
NXP Webinar: June 2, 2020
Presented by: Maciej Halasz

Lifecycle Maintenance of Your BSP
Let us handle the periodic updates for you!

Problem 1: The World is not Frozen, Even if Your Software Is

New 3rd party
component
versions

Backlog of
patches and
updates

New deployment
modes (connected
devices, IoT)

No cycles for
retesting

External
Changes

Internal
Challenges

New
compliance /
security rules

Team is
focused on
new products

Difficulty
analyzing
flood of CVEs

Frequent
kernel
updates

18331

18331

Reported vulnerabilities have reached
18000+ in 2019 (>300+ a week)

New
vulnerabilities

Customer
hacked

Problem 2: Market Security Requirements are Critical
to Customer Acceptance

FDA Guidelines

HIPAA privacy

SCADA security
requirements

IEC 62304

ICS, IIoT security
requirements

Design Develop Test Limited
Release Security GA

Release

End customer security requirements
are Growing more complex and are

Critical to customer acceptance

Must be baked into product from start

Problem 3: Shorten Development Cycle with
Predictable Schedules

Design Develop Test Limited
Release Security

Traditional Security
Review

Dev cycles shortened by demand
being created by: IoT, IIoT, AI/DL/ML

Bottleneck to
modern dev and release cycles

Problem 4: No Longer Ignore Software in the Field

Design Develop Test Limited
Release Security GA

Release

Traditional Security
Review Embedded

Software Frozen
Until New

Generation

Dev cycles shortened by demand
being created by: IoT, IIoT, AI/DL/ML

Bottleneck to
modern dev and release cycles

Solution: Shift Security Left and Stretch Right
Active, Continuous Security at Every Stage of SDLC

Security in design, development, testing

● Need security tools that are aligned with development workflows and tools

● Need highly accurate vulnerability identification for all versions, all
components, all branches

● Need to build using latest, most secure third party components

Security

Design Develop Test Limited
Release

GA
Release Maintenance

Ongoing developer-driven security maintenance

● Must conduct continuous vulnerability
monitoring, patching, and software updates to
keep devices secure

● Testing a bottleneck for many

● Accurate vulnerability data and fewer false
positives to minimize dev team impacts

Exposure Assessment Effort & Cost

Exposure Assessment Accuracy

Le
ve

l o
f E

ffo
rt

&
C

os
t CVE feeds, security

bulletins, issue
trackers, mailing lists

Tools + manual
analysis of

CVEs in feed
Open source

tools to monitor
CVE

Static
analysis,
fuzzers

Fewer sources

More sources

Lowest
Risk

Highest
Risk

Moderate
Risk

High

High

Mitigation Effort & Cost

Speed of Mitigation

M
iti

ga
tio

n
Ef

fo
rt

&
C

os
t L

ev
el

Proactive manual
mitigation before

exploits hit
Reactive manual
mitigation when

exploits hit

No mitigation of
CVEs

No Process

Continuous Process

Lowest
Risk

Highest
Risk

Moderate
Risk

High

High

▪ Automated software analysis & SBOM generation

▪ Automated & augmented feeds & filtering

▪ Collaboration & sharing across teams

▪ Automation-assisted analysis & mitigation steps

▪ Choose tools that are optimized for your particular product areas

How Can You “Jump the Curve”?

Jump the Curve: Exposure Assessment

Exposure assessment accuracy

Le
ve

l o
f E

ffo
rt

&
C

os
t CVE feeds, security

bulletins, issue
trackers, mailing lists

Tools + manual
analysis of

CVEs in feed
Open source

tools to monitor
CVE

Static
analysis,
fuzzers

Fewer sources

More sources

Highest
Risk

Moderate
Risk

● Automated CVE
monitoring

● SCA for automated
SBOM

● Curated, augmented lists
for fewer false positives

● Automated filtering

Lowest
Risk

+
Lowest
Cost

Lowest
Risk

Proactive manual
mitigation before

exploits hit
Reactive manual
mitigation when

exploits hit

No mitigation of
CVEs

No Process

Continuous Process

Jump the Curve: Mitigation

Speed of Mitigation

Le
ve

l o
f E

ffo
rt

&
C

os
t

Highest
Risk

Moderate
Risk

● Automation-assisted
fix / update analysis

● Collaboration tools for
cross-team mitigation

● Automated logging &
sharing of fixes across
projects

Lowest
Risk

+
Lowest
Cost

Lowest
Risk

Why monitoring tools are useful?

▪ Improved security
• More coverage, better accuracy, early notification

▪ Time saved in monitoring
• Identifies/notifies on newly discovered CVEs and fixes

▪ Reduced triage burden
• Advanced filtering, fewer false positives, identifies already fixed CVEs

▪ Workflow management
• History, collaboration tools, notes, whitelist, exported reports

▪ Integrates into engineering process
• Plugs into Yocto, and a vulnerability scan can be triggered for every build

▪ Simplified, efficient vulnerability maintenance & continuous monitoring
• Filters CVEs to only those that matter, tools for rapid investigation and mitigation

Security Monitoring Tools

Release

Minor
Version
Upgrade

Patch or
Upgrade Backport Implement

test case
Resolve
disputes

Shortlist
CVEs

Available
Fixes

Info on
exploits

BSP Maintenance Process
Security team Development team

Triaging
- Which CVEs apply?
- How CVEs affect

products?
- Do we need to take

action?

Firmware
Update

- What is the scope of
changes?

- How much has to be
tested?

Triaged
Security
Report

Fixed &
Tested

Firmware
Update

▪ When to Upgrade
• Fix implemented in a newer version
• No License change
• Understood/minimal/contained impact on other software

▪ When to Patch
• Minimize the scope of changes
• Patch available but new version not released
• New software version also changes API (backport)

• API changes risk impacting other softwares resulting in instability
• Locked/certified software versions

▪ When to Remove
• Issues unfixed upstream (abandoned)
• Unacceptable license change in new version

Upgrade or Patch or Backport?

▪ CVE fixes are backported by LTS maintainers
▪ Minor kernel updates are limited in scope of changes
▪ Minor kernel upgrades come before custom patches! – Need to adjust!
▪ Major kernel upgrade may be required when LTS version goes out of maintenance

Linux Kernel Use-Case

4.9 4.14 4.19 5.4

N
ew

 F
ix

es

Ba
ck

po
rts

BSP Maintenance Workflow: How we do it
Vigiles CVE Report triage
- Verify applicability
- Whitelist disputed/minor issues
- Shortlist based on fix / exploit info

Backport + patch
or

Upgrade Package

Mainline LTS kernel
- Rebase NXP patches (5000+)
- Add customer patches

Resolve conflicts!

Compare delta results:
- ptest
- built-in package test
- basic functional test
- PoC exploit (YMMV)

User space

Driver test suite
- Timesys test framework

Performance test
(Select modules)

Kernel

Vulnerability
monitoring

Remediate

Test
(on customer

hardware)

- Source code (shared git)
- Triaged CVE Report
- Test report and Release notes

Release to
customer

- System / Application test
- Firmware update

BSP Maintenance
Services Team

CustomerDeploy

BSP Maintenance Tasks and Staffing Considerations: Stretch Right

Vulnerability monitoring
• Requires dedicated team to filter, analyze, triage, remediate• Analyze applicability and impact of the vulnerabilities

BSP updates
• BSP engineering for updates to libraries and packages (Root

File System)• Integrate and Test patches/updates

Offload to a turnkey BSP
maintenance service

Toolchain updates
• Toolchain engineering for gcc, glibc bug fixes, security patches• Pin tool chain version to specific build system (e.g. Yocto)• Rebuild SDK for application, regression testing

Kernel updates
• Linux engineering resources to keep up with LTS branch &

kernel patches and minor versions

Frequent maintenance cycles,
high staffing costs,

priority conflicts

Testing and re-testing
• QA Engineers for re-testing of Linux BSP/platform,

functional testing of drivers

Internal

External

Could you do all this with a single resource?
How about two resources?
How about a dedicated team of resources?

What if you could do ALL this with less than
half the cost of a junior engineer?

No brainer, right?

With tight development budgets and
product schedules, this work typically gets
sacrificed by R&D.

The Hidden Costs of BSP Maintenance

Do It Yourself: $150,000 / year

Tasks 1st Board 3 Boards* 5 Boards*

Monitoring $20k $25k $30k

Finding & Applying Patches
Finding Fixed Versions &
Upgrading Versions

$38k $50k $60k

Testing 2 Releases Per Year $32k $75k $120k

Total $90k $150k $215k

*Assume more than 75% overlap in Software components and kernel configurations

BSP Maintenance

Automation, Scale & Cost Reduction: How we do it

Vigiles

Maintained LTS branches
(SoC specific)

Patch repository (meta-
timesys-security)

Timesys test framework

Build Infrastructure
(Gitlab CI)

Board Farm Cloud

- NXP patches + latest LTS
- Tested on generic platform

- Automated docker builds
- Build speed optimized
(sstate cache, download)

- Automated deploy
- Automated test runs
- Reports

- Generic driver tests
- Support for manual and
automated tests

- Generic layer for CVE fixes
- Works on any Yocto release

- Timesys curated CVE data
- Optimized for Yocto (kernel,

u-boot config filters)
- Leverage triage info reuse
- Kernel fixed version tracker

Security team

Development
team

Test and
infrastructure team

Introducing: BSP Maintenance Service

BSP maintenance
service includes

vulnerability (CVE)
reports and test

results

▪ Turnkey service that maintains your BSP
throughout its lifecycle
• Keep pace with updates
• Maintain product security
• Cut BSP maintenance costs

▪ Focus your resources on
development & differentiation

▪ Provides visibility and control
at all times

▪ A subscription to Vigiles Prime
• Security & vulnerability notification and reporting tool for monitoring your software

▪ Complete BSP update (software release) twice a year (by default / cadence can be changed)
• Minor kernel version upgrade for security and bug fixes
• User space security patching & package updates
• Two releases per year on a mutually agreed timeline
• Only mutually agreed upon items will be integrated

▪ Each update is validated and tested on the customer’s hardware
• Release notes and test reports included with each update
• Customer provided HW is maintained in our board farm

▪ BSP is maintained on a secure, private, bidirectional Git server
• upload/download sources and changes

▪ In the event something critical happens between updates…
• On-demand update for emergency security fixes (one per year included)

What Is Included in the Service Package

Do It Yourself: $150,000 / year
Timesys: $75,000 for 3 boards

Tasks 1st Board 3 Boards* 5 Boards*

Monitoring $20k $25k $30k

Finding & Applying Patches
Finding Fixed Versions &
Upgrading Versions

$38k $50k $60k

Testing 2 Releases Per Year $32k $75k $120k

Total $90k $150k $215k

*Assume more than 75% overlap in Software components and kernel configurations

BSP Maintenance

The Hidden Costs of BSP Maintenance

▪ Customers sign up
▪ Hardware and BSP are provided to NXP

• NXP will use this to establish a baseline test report

▪ Pro-Support will periodically review the recommended
updates to include in the upcoming release

▪ The updated BSP will be tested on the customer’s platform and
delivered twice a year
• Including release notes and test report

How to Engage Pro-Support to Maintain Your BSP

BSP Maintenance Solution: Stretch Right
Turnkey service that maintains your BSPs
throughout the product life cycle

▪ Extends security beyond development into production
deployment

▪ Cuts BSP maintenance costs by 50% +

▪ Applies latest updates for improved stability and security

▪ Simplifies vulnerability tracking and fixing with auto
notification and suggested fixes

▪ Performs updates and tests for your hardware

▪ Gives full visibility and control at all times

▪ Integrates with your dev process with shared private Git
and full release notes

▪ Supplies updates you pick on your schedule

▪ Permits you to focus dev cycles on new products &
enhancements

EXTERNAL USE25

For More Information and to Become More Secure

Contact us at Vigiles@nxp.com

Or

Use this link to go to the BSP Lifecycle Maintenance page on NXP.com

Thank You!

mailto:Vigiles@nxp.com
https://www.nxp.com/support/support/nxp-engineering-services/bsp-lifecycle-maintenance:BSP-LIFECYCLE-MAINTENCE
http://www.nxp.com/

	Lifecycle Maintenance of Your BSPLet us handle the periodic updates for you!
	Problem 1: The World is not Frozen, Even if Your Software Is
	Problem 2: Market Security Requirements are Critical �to Customer Acceptance
	Problem 3: Shorten Development Cycle with �Predictable Schedules
	Problem 4: No Longer Ignore Software in the Field
	Solution: Shift Security Left and Stretch Right Active, Continuous Security at Every Stage of SDLC
	Exposure Assessment Effort & Cost
	Mitigation Effort & Cost
	How Can You “Jump the Curve”?
	Jump the Curve: Exposure Assessment
	Jump the Curve: Mitigation
	Security Monitoring Tools
	BSP Maintenance Process
	Upgrade or Patch or Backport?
	Linux Kernel Use-Case
	BSP Maintenance Workflow: How we do it
	BSP Maintenance Tasks and Staffing Considerations: Stretch Right
	The Hidden Costs of BSP Maintenance
	Automation, Scale & Cost Reduction: How we do it
	Introducing: BSP Maintenance Service
	What Is Included in the Service Package
	The Hidden Costs of BSP Maintenance
	How to Engage Pro-Support to Maintain Your BSP
	BSP Maintenance Solution: Stretch Right
	For More Information and to Become More Secure
	Slide Number 26

