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Lifecycle Maintenance of Your BSP
Let us handle the periodic updates for you!



Problem 1: The World is not Frozen, Even if Your Software Is
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Problem 2: Market Security Requirements are Critical 
to Customer Acceptance
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Problem 3: Shorten Development Cycle with 
Predictable Schedules
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Problem 4: No Longer Ignore Software in the Field
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Solution: Shift Security Left and Stretch Right
Active, Continuous Security at Every Stage of SDLC

Security in design, development, testing 

● Need security tools that are aligned with development workflows and tools

● Need highly accurate vulnerability identification for all versions, all 
components, all branches

● Need to build using latest, most secure third party components

Security

Design Develop Test Limited 
Release

GA 
Release Maintenance

Ongoing developer-driven security maintenance

● Must conduct continuous vulnerability 
monitoring, patching, and software updates to 
keep devices secure

● Testing a bottleneck for many

● Accurate vulnerability data and fewer false 
positives to minimize dev team impacts 



Exposure Assessment Effort & Cost
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Mitigation Effort & Cost

Speed of Mitigation

M
iti

ga
tio

n 
Ef

fo
rt 

& 
C

os
t L

ev
el

Proactive manual 
mitigation before 

exploits hit
Reactive manual 
mitigation when 

exploits hit

No mitigation of 
CVEs

No Process

Continuous Process

Lowest
Risk

Highest
Risk

Moderate
Risk

High

High



▪ Automated software analysis & SBOM generation

▪ Automated & augmented feeds & filtering

▪ Collaboration & sharing across teams

▪ Automation-assisted analysis & mitigation steps

▪ Choose tools that are optimized for your particular product areas

How Can You “Jump the Curve”?



Jump the Curve: Exposure Assessment
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Jump the Curve: Mitigation
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Why monitoring tools are useful?

▪ Improved security
• More coverage, better accuracy, early notification

▪ Time saved in monitoring
• Identifies/notifies on newly discovered CVEs and fixes

▪ Reduced triage burden
• Advanced filtering, fewer false positives, identifies already fixed CVEs

▪ Workflow management
• History, collaboration tools, notes, whitelist, exported reports

▪ Integrates into engineering process
• Plugs into Yocto, and a vulnerability scan can be triggered for every build

▪ Simplified, efficient vulnerability maintenance & continuous monitoring
• Filters CVEs to only those that matter, tools for rapid investigation and mitigation

Security Monitoring Tools



Release
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▪ When to Upgrade
• Fix implemented in a newer version
• No License change
• Understood/minimal/contained impact on other software

▪ When to Patch
• Minimize the scope of changes
• Patch available but new version not released
• New software version also changes API (backport)

• API changes risk impacting other softwares resulting in instability
• Locked/certified software versions

▪ When to Remove
• Issues unfixed upstream (abandoned)
• Unacceptable license change in new version

Upgrade or Patch or Backport?



▪ CVE fixes are backported by LTS maintainers
▪ Minor kernel updates are limited in scope of changes
▪ Minor kernel upgrades come before custom patches! – Need to adjust!
▪ Major kernel upgrade may be required when LTS version goes out of maintenance

Linux Kernel Use-Case
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BSP Maintenance Workflow: How we do it
Vigiles CVE Report triage
- Verify applicability
- Whitelist disputed/minor issues
- Shortlist based on fix / exploit info

Backport + patch
or

Upgrade Package

Mainline LTS kernel
- Rebase NXP patches (5000+)
- Add customer patches

Resolve conflicts!

Compare delta results:
- ptest
- built-in package test
- basic functional test
- PoC exploit (YMMV)

User space

Driver test suite
- Timesys test framework

Performance test
(Select modules)

Kernel

Vulnerability 
monitoring

Remediate

Test
(on customer 

hardware)

- Source code (shared git)
- Triaged CVE Report
- Test report and Release notes

Release to 
customer

- System / Application test
- Firmware update

BSP Maintenance 
Services Team

CustomerDeploy



BSP Maintenance Tasks and Staffing Considerations: Stretch Right

Vulnerability monitoring
• Requires dedicated team to filter, analyze, triage, remediate• Analyze applicability and impact of the vulnerabilities

BSP updates 
• BSP engineering for updates to libraries and packages (Root

File System)• Integrate and Test patches/updates

Offload to a turnkey BSP 
maintenance service

Toolchain updates
• Toolchain engineering for gcc, glibc bug fixes, security patches• Pin tool chain version to specific build system (e.g. Yocto)• Rebuild SDK for application, regression testing

Kernel updates 
• Linux engineering resources to keep up with LTS branch &

kernel patches and minor versions

Frequent maintenance cycles, 
high staffing costs, 

priority conflicts

Testing and re-testing
• QA Engineers for re-testing of Linux BSP/platform,

functional testing of drivers

Internal

External

Could you do all this with a single resource? 
How about two resources?
How about a dedicated team of resources?

What if you could do ALL this with less than 
half the cost of a junior engineer?  

No brainer, right?

With tight development budgets and 
product schedules, this work typically gets 
sacrificed by R&D.



The Hidden Costs of BSP Maintenance 

Do It Yourself: $150,000 / year

Tasks 1st Board 3 Boards* 5 Boards*

Monitoring $20k $25k $30k

Finding & Applying Patches
Finding Fixed Versions & 
Upgrading Versions 

$38k $50k $60k

Testing 2 Releases Per Year $32k $75k $120k

Total $90k $150k $215k

*Assume more than 75% overlap in Software components and kernel configurations

BSP Maintenance



Automation, Scale & Cost Reduction: How we do it 

Vigiles

Maintained LTS branches
(SoC specific)

Patch repository (meta-
timesys-security)

Timesys test framework

Build Infrastructure
(Gitlab CI)

Board Farm Cloud

- NXP patches + latest LTS
- Tested on generic platform

- Automated docker builds
- Build speed optimized
(sstate cache, download)

- Automated deploy
- Automated test runs
- Reports

- Generic driver tests
- Support for manual and
automated tests

- Generic layer for CVE fixes
- Works on any Yocto release

- Timesys curated CVE data
- Optimized for Yocto (kernel,

u-boot config filters)
- Leverage triage info reuse
- Kernel fixed version tracker

Security team

Development 
team

Test and 
infrastructure team



Introducing: BSP Maintenance Service

BSP maintenance 
service includes 

vulnerability (CVE) 
reports and test 

results

▪ Turnkey service that maintains your BSP
throughout its lifecycle
• Keep pace with updates
• Maintain product security
• Cut BSP maintenance costs

▪ Focus your resources on
development & differentiation

▪ Provides visibility and control
at all times



▪ A subscription to Vigiles Prime
• Security & vulnerability notification and reporting tool for monitoring your software

▪ Complete BSP update (software release) twice a year (by default / cadence can be changed)
• Minor kernel version upgrade for security and bug fixes
• User space security patching & package updates
• Two releases per year on a mutually agreed timeline
• Only mutually agreed upon items will be integrated

▪ Each update is validated and tested on the customer’s hardware
• Release notes and test reports included with each update
• Customer provided HW is maintained in our board farm

▪ BSP is maintained on a secure, private, bidirectional Git server
• upload/download sources and changes

▪ In the event something critical happens between updates…
• On-demand update for emergency security fixes (one per year included)

What Is Included in the Service Package



Do It Yourself: $150,000 / year
Timesys: $75,000 for 3 boards

Tasks 1st Board 3 Boards* 5 Boards*

Monitoring $20k $25k $30k

Finding & Applying Patches
Finding Fixed Versions & 
Upgrading Versions 

$38k $50k $60k

Testing 2 Releases Per Year $32k $75k $120k

Total $90k $150k $215k

*Assume more than 75% overlap in Software components and kernel configurations

BSP Maintenance

The Hidden Costs of BSP Maintenance 



▪ Customers sign up
▪ Hardware and BSP are provided to NXP

• NXP will use this to establish a baseline test report

▪ Pro-Support will periodically review the recommended
updates to include in the upcoming release

▪ The updated BSP will be tested on the customer’s platform and
delivered twice a year
• Including release notes and test report

How to Engage Pro-Support to Maintain Your BSP



BSP Maintenance Solution: Stretch Right
Turnkey service that maintains your BSPs 
throughout the product life cycle

▪ Extends security beyond development into production
deployment

▪ Cuts BSP maintenance costs by 50% +

▪ Applies latest updates for improved stability and security

▪ Simplifies vulnerability tracking and fixing with auto
notification and suggested fixes

▪ Performs updates and tests for your hardware

▪ Gives full visibility and control at all times

▪ Integrates with your dev process with shared private Git
and full release notes

▪ Supplies updates you pick on your schedule

▪ Permits you to focus dev cycles on new products &
enhancements



EXTERNAL USE25

For More Information and to Become More Secure

Contact us at Vigiles@nxp.com

Or

Use this link to go to the BSP Lifecycle Maintenance page on NXP.com

Thank You!

mailto:Vigiles@nxp.com
https://www.nxp.com/support/support/nxp-engineering-services/bsp-lifecycle-maintenance:BSP-LIFECYCLE-MAINTENCE
http://www.nxp.com/
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