

Write Control Bits in BDCSCR Non-intrusive

$C4 Write BDCSCR (8)

pod → target pod → target
RS08 Core Reference Manual, Rev 1.0
72 Freescale Semiconductor

RS08 BDC Commands
single breakpoint that compares the current CPU address against the
value in the BDCBKPT register. A WRITE_CONTROL command is used
to change BKPTEN and FTS, and a WRITE_BKPT command is used to
write the 16-bit BDCBKPT address match register.

3.5.6 READ_BYTE

This command is used to read the contents of a memory location in the
target MCU without checking the BDC status to ensure the data is valid.
In systems where the target is currently in active background mode or is
known to be executing a program which has no STOP or WAIT
instructions, READ_BYTE is faster than the more general
READ_BYTE_WS, which reports status in addition to returning the
requested read data. The most significant use of the READ_BYTE
command is during in-circuit FLASH programming where the host
downloads data to be programmed at the same time the target CPU is
executing the code that actually programs the FLASH memory. Because
the host provides the FLASH programming code, it can guarantee that
there are no STOP or WAIT instructions.

The READ_BYTE command should not be used in general-purpose
user programs that use STOP or WAIT instructions. To avoid invalid
data due to CPU operation in stop or wait mode, the READ_BYTE_WS
should be used determine whether the data is valid.

Read Data from Target Memory Location Non-intrusive

$E0 ADDRESS (16) Read DATA (8)

pod → target pod → target
D
L
Y

target → pod
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 73

Development Support
3.5.7 READ_BYTE_WS

This is the command normally used by a host debug system to perform
general-purpose memory read operations. In addition to returning the
data from the requested target memory location, this command returns
the contents of the BDC status and control register. The status
information can be used to determine whether the data that was returned
is valid or not. If the target MCU was just entering wait or stop mode at
the time of the read, the wait/stop failure (WSF) status bit will be 1. If
WSF is 0, the data that was returned is valid.

If the WSF bit indicates a WAIT or STOP instruction caused the read
operation to fail, do a BACKGROUND command to force the target
system out of wait or stop mode and into active background mode. From
there, repeat the failed read operation, and if desired, adjust the PC to
point to the WAIT or STOP instruction and issue a GO to return the target
to wait or stop mode.

3.5.8 WRITE_BYTE

This command is used to write the contents of a memory location in the
target MCU without checking the BDC status to ensure the write was
completed successfully. In systems where the target is currently in active
background mode or is known to be executing a program that has no
STOP or WAIT instructions, WRITE_BYTE is faster than the more
general WRITE_BYTE_WS, which reports status in addition to

Read Data from Target and Report Status Non-intrusive

$E1 ADDRESS (16) Read BDCSCR (8) Read DATA (8)

pod → target pod → target
D
L
Y

target → pod target → pod

Write Data to Target Memory Location Non-intrusive

$C0 ADDRESS(16) Write DATA(8)

pod → target pod → target pod → target
D
L
Y

RS08 Core Reference Manual, Rev 1.0
74 Freescale Semiconductor

RS08 BDC Commands
performing the requested write operation. The most significant use of the
WRITE_BYTE command is during in-circuit FLASH programming where
the host downloads data to be programmed at the same time the target
CPU is executing the code that actually programs the FLASH memory.
Because the host provides the FLASH programming code, it can
guarantee that there are no STOP or WAIT instructions.

The WRITE_BYTE command should not be used in general-purpose
user programs which use STOP or WAIT instructions that can occur at
any time. To avoid invalid data due to CPU in stop or wait mode, the
WRITE_BYTE_WS should be used to determine whether the data that
was returned is valid or not.

3.5.9 WRITE_BYTE_WS

This is the command normally used by a host debug system to perform
general-purpose memory write operations. In addition to performing the
requested write to a target memory location, this command returns the
contents of the BDC status and control register. The status information
can be used to determine whether the write operation was completed
successfully. If the target MCU was just entering wait or stop mode at the
time of the read, the wait/stop failure (WSF) status bit will be 1 and the
write command is cancelled. If WSF is 0, the write operation was
completed successfully.

If the WSF bit indicates a WAIT or STOP instruction caused the write
operation to fail, do a BACKGROUND command to force the target
system out of wait or stop mode and into active background mode. From
there, repeat the failed write operation, and if desired, adjust the PC to
point to the WAIT or STOP instruction and issue a GO to return the target
to wait or stop mode.

Write Data to Target and Report Status Non-intrusive

$C1 ADDRESS (16) Write DATA (8) Read BDCSCR (8)

pod → target pod → target pod → target
D
L
Y

target → pod
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 75

Development Support
3.5.10 READ_BKPT

This command is used to read the 16-bit BDCBKPT address match
register in the hardware breakpoint logic in the BDC.

3.5.11 WRITE_BKPT

This command is used to write a 16-bit address value into the BDCBKPT
register in the BDC. This establishes the address of a breakpoint. The
BKPTEN bit in the BDCSCR determines whether the breakpoint is
enabled. If BKPTEN = 1 and the FTS control bit in the BDCSCR is set
(force), a successful match between the CPU address and the value in
the BDCBKPT register will force a transition to active background mode
at the next instruction boundary. If BKPTEN = 1 and FTS = 0, the
opcode at the address specified in the BDCBKPT register will be tagged
as it is fetched into the instruction queue. If and when a tagged opcode
reaches the top of the instruction queue and is about to be executed, the
MCU will enter active background mode rather than execute the tagged
instruction.

In normal debugging environments, breakpoints are established while
the target MCU is in active background mode before going to the user
program. However, because this is a non-intrusive command, it could be
executed even when the MCU is running a user application program.

Read 16-Bit BDC Breakpoint Register (BDCBKPT) Non-intrusive

$E2 Read data from BDCBKPT register (16)

pod → target target → pod

Write 16-Bit BDC Breakpoint Register (BDCBKPT) Non-intrusive

$C2 Write data to BDCBKPT register (16)

pod → target pod → target
RS08 Core Reference Manual, Rev 1.0
76 Freescale Semiconductor

RS08 BDC Commands
3.5.12 GO

This command is used to exit the active background mode and begin
execution of user program instructions starting at the address in the PC.
Typically, the host debug monitor program modifies the PC value (using
a WRITE_PC command) before issuing a GO command to go to an
arbitrary point in the user program. This WRITE_PC command is not
needed if the host simply wants to continue the user program where it
left off when it entered active background mode.

3.5.13 TRACE1

This command is used to run one user instruction and return to active
background mode. The address in the PC determines what user
instruction will be executed, and the PC value after TRACE1 is
completed will reflect the results of the executed instruction.

Start Execution of User Program Starting at Current PC Active Background Mode

$08

pod → target
D
L
Y

Run One User Instruction Starting at the Current PC Active Background Mode

$10

pod → target
D
L
Y

RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 77

Development Support
3.5.14 READ_BLOCK

This command is used to read the contents of a block of memory starting
at the location provided in the command. Because this command is only
available in active background mode, the CPU cannot enter wait or stop;
therefore the command does not return the contents of the BDMSCR.
This command will continue to read data from the next memory location
until the BDC detects a soft-reset, which is a timeout of 512 BDC cycles
from the last falling edge of the host. This command is useful when
dumping large blocks of data for memory displays or in programmers to
verify the device data after programming.

3.5.15 WRITE_BLOCK

This command is used to write data to a block of memory starting at the
location provided in the command. Because this command is only
available in active background mode, the CPU cannot enter wait or stop,
therefore the command does not return the contents of the BDMSCR.
This command will continue to write data to the next memory location
until the BDC detects a soft-reset, which is a timeout of 512 BDC cycles
from the last falling edge of the host. This command is useful when
writing large blocks of data such as full blocks of RAM.

Read a block of data from target memory Active Background Mode

$80 Address (16) Read byte (8) Read next byte (8)

pod → target pod → target
D
L
Y

target → pod
D
L
Y

target → pod

Write a block of data to target memory Active Background Mode

$88 Address (16) Write byte (8) Write next byte (8)

pod → target pod → target pod → target
D
L
Y

pod → target
RS08 Core Reference Manual, Rev 1.0
78 Freescale Semiconductor

RS08 BDC Commands

R

W

R

3.5.16 READ_A

Read the contents of the accumulator (A) of the target CPU. Because
the CPU in the target MCU is effectively halted while the target is in
active background mode, there is no need to save the target CPU
registers on entry into active background mode and no need to restore
them on exit from active background mode to a user program.

3.5.17 WRITE_A

Write new data to the accumulator (A) of the target CPU. This command
can be used to change the value in the accumulator before returning to
the user application program via a GO or TRACE1 command.

3.5.18 READ_CCR_PC

Read the Z and C bits of the condition code register (CCR) and contents
of the 14-bit program counter (PC) of the target CPU.

ead Accumulator A of the Target CPU Active Background Mode

$68 Accumulator data (8)

pod → target
D
L
Y

target → pod

rite Accumulator A of the Target CPU Active Background Mode

$48 Accumulator data (8)

pod → target pod → target
D
L
Y

eads the CCR and the Program Counter of the Target CPU Active Background Mode

$6B (1)

1. $6B is the HCS08 BDC command for READ_PC, the HCS08 CCR was read using READ_CCR

CCR and Program Counter data (16)

pod → target
D
L
Y

target → pod
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 79

Development Support
The value in the PC when the target MCU enters active background
mode is the address of the instruction that would have executed next if
the MCU had not entered active background mode. If the target CPU
was in wait or stop mode when a BACKGROUND command caused it to
go to active background mode, the PC will hold the address of the
instruction after the WAIT or STOP instruction that was responsible for
the target CPU being in wait or stop, and the WS bit will be set. In the
boundary case (where an interrupt and a BACKGROUND command
arrived at approximately the same time and the interrupt was
responsible for the target CPU leaving wait or stop—and then the
BACKGROUND command took effect), the WS bit will be clear and the
PC will be pointing at the next instruction after the WAIT or STOP. In the
case of a software breakpoint (where the host placed a BGND opcode
at the desired breakpoint address), the PC will be pointing at the address
immediately following the inserted BGND opcode, and the host monitor
will adjust the PC backward by one after removing the software
breakpoint.

3.5.19 WRITE_CCR_PC

This command is used to change the contents of Z and C bits the
condition code register (CCR) and the 14-bit program counter (PC) of
the target CPU before returning to the user application program via a GO
or TRACE1 command.

Write the CCR and Program Counter of the Target CPU Active Background Mode

$4B (1)

1. $4B is the HCS08 BDC command for WRITE_PC, the HCS08 CCR was written using WRITE_CCR

CCR and Program Counter data (16)

pod → target pod → target
D
L
Y

RS08 Core Reference Manual, Rev 1.0
80 Freescale Semiconductor

BDC Hardware Breakpoint

R

3.5.20 READ_SPC

Read the contents of the 14-bit shadow program counter (PC) of the
target CPU.

3.5.21 WRITE_SPC

Writes the contents of the 14-bit shadow program counter (PC) of the
target CPU. The two most significant bits of the 16-bit WD16 are ignored
by the target.

3.6 BDC Hardware Breakpoint

The BDC includes one hardware breakpoint, which compares the CPU
address bus to a 14-bit match value in the BDCBKPT register. This
breakpoint can generate a forced breakpoint or a tagged breakpoint.

A forced breakpoint causes the CPU to enter active background mode
at the first instruction boundary following any access to the breakpoint
address. The tagged breakpoint causes the instruction opcode at the
breakpoint address to be tagged so that the CPU will enter active
background mode rather than executing that instruction if and when it
reaches the end of the instruction queue. Tagged breakpoints must be

eads the Shadow Program Counter of the Target CPU Active Background Mode

$6F (1)

1. $6F is the HCS08 BDC command for READ_SP (stack pointer)

Shadow Program Counter data (16)

pod → target
D
L
Y

target → pod

Write the Shadow Program Counter of the Target CPU Active Background Mode

$4F (1)

1. $4F is the HCS08 BDC command for WRITE_SP (stack pointer)

Shadow Program Counter data (16)

pod → target pod → target
D
L
Y

RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 81

Development Support
placed only at the address of an instruction opcode while forced
breakpoints can be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and
control register (BDCSCR) is used to enable the breakpoint logic
(BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested
regardless of the values in other BDC breakpoint registers and control
bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The 8-bit BDCSCR and the 16-bit BDCBKPT address match register are
built directly into the BDC and are not accessible in the normal MCU
memory map. This means that the user application program cannot
access these registers. Dedicated BDC serial commands are the only
way to access these registers. READ_STATUS and WRITE_CONTROL
are used to read or write BDCSCR, respectively. READ_BKPT and
WRITE_BKPT are used to read or write the 16-bit BDCBKPT address
match register, respectively.

If the background mode has not been enabled, ENBDM = 0, the CPU will
cause an illegal opcode reset instead of going into active background
mode.

3.7 BDM in Stop and Wait Modes

The clock architecture of the RS08 permits the BDC to prevent the BDC
clock from stopping during wait or stop mode if ENBDM is set. In such a
system, the debug host can use READ_STATUS commands to
determine whether the target is in a low-power mode (wait or stop). If the
target is in wait or stop (WS =1), the BACKGROUND command may be
used to wake the target and place it in active background mode. When
the CPU returns to active background mode, the PC will be pointing at
the address of the instruction after the WAIT or STOP. From active
background mode, the debug host can read or write memory or
registers. The debug host can then choose to adjust the PC such that a
GO command will return the target MCU to wait or stop mode.
RS08 Core Reference Manual, Rev 1.0
82 Freescale Semiconductor

BDC Command Execution
If the CPU is in active background mode and the user issues a GO
command and the next instruction is WAIT or STOP, the CPU goes into
wait or stop mode.

If the user issues a TRACE1 command and the next instruction is WAIT
or STOP, the CPU executes and completes the instruction and re-enters
active background mode. When the CPU returns to active background
mode, the PC will be pointing at the address of the instruction after the
WAIT or STOP.

3.8 BDC Command Execution

The RS08 BDC requires no system resources except for the BKGD pin.
A running application that is not in wait or stop mode can have its
memory or register contents read or written without stopping the
application. The RS08 BDC steals CPU cycles whenever a BDC
command requires reading or writing memory or registers. This has little
impact on real-time operation of user code because a memory access
command takes eight bits for the command, 16 bits for the address, at
least eight bits for the data, and a 16-cycle delay within the command.
Each bit time is at least 16 BDC clock cycles so (32 x 16) +16 = 528
cycles, thus the worst case impact is no more than 1/528 cycles, even if
there are continuous back-to-back memory access commands through
the BDM, which would be very ugrep timenlikely.

Because the RS08 BDC doesn’t wait for free cycles, the delays between
address and data in read commands and the delay after the data portion
of a write command can be very short. In the RS08, the delay within a
memory access command is 16 target bus cycles. For read or write
accesses to registers within the BDC (STATUS and BDCBKPT), no
delay is required.

Because the memory access commands in the RS08 BDC are actually
performed by the CPU circuitry, it is possible for a memory access to fail
when the memory access command coincides with the CPU entering
wait or stop.

The WSF status bit was added to indicate an access failed because the
CPU was just entering wait or stop mode. The READ_BYTE_WS
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 83

Development Support
command returns byte of status information and read data byte. The
WRITE_BYTE_WS command includes the byte of status information in
the target-to-host direction after the write data byte (which is in the
host-to-target direction).
RS08 Core Reference Manual, Rev 1.0
84 Freescale Semiconductor

RS08 Core Reference Manual

Appendix A. Instruction Set Details
A.1 Introduction

This section contains detailed information for all RS08 Family
instructions. The instructions are arranged in alphabetical order with the
instruction mnemonic set in larger type for easy reference.

A.2 Nomenclature

This nomenclature is used in the instruction descriptions throughout this
section.

Operators

() = Contents of register or memory location shown inside
parentheses

← = Is loaded with (read: “gets”)
⇔ = Exchange with
& = Boolean AND
| = Boolean OR

⊕ = Boolean exclusive-OR
: = Concatenate

+ = Add

CPU registers

A = Accumulator
CCR = Condition code register

PC = Program counter
PCH = Program counter, higher order (most significant) eight

bits
PCL = Program counter, lower order (least significant) eight

bits
SPC = Shadow program counter
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 85

Instruction Set Details
SPCH = Shadow program counter, higher order (most
significant) six bits

SPCL = Shadow program counter, lower order (least
significant) eight bits

Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

rel = The relative offset, which is the two’s complement
number stored in the last byte of machine code
corresponding to a branch instruction

X = Pseudo index register, memory location $000F
,X or D[X] = Memory location $000E pointing to the memory

location defined by the pseudo index register (location
$000F)

Condition code register (CCR) bits

Z = Zero indicator
C = Carry/borrow

Bit status before execution of an instruction (n = 7, 6, 5, ... 0)

Mn = Bit n of memory location used in operation
An = Bit n of accumulator
bn = Bit n of the source operand (M, or A)

Bit status after execution of an instruction (n = 7, 6, 5, … 0)

Rn = Bit n of the result of an operation

CCR activity figure notation

– = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
↕ = Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order eight bits of a direct address $0000–$00FF
(high byte assumed to be $00)

ii = One byte of immediate data
RS08 Core Reference Manual, Rev 1.0
86 Freescale Semiconductor

Nomenclature
kk = Low-order byte of a 16-bit immediate data value
hh = High-order byte of 16-bit extended address

ll = Low-order byte of 16-bit extended address
rr = Relative offset

Source forms

The instruction detail pages provide only essential information about
assembler source forms. Assemblers generally support a number of
assembler directives, allow definition of program labels, and have
special conventions for comments. For complete information about
writing source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Typically, assemblers are flexible about the use of spaces and tabs.
Often, any number of spaces or tabs can be used where a single space
is shown on the glossary pages. Spaces and tabs are also normally
allowed before and after commas. When program labels are used, there
must also be at least one tab or space before all instruction mnemonics.
This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.

The definition of a legal label or expression varies from assembler to
assembler. Assemblers also vary in the way CPU registers are specified.
Refer to assembler documentation for detailed information. The
recommended register designator is ‘A’.

n — Any label or expression that evaluates to a single
integer in the range 0–7

x — Any label or expression that evaluates to a single
hexadecimal integer in the range $0–$F

opr8i — Any label or expression that evaluates to an 8-bit
immediate value
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 87

Instruction Set Details
opr4a — Any label or expression that evaluates to a Tiny
address (4-bit value). The instruction treats this 4-bit
value as the low order four bits of an address in the
16-Kbyte address space ($0000–$000F). This 4-bit is
embedded in the low order 4 bits in the opcode.

opr5a — Any label or expression that evaluates to a Short
address (5-bit value). The instruction treats this 5-bit
value as the low order five bits of an address in the
16-Kbyte address space ($0000–$001F). This 5-bit
value is embedded in the low order 5 bits in the
opcode.

opr8a — Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order eight bits of an address in the 16-Kbyte address
space ($0000–$00FF).

opr16a — Any label or expression that evaluates to a 16-bit
value. The instruction treats this value as an address
in the 64-Kbyte address space.

rel — Any label or expression that refers to an address that
is within –128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.

Cycle-by-cycle execution

This information is found in the tables at the bottom of each instruction
glossary page. Entries show how many bytes of information are
accessed from different areas of memory during the course of instruction
execution. With this information and knowledge of the bus frequency, a
user can determine the execution time for any instruction in any system.

A single letter code in the column represents a single CPU cycle. There
are cycle codes for each addressing mode variation of each instruction.
Simply count code letters to determine the execution time of an
instruction.

This list explains the cycle-by-cycle code letters:

f — Free cycle. This indicates a cycle where the CPU does
not require use of the system buses. An f cycle is
always one cycle of the system bus clock.

p — Program byte access
r — 8-bit data read

w — 8-bit data write
RS08 Core Reference Manual, Rev 1.0
88 Freescale Semiconductor

Convention Definitions
Address modes

INH = Inherent (no operands)
IMD = Immediate to Direct (in MOV instruction)
IMM = Immediate
DD = Direct to Direct (in MOV instruction)
DIR = Direct
SRT = Short
TNY = Tiny
EXT = Extended
REL = 8-bit relative offset

A.3 Convention Definitions

Set refers specifically to establishing logic level 1 on a bit or bits.

Cleared refers specifically to establishing logic level 0 on a bit or bits.

A specific bit is referred to by mnemonic and bit number. A7 is bit 7 of
accumulator A. A range of bits is referred to by mnemonic and the bit
numbers that define the range. A [7:4] are bits 7 to 4 of the accumulator.

Parentheses indicate the contents of a register or memory location,
rather than the register or memory location itself. (A) is the contents of
the accumulator. In Boolean expressions, parentheses have the
traditional mathematical meaning.

A.4 Use of ‘X’, ‘,X’ and ‘D[X]’ as instruction operands

In an RS08 assembler X is defined by the assembler as being address
$000F, the index notation ,X or D[X] is defined as location $000E.

The use of ,X is supported to aid assembly language compatibility with
the notation used with the HC(S)08 assembly language.

• Where instructions use the ,X notation the use of D[X] is
permissible

• The use of X will refer to location $000F unless it is the first
operand and is prefixed by a comma where it will refer to location
$000E
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 89

Instruction Set Details
Valid uses of ‘X’, ‘,X’ and ‘D[X’] are shown in Table 3-3.

A.5 Instruction Set

The following pages summarize each instruction, including operation
and description, condition codes and Boolean formulae, and a table with
source forms, addressing modes, machine code, and cycles.

Table 3-3. Valid Uses of X, ',X' & D[X]

Instruction Use

MOV #$20,X Load index register with $20

MOV #$AA,D[X] Store $AA into location pointed to by index register

LDA ,X
LDA D[X]

Load accumulator from location pointed to by index register
RS08 Core Reference Manual, Rev 1.0
90 Freescale Semiconductor

Instruction Set
ADC Add with Carry ADC
Operation A ← (A) + (M) + (C)

Description Adds the contents of the C bit to the sum of the contents of A and M and
places the result in A. This operation is useful for addition of operands
that are larger than eight bits.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if there was a carry from the most significant bit (MSB) of the
result; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ADC #opr8i IMM A9 ii 2 pp

ADC opr8a DIR B9 dd 3 rpp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ADC ,X IX B9 0E 3 rpp

ADC X DIR B9 0F 3 rpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 91

Instruction Set Details
ADD Add without Carry ADD
Operation A ← (A) + (M)

Description Adds the contents of M to the contents of A and places the result in A

Condition Codes
and Boolean
Formulae

:

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ADD #opr8i IMM AB ii 2 pp

ADD opr8a DIR BB dd 3 rpp

ADD opr4a TNY 6x 3 rfp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ADD ,X IX 6E 3 rfp

ADD X DIR 6F 3 rfp
RS08 Core Reference Manual, Rev 1.0
92 Freescale Semiconductor

Instruction Set
AND Logical AND AND
Operation A ← (A) & (M)

Description Performs the logical AND between the contents of A and the contents of
M and places the result in A. Each bit of A after the operation will be the
logical AND of the corresponding bits of M and of A before the operation.

Condition Codes
and Boolean
Formulae

:

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

AND #opr8i IMM A4 ii 2 pp

AND opr8a DIR B4 dd 3 rpp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

AND ,X IX B4 0E 3 rpp

AND X DIR B4 0F 3 rpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 93

Instruction Set Details
ASLA Arithmetic Shift Left ASLA
(Pseudo Instruction)

Operation

Description Shifts all bits of the A one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of A.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A was set; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

C b7 — — — — — — b0 0

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ASLA INH 48 1 p
RS08 Core Reference Manual, Rev 1.0
94 Freescale Semiconductor

Instruction Set
BCC Branch if Carry Bit Clear BCC
(Same as BHS)

Operation If (C) = 0, PC ← (PC) + $0002 + rel

Description Tests state of C bit in CCR and causes a branch if C is clear. BCC can
be used after shift or rotate instructions or to check for overflow after
operations on unsigned numbers. See the BRA instruction for further
details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BCC rel REL 34 rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 95

Instruction Set Details
BCLR n Clear Bit n in Memory BCLR n
Operation Mn ← 0

Description Clear bit n (n = 7, 6, 5, … 0) in location M. All other bits in M are
unaffected. In other words, M can be any random-access memory
(RAM) or input/output (I/O) register address from $0000 to $00FF. This
instruction reads the specified 8-bit location, modifies the specified bit,
and then writes the modified 8-bit value back to the memory location.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

The BCLR n description continues next page.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BCLR 0,opr8a DIR (b0) 11 dd 5 rfwpp

BCLR 1,opr8a DIR (b1) 13 dd 5 rfwpp

BCLR 2,opr8a DIR (b2) 15 dd 5 rfwpp

BCLR 3,opr8a DIR (b3) 17 dd 5 rfwpp

BCLR 4,opr8a DIR (b4) 19 dd 5 rfwpp

BCLR 5,opr8a DIR (b5) 1B dd 5 rfwpp

BCLR 6,opr8a DIR (b6) 1D dd 5 rfwpp

BCLR 7,opr8a DIR (b7) 1F dd 5 rfwpp
RS08 Core Reference Manual, Rev 1.0
96 Freescale Semiconductor

Instruction Set
BCLR n Clear Bit n in Memory BCLR n
(Continued)

Pseudo Instruction

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BCLR 0,D[X] IX (b0) 11 0E 5 rfwpp

BCLR 1,D[X] IX (b1) 13 0E 5 rfwpp

BCLR 2,D[X] IX (b2) 15 0E 5 rfwpp

BCLR 3,D[X] IX (b3) 17 0E 5 rfwpp

BCLR 4,D[X] IX (b4) 19 0E 5 rfwpp

BCLR 5,D[X] IX (b5) 1B 0E 5 rfwpp

BCLR 6,D[X] IX (b6) 1D 0E 5 rfwpp

BCLR 7,D[X] IX (b7) 1F 0E 5 rfwpp

BCLR 0,X DIR (b0) 11 0F 5 rfwpp

BCLR 1,X DIR (b1) 13 0F 5 rfwpp

BCLR 2,X DIR (b2) 15 0F 5 rfwpp

BCLR 3,X DIR (b3) 17 0F 5 rfwpp

BCLR 4,X DIR (b4) 19 0F 5 rfwpp

BCLR 5,X DIR (b5) 1B 0F 5 rfwpp

BCLR 6,X DIR (b6) 1D 0F 5 rfwpp

BCLR 7,X DIR (b7) 1F 0F 5 rfwpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 97

Instruction Set Details
BCS Branch if Carry Bit Set BCS
(Same as BLO)

Operation If (C) = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the C bit in the CCR and causes a branch if C is set.
BCS can be used after shift or rotate instructions or to check for overflow
after operations on unsigned numbers. See the BRA instruction for
further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BCS rel REL 35 rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
98 Freescale Semiconductor

Instruction Set
BEQ Branch if Equal BEQ
Operation If (Z) = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Compare instructions perform a subtraction with two operands and
produce an internal result without changing the original operands. If the
two operands were equal, the internal result of the subtraction for the
compare will be zero so the Z bit will be equal to one and the BEQ will
cause a branch.

This instruction can also be used after a load or store without having to
do a separate test or compare on the loaded value. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BEQ rel REL 37 rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 99

Instruction Set Details
BGND Background BGND
Operation Enter active background debug mode (if allowed by ENBDM = 1)

Description This instruction is used to establish software breakpoints during debug
by replacing a user opcode with this opcode. BGND causes the user
program to stop and the CPU enters active background mode (provided
it has been enabled previously by a serial WRITE_CONTROL command
from a host debug pod). The CPU remains in active background mode
until the debug host sends a serial GO or TRACE1 command to return
to the user program. This instruction is never used in normal user
application programs. If the ENBDM control bit in the BDC status/control
register is clear, BGND is treated as an illegal opcode.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BGND INH BF 5+ fff...ppp
RS08 Core Reference Manual, Rev 1.0
100 Freescale Semiconductor

Instruction Set
BHS Branch if Higher or Same BHS
(Pseudo Instruction, same as BCC)

Operation If (C) = 0, PC ← (PC) + $0002 + rel

Description If the BHS instruction is executed immediately after execution of a CMP,
SBC, or SUB instruction, the branch will occur if the unsigned binary
number in the A register was greater than or equal to the unsigned
binary number in memory. Generally not useful after CLR, COM, DEC,
INC, LDA, or STA because these instructions do not affect the carry bit
in the CCR. See the BRA instruction for further details of the execution
of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Pseudo Instruction

See the BRA instruction for a summary of all branches and their
complements.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BHS rel REL 34 rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 101

Instruction Set Details
BLO Branch if Lower BLO
(Pseudo Instruction, same as BCS)

Operation If (C) = 1, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) < (Memory), then branch

Description If the BLO instruction is executed immediately after execution of a CMP,
SBC, or SUB instruction, the branch will occur if the unsigned binary
number in the A register was less than the unsigned binary number in
memory. Generally not useful after CLR, COM, DEC, INC, LDA, or STA
because these instructions do not affect the carry bit in the CCR. See the
BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Pseudo Instruction

See the BRA instruction for a summary of all branches and their
complements.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BLO rel REL 35 rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
102 Freescale Semiconductor

Instruction Set
BNE Branch if Not Equal BNE
Operation If (Z) = 0, PC ← (PC) + $0002 + rel

Description Tests the state of the Z bit in the CCR and causes a branch if Z is clear.

Following a compare or subtract instruction, the branch will occur if the
arguments were not equal. This instruction can also be used after a load
or store without having to do a separate test or compare on the loaded
value. See the BRA instruction for further details of the execution of the
branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BNE rel REL 36 rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 103

Instruction Set Details
BRA Branch Always BRA
Operation PC ← (PC) + $0002 + rel

Description Performs an unconditional branch to the address given in the foregoing
formula. In this formula, rel is the two’s-complement relative offset in the
last byte of machine code for the instruction and (PC) is the address of
the opcode for the branch instruction.

A source program specifies the destination of a branch instruction by its
absolute address, either as a numerical value or as a symbol or
expression which can be numerically evaluated by the assembler. The
assembler calculates the 8-bit relative offset rel from this absolute
address and the current value of the location counter.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail Table A-1 is a summary of all branch instructions.

The BRA description continues next page.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BRA rel REL 30 rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
104 Freescale Semiconductor

Instruction Set
BRA Branch Always BRA
(Continued)

Branch Instruction
Summary

Table A-1 is a summary of all branch instructions.

During program execution, if the tested condition is true, the two’s
complement offset is sign-extended to a 14-bit value, which is added to
the current program counter. This causes program execution to continue
at the address specified as the branch destination. If the tested condition
is not true, the program simply continues to the next instruction after the
branch.

Table A-1. Branch Instruction Summary

Branch Complementary Branch
Type

Test Boolean Mnemonic Opcode Test Mnemonic Opcode

r≥m (C)=0 BHS/BCC 34 r<m BLO/BCS 35 Unsigned

r=m (Z)=1 BEQ 37 r≠m BNE 36 Unsigned

r<m (C)=1 BLO/BCS 35 r≥m BHS/BCC 34 Unsigned

Carry (C)=1 BCS 35 No carry BCC 34 Simple

result=0 (Z)=1 BEQ 37 result≠0 BNE 36 Simple

Always — BRA 30 — BRN 30 00 Uncond

r = register: A m = memory operand
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 105

Instruction Set Details
BRN Branch Never BRN
Operation PC ← (PC) + $0002

Description Never branches. In effect, this instruction can be considered a 2-byte no
operation (NOP) requiring three cycles for execution. Its inclusion in the
instruction set provides a complement for the BRA instruction. The BRN
instruction is useful during program debugging to negate the effect of
another branch instruction without disturbing the offset byte.

This instruction can be useful in instruction-based timing delays.
Instruction-based timing delays are usually discouraged because such
code is not portable to systems with different clock speeds.

See the BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Pseudo Instruction

See the BRA instruction for a summary of all branches and their
complements.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BRN rel REL 30 00 3 ppp
RS08 Core Reference Manual, Rev 1.0
106 Freescale Semiconductor

Instruction Set
BRCLR n Branch if Bit n in Memory Clear BRCLR n
Operation If bit n of M = 0, PC ← (PC) + $0003 + rel

Description Tests bit n (n = 7, 6, 5, … 0) of location M and branches if the bit is clear.
M can be any RAM or I/O register address in range from $0000 to $00FF
because direct addressing mode is used to specify the address of the
operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRCLR n provides an easy method for
performing serial-to-parallel conversions.

Condition Codes
and Boolean
Formulae

C: Set if Mn = 1; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

The BRCLR description continues next page.

Z C

— ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BRCLR 0,opr8a,rel DIR (b0) 01 dd rr 5 rpppp

BRCLR 1,opr8a,rel DIR (b1) 03 dd rr 5 rpppp

BRCLR 2,opr8a,rel DIR (b2) 05 dd rr 5 rpppp

BRCLR 3,opr8a,rel DIR (b3) 07 dd rr 5 rpppp

BRCLR 4,opr8a,rel DIR (b4) 09 dd rr 5 rpppp

BRCLR 5,opr8a,rel DIR (b5) 0B dd rr 5 rpppp

BRCLR 6,opr8a,rel DIR (b6) 0D dd rr 5 rpppp

BRCLR 7,opr8a,rel DIR (b7) 0F dd rr 5 rpppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 107

Instruction Set Details
BRCLR n Branch if Bit n in Memory Clear BRCLR n
(Continued)

Pseudo Instruction

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BRCLR 0,D[X],rel IX (b0) 01 0E rr 5 rpppp

BRCLR 1,D[X],rel IX (b1) 03 0E rr 5 rpppp

BRCLR 2,D[X],rel IX (b2) 05 0E rr 5 rpppp

BRCLR 3,D[X],rel IX (b3) 07 0E rr 5 rpppp

BRCLR 4,D[X],rel IX (b4) 09 0E rr 5 rpppp

BRCLR 5,D[X],rel IX (b5) 0B 0E rr 5 rpppp

BRCLR 6,D[X],rel IX (b6) 0D 0E rr 5 rpppp

BRCLR 7,D[X],rel IX (b7) 0F 0E rr 5 rpppp

BRCLR 0,X,rel DIR (b0) 01 0F rr 5 rpppp

BRCLR 1,X,rel DIR (b1) 03 0F rr 5 rpppp

BRCLR 2,X,rel DIR (b2) 05 0F rr 5 rpppp

BRCLR 3,X,rel DIR (b3) 07 0F rr 5 rpppp

BRCLR 4,X,rel DIR (b4) 09 0F rr 5 rpppp

BRCLR 5,X,rel DIR (b5) 0B 0F rr 5 rpppp

BRCLR 6,X,rel DIR (b6) 0D 0F rr 5 rpppp

BRCLR 7,X,rel DIR (b7) 0F 0F rr 5 rpppp
RS08 Core Reference Manual, Rev 1.0
108 Freescale Semiconductor

Instruction Set
BRSET n Branch if Bit n in Memory Set BRSET n
Operation If bit n of M = 1, PC ← (PC) + $0003 + rel

Description Tests bit n (n = 7, 6, 5, … 0) of location M and branches if the bit is set.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory because direct addressing mode is used to specify the
address of the operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRSET n provides an easy method for
performing serial-to-parallel conversions.

Condition Codes
and Boolean
Formulae

C: Set if Mn = 1; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

The BRSET description continues next page.

Z C

— ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BRSET 0,opr8a,rel DIR (b0) 00 dd rr 5 rpppp

BRSET 1,opr8a,rel DIR (b1) 02 dd rr 5 rpppp

BRSET 2,opr8a,rel DIR (b2) 04 dd rr 5 rpppp

BRSET 3,opr8a,rel DIR (b3) 06 dd rr 5 rpppp

BRSET 4,opr8a,rel DIR (b4) 08 dd rr 5 rpppp

BRSET 5,opr8a,rel DIR (b5) 0A dd rr 5 rpppp

BRSET 6,opr8a,rel DIR (b6) 0C dd rr 5 rpppp

BRSET 7,opr8a,rel DIR (b7) 0E dd rr 5 rpppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 109

Instruction Set Details
BRSET n Branch if Bit n in Memory Set BRSET n
(Continued)

Pseudo Instruction

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BRSET 0,D[X],rel IX (b0) 00 0E rr 5 rpppp

BRSET 1,D[X],rel IX (b1) 02 0E rr 5 rpppp

BRSET 2,D[X],rel IX (b2) 04 0E rr 5 rpppp

BRSET 3,D[X],rel IX (b3) 06 0E rr 5 rpppp

BRSET 4,D[X],rel IX (b4) 08 0E rr 5 rpppp

BRSET 5,D[X],rel IX (b5) 0A 0E rr 5 rpppp

BRSET 6,D[X],rel IX (b6) 0C 0E rr 5 rpppp

BRSET 7,D[X],rel IX (b7) 0E 0E rr 5 rpppp

BRSET 0,X,rel DIR (b0) 00 0F rr 5 rpppp

BRSET 1,X,rel DIR (b1) 02 0F rr 5 rpppp

BRSET 2,X,rel DIR (b2) 04 0F rr 5 rpppp

BRSET 3,X,rel DIR (b3) 06 0F rr 5 rpppp

BRSET 4,X,rel DIR (b4) 08 0F rr 5 rpppp

BRSET 5,X,rel DIR (b5) 0A 0F rr 5 rpppp

BRSET 6,X,rel DIR (b6) 0C 0F rr 5 rpppp

BRSET 7,X,rel DIR (b7) 0F 0E rr 5 rpppp
RS08 Core Reference Manual, Rev 1.0
110 Freescale Semiconductor

Instruction Set
BSET n Set Bit n in Memory BSET n
Operation Mn ← 1

Description Set bit n (n = 7, 6, 5, … 0) in location M. All other bits in M are unaffected.
In other words, M can be any random-access memory (RAM) or
input/output (I/O) register address from $0000 to $00FF. This instruction
reads the specified 8-bit location, modifies the specified bit, and then
writes the modified 8-bit value back to the memory location.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

The BSET description continues next page.

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BSET 0,opr8a DIR (b0) 10 dd 5 rfwpp

BSET 1,opr8a DIR (b1) 12 dd 5 rfwpp

BSET 2,opr8a DIR (b2) 14 dd 5 rfwpp

BSET 3,opr8a DIR (b3) 16 dd 5 rfwpp

BSET 4,opr8a DIR (b4) 18 dd 5 rfwpp

BSET 5,opr8a DIR (b5) 1A dd 5 rfwpp

BSET 6,opr8a DIR (b6) 1C dd 5 rfwpp

BSET 7,opr8a DIR (b7) 1E dd 5 rfwpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 111

Instruction Set Details
BSET n Set Bit n in Memory BSET n
(Continued)

Pseudo Instruction

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BSET 0,D[X] IX (b0) 10 0E 5 rfwpp

BSET 1,D[X] IX (b1) 12 0E 5 rfwpp

BSET 2,D[X] IX (b2) 14 0E 5 rfwpp

BSET 3,D[X] IX (b3) 16 0E 5 rfwpp

BSET 4,D[X] IX (b4) 18 0E 5 rfwpp

BSET 5,D[X] IX (b5) 1A 0E 5 rfwpp

BSET 6,D[X] IX (b6) 1C 0E 5 rfwpp

BSET 7,D[X] IX (b7) 1E 0E 5 rfwpp

BSET 0,X DIR (b0) 10 0F 5 rfwpp

BSET 1,X DIR (b1) 12 0F 5 rfwpp

BSET 2,X DIR (b2) 14 0F 5 rfwpp

BSET 3,X DIR (b3) 16 0F 5 rfwpp

BSET 4,X DIR (b4) 18 0F 5 rfwpp

BSET 5,X DIR (b5) 1A 0F 5 rfwpp

BSET 6,X DIR (b6) 1C 0F 5 rfwpp

BSET 7,X DIR (b7) 1E 0F 5 rfwpp
RS08 Core Reference Manual, Rev 1.0
112 Freescale Semiconductor

Instruction Set
BSR Branch to Subroutine BSR
Operation PC ← (PC) + $0002 Advance PC to return address

SPC ← (PC) Save current PC to SPC
PC ← (PC) + rel Load PC with start address of

requested subroutine

Description The program counter is incremented by 2 from the opcode address (so
it points to the opcode of the next instruction, which will be the return
address). The program counter is saved into the shadow PC. A branch
then occurs to the location specified by the branch offset. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

BSR rel REL AD rr 3 ppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 113

Instruction Set Details
CBEQ Compare and Branch if Equal CBEQ
Operation For DIR or IMM modes: if (A) = (M), PC ← (PC) + $0003 + rel

Description CBEQ compares the operand with the accumulator against the contents
of a memory location and causes a branch if the accumulator is equal to
the memory contents. The CBEQ instruction combines CMP and BEQ
for faster table lookup routines and condition codes are not changed.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

CBEQ opr8a,rel DIR 31 dd rr 5 rpppp

CBEQA #opr8i,rel IMM 41 ii rr 4 pppp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

CBEQ ,X,rel (1)

1. Auto-increment on X register is not available in this pseudo instruction. But in the HCS08
CBEQ ,X+,rel instruction, H:X is auto-incremented after the compare operation.

IX 31 0E rr 5 rpppp

CBEQX X,rel DIR 31 0F rr 5 rpppp
RS08 Core Reference Manual, Rev 1.0
114 Freescale Semiconductor

Instruction Set
CLC Clear Carry Bit CLC
Operation C bit ← 0

Description Clears the C bit in the CCR. CLC may be used to set up the C bit prior
to a shift or rotate instruction that involves the C bit. The C bit can also
be used to pass status information between a subroutine and the calling
program.

Condition Codes
and Boolean
Formulae

C: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— 0

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

CLC INH 38 1 p
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 115

Instruction Set Details
CLR Clear CLR
Operation A ← $00

Or M ← $00

Description The contents of memory (M), or A are replaced with zeros.

Condition Codes
and Boolean
Formulae

Z: 1
Set

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

1 —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

CLR opr8a DIR 3F dd 3 wpp

CLR opr5a SRT 8x / 9x 2 wp

CLRA INH 4F 1 p

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

CLR ,X IX 8E 2 wp

CLRX INH 8F 2 wp
RS08 Core Reference Manual, Rev 1.0
116 Freescale Semiconductor

Instruction Set
CMP Compare Accumulator with Memory CMP
Operation (A) – (M)

Description Compares the contents of A to the contents of M and sets the condition
codes, which may then be used for arithmetic (signed or unsigned) and
logical conditional branching. The contents of both A and M are
unchanged.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

CMP #opr8i IMM A1 ii 2 pp

CMP opr8a DIR B1 dd 3 rpp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

CMP ,X IX B1 0E 3 rpp

CMP X INH B1 0F 3 rpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 117

Instruction Set Details
COMA Complement (One’s Complement) COMA
Operation A ← A = $FF – (A)

Description Replaces the contents of A with the one’s complement. Each bit of A is
replaced with the complement of that bit.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: 1
Set

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Z C

↕ 1

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

COMA INH 43 1 p
RS08 Core Reference Manual, Rev 1.0
118 Freescale Semiconductor

Instruction Set
DBNZ Decrement and Branch if Not Zero DBNZ
Operation A ← (A) – $01

Or M ← (M) – $01
For DIR mode: PC ← (PC) + $0003 + rel if (result) ≠ 0

Or for INH mode: PC ← (PC) + $0002 + rel if (result) ≠ 0

Description Subtract 1 from the contents of A, or M; then branch using the relative
offset if the result of the subtraction is not $00.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

DBNZ opr8a,rel DIR 3B dd rr 7 rfwpppp

DBNZA rel INH 4B rr 4 fppp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

DBNZ ,X,rel IX 3B 0E rr 7 rfwpppp

DBNZX rel DIR 3B 0F rr 7 rfwpppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 119

Instruction Set Details
DEC Decrement DEC
Operation A ← (A) – $01

Or M ← (M) – $01

Description Subtract 1 from the contents of A, or M. The Z bit in the CCR is set or
cleared according to the results of this operation. The C bit in the CCR
is not affected; therefore, the BHS and BLO branch instructions are not
useful following a DEC instruction.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

DEC opr8a DIR 3A dd 5 rfwpp

DEC opr4a TNY 5x 4 rfwp

DECA INH 4A 1 p

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

DEC ,X IX 5E 4 rfwp

DECX INH 5F 4 rfwp
RS08 Core Reference Manual, Rev 1.0
120 Freescale Semiconductor

Instruction Set
EOR Exclusive-OR Memory with Accumulator EOR
Operation A ← (A ⊕ M)

Description Performs the logical exclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical exclusive-OR of the corresponding bits of M and A
before the operation.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

EOR #opr8i IMM A8 ii 2 pp

EOR opr8a DIR B8 dd 3 rpp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

EOR ,X IX B8 0E 3 rpp

EOR X DIR B8 0F 3 rpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 121

Instruction Set Details
INC Increment INC
Operation A ← (A) + $01

Or M ← (M) + $01

Description Add 1 to the contents of A or M. The Z bit in the CCR is set or cleared
according to the results of this operation. The C bit in the CCR is not
affected; therefore, the BHS and BLO branch instructions are not useful
following an INC instruction.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

INC opr8a DIR 3C dd 5 rfwpp

INC opr4a TNY 2x 4 rfwp

INCA INH 4C 1 p

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

INC ,X IX 2E 4 rfwp

INCX INH 2F 4 rfwp
RS08 Core Reference Manual, Rev 1.0
122 Freescale Semiconductor

Instruction Set
JMP Jump JMP
Operation PC ← effective address

Description A jump to the instruction stored at the effective address occurs. The
effective address is obtained according to the rules for extended
addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

JMP opr16a EXT BC hh ll 4 fppp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 123

Instruction Set Details
JSR Jump to Subroutine JSR
Operation PC ← (PC) + 3;

SPC ← (PC) Save current PC to SPC
PC ← effective address Load PC with start address of

requested subroutine

Description The program counter is incremented by 3 so that it points to the opcode
of the next instruction that follows the JSR instruction. The PC is then
saved to the SPC. A jump to the instruction stored at the effective
address occurs. The effective address is obtained according to the rules
for extended addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

JSR opr16a EXT BD hh ll 4 fppp
RS08 Core Reference Manual, Rev 1.0
124 Freescale Semiconductor

Instruction Set
LDA Load Accumulator from Memory LDA
Operation A ← (M)

Description Loads the contents of the specified memory location into A. The Z
condition code is set or cleared according to the loaded data. This allows
conditional branching after the load without having to perform a separate
test or compare.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

LDA #opr8i IMM A6 ii 2 pp

LDA opr8a DIR B6 dd 3 rpp

LDA opr5a SRT Cx / Dx 3 rfp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

LDA ,X IX CE 3 rfp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 125

Instruction Set Details
LDX Load X Index Register from Memory LDX
(Pseudo Instruction)

Operation X ← (M)

Description This is a pseudo instruction implemented by using a MOV instruction
that loads the contents of the specified memory location into the memory
mapped X index register. The Z condition code is set or cleared
according to the loaded data. This allows conditional branching after the
load without having to perform a separate test or compare.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

LDX #opr8i IMM 3E ii 0F 4 pwpp

LDX opr8a DIR 4E dd 0F 5 rpwpp

LDX ,X IX 4E 0E 0F 5 rpwpp
RS08 Core Reference Manual, Rev 1.0
126 Freescale Semiconductor

Instruction Set
LSLA Logical Shift Left LSLA

Operation

Description Shifts all bits of the A one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of A.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A was set; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — b0 0

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

LSLA INH 48 1 p
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 127

Instruction Set Details
LSRA Logical Shift Right LSRA
Operation

Description Shifts all bits of A one place to the right. Bit 7 is loaded with
a 0. Bit 0 is shifted into the C bit.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, was set; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

0 b7 — — — — — — b0 C

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

LSRA INH 44 1 p
RS08 Core Reference Manual, Rev 1.0
128 Freescale Semiconductor

Instruction Set
MOV Move MOV
Operation (M)Destination ← (M)Source

Description Moves a byte of data from a source address to a destination address.
Data is examined as it is moved, and condition codes are set. Source
data is not changed. The accumulator is not affected.

The two addressing modes for the MOV instruction are:

1. IMM/DIR moves an immediate byte to a direct memory location.

2. DIR/DIR moves a direct location byte to another direct location.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

MOV opr8a,opr8a DD 4E dd dd 5 rpwpp

MOV #opr8i,opr8a IMD 3E ii dd 4 pwpp

MOV D[X],opr8a IX/DIR 4E 0E dd 5 rpwpp

MOV opr8a,D[X] DIR/IX 4E dd 0E 5 rpwpp

MOV #opr8i,D[X] IMM/IX 3E ii 0E 4 pwpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 129

Instruction Set Details
NOP No Operation NOP
Operation Uses one bus cycle

Description This is a single-byte instruction that does nothing except to consume one
CPU bus cycle while the program counter is advanced to the next
instruction. No register or memory contents are affected by this
instruction.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

NOP INH AC 1 p
RS08 Core Reference Manual, Rev 1.0
130 Freescale Semiconductor

Instruction Set
ORA Inclusive-OR Accumulator and Memory ORA
Operation A ← (A) | (M)

Description Performs the logical inclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical inclusive-OR of the corresponding bits of M and A
before the operation.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ORA #opr8i IMM AA ii 2 pp

ORA opr8a DIR BA dd 3 rpp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ORA ,X IX BA 0E 3 rpp

ORA X DIR BA 0F 3 rpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 131

Instruction Set Details
ROLA Rotate Left through Carry ROLA
Operation

Description Shifts all bits of A one place to the left. Bit 0 is loaded from the C bit. The
C bit is loaded from the most significant bit of A. The rotate instructions
include the carry bit to allow extension of the shift and rotate instructions
to multiple bytes.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the rotate, the MSB of A was set; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — b0

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

ROLA INH 49 1 p
RS08 Core Reference Manual, Rev 1.0
132 Freescale Semiconductor

Instruction Set
RORA Rotate Right through Carry RORA
Operation

Description Shifts all bits of A one place to the right. Bit 7 is loaded from the C bit. Bit
0 is shifted into the C bit. The rotate instructions include the carry bit to
allow extension of the shift and rotate instructions to multiple bytes.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A was set; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

b7 — — — — — — b0 C

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

RORA INH 46 1 p
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 133

Instruction Set Details
RTS Return from Subroutine RTS
Operation PC ← SPC Restore PC from SPC

Description The contents of the shadow program counter is restored to the program
counter. Program execution resumes at the address that was just
restored from the shadow program counter.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

RTS INH BE 3 ppp
RS08 Core Reference Manual, Rev 1.0
134 Freescale Semiconductor

Instruction Set
SBC Subtract with Carry SBC
Operation A ← (A) – (M) – (C)

Description Subtracts the contents of M and the contents of the C bit of the CCR from
the contents of A and places the result in A. This is useful for
multi-precision subtract algorithms involving operands with more than
eight bits.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory plus the
previous carry are larger than the unsigned value of the
accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

SBC #opr8i IMM A2 ii 2 pp

SBC opr8a DIR B2 dd 3 rpp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

SBC ,X IX B2 0E 3 rpp

SBC X DIR B2 0F 3 rpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 135

Instruction Set Details
SEC Set Carry Bit SEC
Operation C bit ← 1

Description Sets the C bit in the condition code register (CCR). SEC may be used to
set up the C bit prior to a shift or rotate instruction that involves the C bit.

Condition Codes
and Boolean
Formulae

C: 1
Set

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— 1

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

SEC INH 39 1 p
RS08 Core Reference Manual, Rev 1.0
136 Freescale Semiconductor

Instruction Set
SHA Swap Shadow PC High with A SHA
Operation A ⇔ SPCH

Description Exchange the contents of SPCH and accumulator. The least significant
six bits of SPCH prefixed with two bits of 0 is exchanged with the content
with A. The most significant two bits transferring from A to SPCH are
ignored.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

SHA INH 45 1 p
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 137

Instruction Set Details
SLA Swap Shadow PC Low with A SLA
Operation A ⇔ SPCL

Description Exchange the content of SPCL and accumulator.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

SLA INH 42 1 p
RS08 Core Reference Manual, Rev 1.0
138 Freescale Semiconductor

Instruction Set
STA Store Accumulator in Memory STA
Operation M ← (A)

Description Stores the contents of A in memory. The contents of A remain
unchanged. The Z bit is set if A was $00. This allows conditional
branching after the store without having to do a separate test or
compare.

Condition Codes
and Boolean
Formulae

Z: A7&A6&A5&A4&A3&A2&A1&A0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

STA opr8a DIR B7 dd 3 wpp

STA opr5a SRT Ex/Fx 2 wp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

STA ,X IX EE 2 wp

STA X SRT EF 2 wp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 139

Instruction Set Details
STOP Stop Processing STOP
Operation Stop processing

Description Reduces power consumption by eliminating all dynamic power
dissipation. This instruction is used to enter stop mode.

Refer to specific device specification for behavior of each individual
on-chip module during stop operation.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

STOP INH AE 2+stop f...p
RS08 Core Reference Manual, Rev 1.0
140 Freescale Semiconductor

Instruction Set
STX Store X (Index Register Low) in Memory STX
(Pseudo Instruction)

Operation M ← (X)

Description This is a pseudo instruction implemented by using a MOV instruction
that stores the content of the memory-mapped X index register into the
specified memory location. The contents of X remain unchanged. The Z
bit is set if X was $00. This allows conditional branching after the store
without having to do a separate test or compare.

Condition Codes
and Boolean
Formulae

Z: X7&X6&X5&X4&X3&X2&X1&X0
Set if X is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

STX opr8a DIR 4E 0F dd 5 rpwpp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 141

Instruction Set Details
SUB Subtract SUB
Operation A ← (A) – (M)

Description Subtracts the contents of M from A and places the result in A.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ ↕

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

SUB #opr8i IMM A0 ii 2 pp

SUB opr8a DIR B0 dd 3 rpp

SUB opr4a TNY 7x 3 rfp

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

SUB ,X IX 7E 3 rfp

SUB X DIR 7F 3 rfp
RS08 Core Reference Manual, Rev 1.0
142 Freescale Semiconductor

Instruction Set
TAX Transfer A to X TAX
(Pseudo Instruction)

Operation (X) ← A

Description This is a pseudo instruction implemented using a STA instruction that
transfers a copy of the contents of A to the Index register at location
$000F. The contents of $000F remain unchanged. The Z bit is set if A
contains $00, this allows conditional branching after the store without
having to do a separate test or compare.

Condition Codes
and Boolean
Formulae

Z: A7&A6&A5&A4&A3&A2&A1&A0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction (This is a pseudo code only instruction.)

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

TAX INH EF 2 wp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 143

Instruction Set Details
TST Test for Zero TST
Operation (A) – $00

Or (X) – $00
Or (M) – $00

Description Sets the Z condition codes according to the contents of A, X, or M. The
contents of A, X, and M are not altered.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

TST opr8a DD 4E dd dd 5 rpwpp

TSTA INH AA 00 2 pp

TST ,X IX 4E 0E 0E 5 rpwpp

TSTX INH 4E 0F 0F 5 rpwpp
RS08 Core Reference Manual, Rev 1.0
144 Freescale Semiconductor

Instruction Set
TXA Transfer X to A TXA
(Pseudo Instruction)

Operation A ← (X)

Description This is a pseudo instruction implemented using a LDA instruction that
transfers a copy of the contents of the Index register at location $000F
to the accumulator. The contents of X remain unchanged. The Z bit is set
if A is $00, this allows conditional branching after the store without
having to do a separate test or compare.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Pseudo Instruction (This is a pseudo code only instruction.)

Z C

↕ —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailOpcode Operand(s)

TXA INH CF 3 rfp
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 145

Instruction Set Details
WAIT Stop CPU Clock WAIT
Operation Inhibit CPU clocking until interrupted

Description Reduces power consumption by eliminating dynamic power dissipation
in some portions of the MCU. The timer, the timer prescaler, and the
on-chip peripherals continue to operate (if enabled) because they are
potential sources of an interrupt.

Interrupts from on-chip peripherals may be enabled or disabled by local
control bits prior to execution of the WAIT instruction.

When either the RESET goes low or when any on-chip system requests
interrupt service, the processor clocks are enabled and the reset, or
other interrupt service request, is processed.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Z C

— —

Source
Form

Addr.
Mode

Machine Code RS08
Cycles

Access
DetailsOpcode Operand(s)

WAIT INH AF 2+wait f...p
RS08 Core Reference Manual, Rev 1.0
146 Freescale Semiconductor

RS08 Core Reference Manual

Appendix B. Code Examples
B.1 Illegal Table

RS08 assembler version 1.13 (c)2004,5 Freescale Semiconductor
Author: S. Pickering

RS08 assembler pass #1...
RS08 assembler pass #2...
 ;
 ; This example demonstrates a table correctly mapped in a non-overlapping
 ; 64 byte page and another table which spans more than one page boundary

 ; The following table is incorrectly mapped into an overlapping page in flash
363a org $363A
363a table dc.b 1,2,3,4,5,6,7,8
363a 01 02 03 04
363e 05 06 07 08
 ; The following assembler directives are used to determine if table is located
 ; within a single 64 byte page
3642 0008 size set *-table
3642 0001 error set ((table%64)+size)>64
 if error
###PASS2 - ERROR### Undefined label: [table_Overflows_page_boundary]:29
###PASS2 - ERROR### Unknown opcode: [error] >>>ERRORtable_Overflows_page_boundary
 endif

 ; The following table is correctly mapped into a non overlapping page in flash
373a org $373A
373a table1 dc.b 1,2,3,4
373a 01 02 03 04
 ; The following assembler directives are used to determine if table is located
 ; within a single 64 byte page
373e 0004 size set *-table1
373e 0000 error set ((table1%64)+size)>64
 if error
 ;;;ERROR"table1 Overflows page boundary"
 endif

==
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 147

Code Examples
B.2 lda

==
RS08 assembler version 1.13 (c)2004,5 Freescale Semiconductor
Author: S. Pickering

RS08 assembler pass #1...
RS08 assembler pass #2...
0000 001f pagesel equ $001f
0000 3ffc nvopt equ $3ffc
3800 org $3800

 ;A load from extended memory

3800 3e ff 1F restart mov #(NVOPT/64)%256,PAGESEL ;Set PAGESEL register
3803 b6 fc lda $C0+(NVOPT%64) ;access at offset into window

==

B.3 probe

==
RS08 assembler version 1.13 (c)2004,5 Freescale Semiconductor
Author: S. Pickering

RS08 assembler pass #1...
RS08 assembler pass #2...
 ;
 ;The purpose of this routine is to read the contents of all 16K of address space
 ;
0000 001f pagesel equ $001f
0000 00c0 window equ $C0
 ;
0000 org $0
0000 0001 i ds.b 1 ;outer loop counter
0001 0001 j ds.b 1 ;inner loop counter
 ;
 ;
0020 org $20
0020 3e 00 00 mov #0,i ;Need to step round 256 pages!
0023 3e 00 1f mov #0,PAGESEL ;Start at beginning of memory map
0026 3e 40 01 outer mov #64,j
0029 3e c0 0f ldx #$C0 ;Point index register at start of window
002c ce inner lda ,X ;load via window
002d 2f incx
002e 51 dec j
002f 36 fb bne inner
0031 3c 1f inc PAGESEL ;bump to next page of flash
0033 50 dec i
0034 36 f0 bne outer
 ;
0036 0000 end
RS08 Core Reference Manual, Rev 1.0
148 Freescale Semiconductor

walk
==

B.4 walk

==
RS08 assembler version 1.13 (c)2004,5 Freescale Semiconductor
Author: S. Pickering

RS08 assembler pass #1...
RS08 assembler pass #2...
 ; Author: Stephen Pickering
 ; Purpose:
 ; This program demonstrates how to access a sequence of values held
 ; in flash memory, outputting each value to PORTA. Access to flash is
 ; via the the page window, indexed addressing, interrupts.
 ;
 ; Note: This example does not cater for the data spanning multiple pages
 ;

 ;Assumes device has been initialized...
0000 001f pagesel equ $001f ;PAGESEL register
0000 0010 ptad equ $10 ;Port A data register
0000 0007 cnt equ $7 ;loop counter

 ;Declare a sequence of values in flash
3650 org $3650
3650 table dc.b 1,2,3,4,5,6,7,8
3650 01 02 03 04
3654 05 06 07 08
3658 0008 size equ *-table ;calculate the size of the table

3800 org $3800

 ;Set PAGESEL register such that the table is mapped within the memory window
3800 a6 d9 restart lda #table/64
3802 ff sta PAGESEL

 ; Table is now in high page window $C0 .. $FF
 ; calculate offset within memory window
3803 3e 10 0f ldx #table%64 ;set index register to table address modulus 64
3806 a6 c0 lda #$C0 ;load base address of memory window
3808 6f addx ;add the
3809 4e 0f 1f stx PAGESEL

 ;Loop through table and output to porta after each interrupt
380c 3e 08 07 mov #size,cnt ;set counter to table size
380f ce next lda ,x ;get a byte from the table
3810 f0 sta PTAD ;output to PORTA
3811 af wait ;wait for an interrupt
3812 2f incx ;Increment to next byte in table
 ;decrement count and if not complete (ie !=0) fetch next byte from flash
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 149

Code Examples
3813 3b 07 f9 dbnz cnt,next

 ;all done
3816 ae stop ;wait for interrupt
3817 bc 38 00 jmp restart ;restart
RS08 Core Reference Manual, Rev 1.0
150 Freescale Semiconductor

RS08 Core Reference Manual

Appendix C. Assembler and Disassembler Style Guide
C.1 Support Notes for RS08 Tools

To promote consistency, the following sections provide guidance for
RS08 tools. This section covers only basic compatibility issues primarily
targeted at the assembler and disassembler, which use the RS08
instruction set.

Refer to the tool vendor’s documentation for specific implementation
details.

C.1.1 Pseudo Instructions

All assemblers should accept the full RS08 instruction set including the
pseudo instructions as input. Use of HC(S)08 operands as well as RS08
should be supported for all instructions where appropriate. For example:

LDX $0FF ;Load direct
LDA ,X ;Load accumulator indexed
LDA D[X] ;Load accumulator indexed (Indirect via X)

Accepting all notations eases the use of existing HC(S)08 code and
allows new users to use the D[X] style of operand, which is slightly more
intuitive for users from a high-level language background.

C.1.2 Tiny and Short Addressing

The assembler should use the shortest addressing mode possible.
Wherever possible, tiny and short versions of the instruction should be
used. For example:

ORG $0
FRED: RMB 1 ;Define fred within tiny space !

LDA $1F ;Short addressing should be used (<32)
LDA FRED ;short addressing should be used (<32)
DEC ,X ;Tiny addressing should be used (<16)
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 151

Assembler and Disassembler Style Guide
INC $10 ;Direct addressing should be used (>15)

In the case of forward references, direct addressing should be used. For
example:

ORG $0
LDA FRED ;Direct addressing should be used as

;FRED is undefined at this point
FRED: RMB 1 ;even though fred will be within tiny space !

The exception to this strategy is where code forces a specific addressing
mode. For example:

LDA <$0FF ;Force short addressing (will use $1F)
DEC <$13 ;Force tiny addressing (will use $03)
INC >$01 ;Force direct addressing

C.1.3 Forcing Tiny/Short and Direct Addressing

The operators ‘<’ and ‘>’ are used to force tiny/short and direct
addressing, respectively, where appropriate. For instructions that do not
support tiny or short addressing modes, the ‘<’ and ‘>’ will be ignored.
For example, SBC does not support tiny or short, so including ‘<’ and ‘>’
will have no effect and direct addressing mode will be used.

SBC <$01 ;Force tiny/short addressing

will generate a direct address instruction because SBC does not support
tiny or short operands.

ADD >$01 ;Force direct addressing

will generate an instruction that uses direct addressing even though the
operand is in tiny address space.

C.1.4 Unsupported Instructions

The assembler should cause an error for all instructions and addressing
mode combinations not supported by the RS08 architecture. This will
assist in porting HC(S)08 code to the RS08 architecture.
RS08 Core Reference Manual, Rev 1.0
152 Freescale Semiconductor

Debugger and Disassembly
C.1.5 Tiny, Short, and Direct Address Usage Statistics

The assembler should be able to show the frequency of usage of the
various addressing modes. This will assist in developing compact code
by allowing a user to locate the most frequently used variables in the tiny
address space. A major objective of the RS08’s use of tiny and short
addressing modes instructions is in producing compact code.

C.2 Debugger and Disassembly

By default, any RS08 code disassembled by a tool should produce
HC(S)08 style code for all pseudo instructions. Further options can be
provided to disassemble pseudo instructions to RS08 style or native
RS08 instructions.

The method used to select the disassembly style will be tool vendor
specific, but typically mode selection would be accomplished by an
option or switch setting for the IDE/disassembler or a #pragma
statement in the original source code. Consult tool vendor
documentation for specific method.

C.2.1 HC(S)08 Style

The purpose of this mode is to maintain compatibility with HC(S)08
assembly language.

An example of RS08 code:

MOV #$45,$0F

Style User Base

HC(S)08 style The preferred mode for existing HC(S)08 customers in order to maintain code
compatibility with other HC(S)08 projects.

RS08 style The preferred mode for users new to the RS08 and users. It is more natural and
descriptive in nature, especially for users with a high-level language
background, such as C.

RS08 native Rarely used — absolute disassembly.
RS08 Core Reference Manual, Rev 1.0
Freescale Semiconductor 153

Assembler and Disassembler Style Guide
LDA $0E

Should be disassembled as:

LDX #$45
LDA ,X

C.2.2 RS08 Style

The purpose of this mode is to maintain RS08 pseudo code usage.

An example of RS08 code:

MOV #$45,$0F
LDA $0E

Should be disassembled as:

LDX #$45
LDA D[X]

C.2.3 Native RS08 Style

The purpose of this mode is to show the exact RS08 assembly language
used.

An example of RS08 code:

MOV #$45,$0F
LDA $0E

Should be disassembled as:

MOV #$45,$0F
LDA $0E

C.3 Compilers

High level language compilers, such as those used for C code, should
provide a mechanism (switch or #pragma statement) to set the
disassembler style. The mechanism to select the disassembly style is
determined and documented by the tool vendor. Refer to the tool
vendor documentation for details.
RS08 Core Reference Manual, Rev 1.0
154 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RS08RM
Rev 1.0, 04/2006

	Section 1. General Information and Block Diagram
	1.1 Introduction to the RS08 Family of Microcontrollers
	1.2 Memory Map for the RS08 Family
	1.3 RS08 Core Paging Scheme

	Section 2. Central Processor Unit (CPU)
	Section 3. Development Support
	Appendix A. Instruction Set Details
	A.1 Introduction
	A.2 Nomenclature
	A.3 Convention Definitions
	A.4 Use of ‘X’, ‘,X’ and ‘D[X]’ as instruction operands
	A.5 Instruction Set

	Appendix B. Code Examples
	B.1 Illegal Table
	B.2 lda
	B.3 probe
	B.4 walk

	Appendix C. Assembler and Disassembler Style Guide
	C.1 Support Notes for RS08 Tools
	C.1.1 Pseudo Instructions
	C.1.2 Tiny and Short Addressing
	C.1.3 Forcing Tiny/Short and Direct Addressing
	C.1.4 Unsupported Instructions
	C.1.5 Tiny, Short, and Direct Address Usage Statistics

	C.2 Debugger and Disassembly
	C.2.1 HC(S)08 Style
	C.2.2 RS08 Style
	C.2.3 Native RS08 Style

	C.3 Compilers

