
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP

B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

Maureen Helm, NXP

Thea Aldrich, Linux Foundation

Hands-On Workshop: Build Your
First Zephyr Application on i.MX RT

June 2019 | Session #AMF-SOL-T3639

COMPANY PUBLIC 1COMPANY PUBLIC 1

• Introduce the Zephyr Project

• Review High-level Software Features

and Hardware Support

• Set up a Development Environment

• Hands-on: Build, Flash, and Debug an

Application

Agenda

COMPANY PUBLIC 2

Zephyr Project Introduction
What is the Zephyr Project? Why should I use it?

COMPANY PUBLIC 3

Zephyr Project

• Open source real time operating system

• Vibrant Community participation

• Built with safety and security in mind

• Cross-architecture with growing developer

tool support

• Vendor Neutral governance

• Permissively licensed - Apache 2.0

• Complete, fully integrated, highly

configurable, modular for flexibility, better

than roll-your-own

• Product development ready with LTS

• Certification ready with Auditable

Open Source, RTOS, Connected, Embedded

Fits where Linux is too big

Zephyr OS

Kernel

OS Services

Application Services

HAL

3rd Party Libraries

COMPANY PUBLIC 4

Architecture

Platform

Radios

Architecture Interface

Kernel Services / Schedulers

Sensors Crypto HW

I2
C

S
P

I

U
A

R
T

G
P

IO

… F
ile

S
y
s
te

m

L
o
g
g
in

g
/

D
e
b
u
g

D
a
ta

b
a
s
e
/

P
ro

p
e
rt

ie
s

C
ry

p
to

IP
C

Flash

S
e
n
s
o
rs

..
.

Low Level API

D
e
v
ic

e

M
a
n
a
g
e
m

e
n
t

15.4

IPv6/IPv4

TCP/UDP

BLE Wi-Fi NFC* ...

6LoWPAN

RPL

T
h

re
a

d

TLSDTLS

CoAPHTTPMQTTLWM2M…

Application

Smart Objects / High Level APIs / Data Models

k
e
rn

e
l

O
S

 S
e
rv

ic
e
s

A
p

p
lic

a
ti
o

n
 S

e
rv

ic
e

s

Fully featured OS allows developers to focus on the application

• Highly Configurable, Highly Modular

• Cooperative and Pre-emptive Threading

• Memory and Resources are typically
statically allocated

• Integrated device driver interface

• Memory Protection: Stack overflow
protection, Kernel object and device driver
permission tracking, Thread isolation

• Bluetooth® Low Energy (BLE 4.2, 5.0) with
both controller and host, BLE Mesh

• Native, fully featured and optimized
networking stack

COMPANY PUBLIC 5

NXP Board Support

• Kinetis Series (Cortex M4, M0+)
− FRDM-K64F

− FRDM-KW41Z

− FRDM-KL25Z

− TWR-KE18F

− Hexiwear

• LPC Series (Cortex M4, M0+,
M33)
− LPCXpresso54114

− LPCXpresso55S69

(coming soon)

• i.MX RT Series (Cortex M7)
− RT1015 EVK

− RT1020 EVK

− RT1050 EVK

− RT1060 EVK

− RT1064 EVK

• i.MX 6/7 Series (Cortex M4
subsystem)
− UDOO Neo Full

− Colibri iMX7

− WaRP7

https://docs.zephyrproject.org/latest/boards/index.html

https://docs.zephyrproject.org/latest/boards/index.html

COMPANY PUBLIC 6

NXP Board Support

• Upstream

− Contributed and maintained by NXP and the community

− NXP active in upstream working groups

• Built upon MCUXpresso SDK

− SDK bare metal drivers and CMSIS device headers contributed upstream

− Shim drivers adapt SDK interfaces to Zephyr interfaces

− Maximizes code reuse

• Tested on hardware in NXP board farm

COMPANY PUBLIC 7

Long Term Support (LTS) Release

• Product-focused release will receive bug fixes and maintain stable APIs for
two years

• Extended stabilization period enabled more testing and bug fixing prior to
release

• Baseline for auditable version of Zephyr

• Released in Apr 2019 (Zephyr v1.14.0)

• Supports over 160 board configurations across 8 architectures

• Contributions from 250 developers

• Hands-on exercises in this workshop use the LTS release

COMPANY PUBLIC 8

Zephyr Project Governance

• Serves as the highest technical decision

body consisting of project maintainers

and voting members

• Sets technical direction for the project

• Coordinates X-community collaboration
− Sets up new projects

− Coordinates releases

− Enforces development processes

− Moderates working groups

• Oversees relationships with other

relevant projects

• Decides project goals

• Sets business , marketing and
legal decisions

• Prioritizes investments and
oversees budget

• Oversees marketing such as
PR/AR, branding, others

• Identifies member requirements

• Code base open to all contributors,
need not be a member to contribute.

• Path to committer and maintainer
status through peer assessed merit
of contributions and code reviews

• Ecosystem enablement

Governing
Board

Financial &
Policy

Oversight

Marketing
Oversight

Security

Oversight

Technical
Steering

Committee

Kernel & Subsystem
Maintainers

Security
Maintainer

Developer
Tools

Maintainers

Architecture
Maintainers

Contributors

Individual
Contributors

Others

Goal: Separate business decisions from meritocracy, technical decisions

Safety
Oversight

Governing Board Technical Steering Committee Community

Member
Organizations

Supporting
Organizations

COMPANY PUBLIC 9

February 2016 May 2019

and others….

Zephyr Project Membership

COMPANY PUBLIC 10

Zephyr Development Environment
What tools do I need? How do I install them on my PC?

COMPANY PUBLIC 11

Development Environment Introduction
• Zephyr applications can be developed on Windows, Linux, or macOS host operating systems

• CMake and Python enable portability across host operating systems

• Detailed instructions are documented in the Getting Started Guide

• Major components:
− Python 3: Script interpreter and packages

− CMake/Ninja/Make: Build system

− Device Tree Compiler: Compiles device tree hardware descriptions

− Toolchain: gcc for Arm, RISC-V, x86, etc.

− Debug/Flash Tools: J-Link, pyOCD, OpenOCD, etc.

− West: Custom tool for repository management, build/flash/debug assistance, and image signing

− Zephyr Git repositories: The source code!

• Zephyr SDK provides toolchains and some debug/flash tools for Linux only

https://docs.zephyrproject.org/1.14.0/getting_started/index.html
https://github.com/zephyrproject-rtos/sdk-ng

COMPANY PUBLIC 12

Windows: Command Prompt, WSL, or VM?
• Windows Command Prompt: Requires manual toolchain installation, but can use debug/flash tools like J-

Link and pyOCD. Recommended for new developers

• Windows Subsystem for Linux (WSL): Can use Zephyr SDK toolchains and sanitycheck, but does not
support debug/flash tools like J-Link and pyOCD. Not recommended

• Linux Virtual Machine (VM): Can use Zephyr SDK toolchains, sanitycheck, and debug/flash tools like J-Link
and pyOCD; but requires installing a virtual machine. Recommended for experienced developers

COMPANY PUBLIC 13

Windows: Install Chocolatey and Packages

• Open an administrator command prompt

• Install Chocolatey package manager
− Similar to apt on Ubuntu

• Disable global confirmation
> choco feature enable -n allowGlobalConfirmation

• Use Chocolatey to install CMake
> choco install cmake --installargs 'ADD_CMAKE_TO_PATH=System'

• Use Chocolatey to install dependencies
> choco install git python ninja dtc-msys2 gperf

https://chocolatey.org/

COMPANY PUBLIC 14

Windows: Bootstrap West and Clone Zephyr Repos

• Open a normal command prompt

• Bootstrap west

> pip3 install west

• Clone the Zephyr git repositories

> cd %userprofile%

> west init --mr v1.14.0 zephyrproject

> cd zephyrproject

> west update

• Install python dependencies

> pip3 install -r zephyr/scripts/requirements.txt

COMPANY PUBLIC 15

Windows: Install Toolchain and Flash/Debug Tools

• Install GNU Arm Embedded toolchain
− Use Windows ZIP instead of Windows Installer. This will allow you to define an installation path

without spaces

− Skip this step if you already have MCUXpresso IDE installed

• Install J-Link flash/debug tools with Windows installer
− Required for i.MX RT and LPC boards, optional for Kinetis boards

− Skip this step if you already have MCUXpresso IDE installed

• Create zephyrrc.cmd file in %userprofile% directory
set ZEPHYR_TOOLCHAIN_VARIANT=gnuarmemb

set GNUARMEMB_TOOLCHAIN_PATH=C:\nxp\MCUXpressoIDE_10.3.1_2233\ide\tools

set PATH=%PATH%;C:\Program Files (x86)\SEGGER\JLink_V642b

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://www.segger.com/downloads/jlink/JLink_Windows.exe

COMPANY PUBLIC 16

Install Eclipse IDE Plugins

• Install Eclipse IDE for C/C++ Developers

− Skip this step if you already have MCUXpresso IDE

installed

• Install GNU MCU Eclipse plug-ins

− From the Help menu, select Eclipse Marketplace

− Search for “gnu mcu eclipse” and click Install

https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/oxygen2

COMPANY PUBLIC 17

Hands-On Exercises
The Fun Part!

COMPANY PUBLIC 18

Hands-On Overview

• Exercise #1: Blinky
− Build and flash a simple application

− Examine application source code and build artifacts

• Exercise #2: Eclipse IDE Debugging
− Generate and import an Eclipse IDE project

− Create and launch a debug configuration

• Exercise #3: Display and Graphics with LittlevGL Integration
− Build and flash an LCD application

• Exercise #4: Configuration and Memory Footprint
− Examine flash/ram footprint with rom_report and ram_report

− Change the configuration and rebuild

COMPANY PUBLIC 19

Exercise #1: Blinky
Build and flash a simple application

Examine application source code and build artifacts

COMPANY PUBLIC 20

Build and Flash Blinky
• Open a normal command prompt

• Set up the build environment

> cd %userprofile%\zephyrproject\zephyr

> zephyr-env.cmd

• Build the blinky sample application

> west build -b mimxrt1050_evk -d build\blinky samples\basic\blinky

• Flash it to the board

> west flash –d build\blinky

• See the LED blinking

COMPANY PUBLIC 21

Blinky Application Source Code

• samples\basic\blinky\src\main.c

• Same application source code works on many

different boards, not just i.MX RT1050-EVKB

• Standard GPIO interface APIs

− gpio_pin_configure() and gpio_pin_write()

• Standard LED macros generated from device tree

− LED0_GPIO_CONTROLLER and LED0_GPIO_PIN

COMPANY PUBLIC 22

i.MX RT1050-EVK Board Device Tree

• boards\arm\mimxrt1050_evk\mimxrt1050_evk.dts

• Defines board hardware components such as

LEDs, sensors, and external memories

− LED node defines GPIO instance and pin

− Memory nodes define SDRAM and Hyperflash sizes

− Chosen node selects UART instance for console

• Includes SoC device tree

COMPANY PUBLIC 23

i.MX RT1050 SoC Device Tree

• dts\arm\nxp\nxp_rt.dtsi

• Defines SoC peripheral addresses, interrupts, and

device driver labels

• Clocks properties used by peripheral drivers to

configure UART, I2C baud rates

COMPANY PUBLIC 24

Exercise #2: Eclipse IDE

Debugging
Generate and import an Eclipse IDE project

Create and launch a debug configuration

COMPANY PUBLIC 25

Generate an Eclipse IDE Project

• Open a normal command prompt

• Set up the build environment

> cd %userprofile%\zephyrproject\zephyr

> zephyr-env.cmd

• Move to a directory outside the Zephyr tree. This is required only when generating
Eclipse projects

> cd %userprofile%

• Generate and build an Eclipse project for the hello_world application

> west build -b mimxrt1050_evk %ZEPHYR_BASE%\samples\hello_world -
- -G"Eclipse CDT4 - Ninja"

COMPANY PUBLIC 26

Import the Eclipse IDE Project

• Open MCUXpresso IDE

• From the File menu, select
Import…

• Select Existing Projects into
Workspace

• Select Next

• Select Browse and navigate to
your build directory

• Select Finish

Warning: Do not check Copy
projects into Workspace

COMPANY PUBLIC 27

COMPANY PUBLIC 28

Create a New Debug Configuration

• From the Run menu, select

Debug Configurations…

• Select GDB SEGGER J-Link-

Debugging, and click the New

button

• Warning: Do not select GDB

SEGGER Interface Debugging

COMPANY PUBLIC 29

J-Link Debug Configuration: Main

• Select the Main tab and

configure the following

settings:

• Project: hello_world@build

• C/C++ Application:

zephyr/zephyr.elf

COMPANY PUBLIC 30

J-Link Debug Configuration: Debugger

• Select the Debugger tab and
configure the following settings:

• Device name: MCIMXRT1052

• GDB Client Executable name:
C:\nxp\MCUXpressoIDE_10.3.1_22
33\ide\tools\bin\arm-none-eabi-
gdb.exe

• Uncheck Allocate console for
semihosting and SWO

COMPANY PUBLIC 31

J-Link Debug Configuration: Startup

• Select the Startup tab

• Uncheck Enable

semihosting

• Uncheck Enable SWO

COMPANY PUBLIC 32

J-Link Debug Configuration: SVD Path

• Select the SVD Path tab and
configure the following settings:

• SVD file path:
C:\Users\NXPTraining\zephyrproj
ect\zephyr\ext\hal\nxp\mcux\devic
es\MIMXRT1052\MIMXRT1052.x
ml

• Select Debug to start the
debugger!

COMPANY PUBLIC 33

COMPANY PUBLIC 34

Open a Serial Terminal

• From the Window menu,
select Show View->Terminal

• Select the Terminal tab in the
bottom third of the window

• Select Open a Terminal

• Enter serial port settings as
shown (COM number may be
different)

COMPANY PUBLIC 35

Run the Application

• Select Resume to run the

application

• See in the terminal:

Hello World! mimxrt1050_evk

COMPANY PUBLIC 36

Exercise #3: Display and Graphics

with LittlevGL Integration
Build and flash an LCD application

COMPANY PUBLIC 37

Build and Flash LittlevGL

• Open a normal command prompt

• Set up the build environment

> cd %userprofile%\zephyrproject\zephyr

> zephyr-env.cmd

• Build the LittlevGL sample application

> west build -b mimxrt1050_evk -d build\lvgl samples\gui\lvgl

• Flash it to the board

> west flash -d build\lvgl

• See “Hello world!” on the LCD

COMPANY PUBLIC 38

Exercise #4: Configuration and

Memory Footprint
Examine flash/ram footprint with rom_report and ram_report

Change the configuration and rebuild

COMPANY PUBLIC 39

Examine Memory Footprint

• Open a normal command prompt

• Set up the build environment

> cd %userprofile%\zephyrproject\zephyr

> zephyr-env.cmd

• Move to the LittlevGL sample application build directory

> cd build\lvgl

• Run reports to see flash and ram memory footprints

> ninja rom_report

> ninja ram_report

COMPANY PUBLIC 40

Change Configuration and Rebuild
• Open samples\gui\lvgl\prj.conf in a text editor and disable logging

CONFIG_LOG=n

• Open a normal command prompt

• Set up the build environment

> cd %userprofile%\zephyrproject\zephyr

> zephyr-env.cmd

• Rebuild the LittlevGL sample application with the new configuration

> west build -d build\lvgl -c

• Move to the LittlevGL sample application build directory and rerun reports

> cd build\lvgl

> ninja rom_report

> ninja ram_report

CONFIG_LOG ROM (B) RAM (B)

Y 80044 590628

N 72376 588425

Delta 7668 2203

COMPANY PUBLIC 41

Backup

COMPANY PUBLIC 42

References

• https://docs.zephyrproject.org/latest/boards/index.html

• https://github.com/zephyrproject-rtos/zephyr/releases/tag/zephyr-

v1.14.0

• https://docs.zephyrproject.org/1.14.0/getting_started/index.html#build

-and-run-an-application

• https://docs.zephyrproject.org/1.14.0/application/index.html#eclipse-

debugging

https://docs.zephyrproject.org/latest/boards/index.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag/zephyr-v1.14.0
https://docs.zephyrproject.org/1.14.0/getting_started/index.html#build-and-run-an-application
https://docs.zephyrproject.org/1.14.0/application/index.html#eclipse-debugging

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

