
NXP Semiconductors Document Number: PEXBC3770PUG
User’s guide Rev. 1.0, 2/2016

© 2016 NXP B.V.

Contents

1 General Info . 2

2 Embedded Component Description . 2
2.1 Component API . 2
2.2 Events . 4
2.3 Methods . 4
2.4 Properties . 8

3 Typical Usage . 13

4 User Types . 17

MC32BC3770 Programming Guide

General Info

2 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

1 General Info

FRDM BC3770 and BC MC32BC3770 Processor Expert components are software drivers which
encapsulate functionality of MC32BC3770CS Battery charger and FRDM-BC3770-EVB Freedom board.
These components create a layer between hardware and user application and enable rapid application
development by providing an interface which covers options for charging parameters, settings of
registers, measurement and testing.

MC32BC3770CS is a fully programmable switching charger with dual-path output for single-cell Li-Ion
and Li-Polymer battery. This dual-path output allows mobile applications with fully discharged or dead
battery to boot up the system. The MC32BC3770CS features single 20 V withstanding input and
charges the battery with the current up to 2.0 A.

2 Embedded Component Description

2.1 Component API

BC MC32BC3770 component provides API, which can be used for dynamic real-time configuration of
device in user code. Available methods and events are listed under component selection Some of those
methods/events are marked with ticks and other ones with crosses, it distinguishes which
methods/events are supposed to be generated or not. You can change this setting in Processor Expert
Inspector. Note that methods with grey text are always generated because they are needed for proper
functionality. This forced behavior depends on various combinations of settings of component
properties. For summarization of available API methods and events and their descriptions, see Table 1
BC MC32BC3770 Component API

Table 1

Method Description
Init Initializes the device according to the component properties.

This method writes the data according to the component prop-
erties into registers via I2C. When auto initialization is enabled,
this method will be called automatically within PE initialization
function PE low level init().

ReadRegister Reads data from a single register defined by RegAddr argument.
If the method returns ERR OK, it doesn’t mean that reception
was successful. The state of reception is detectable by means of
events (OnMasterSendComplete or OnError).

WriteRegister Writes data to a single register defined by RegAddr argument.
ReadBurstData This method reads data from multiple registers via I2C. The

first parameter is an address of the first read register. Addresses
of following registers are incremented automatically so incoming
bytes of data are content of consecutive registers.

WriteBurstData This method writes data to multiple registers via I2C. The first
parameter is an address of the first register to be written. Ad-
dresses of following registers are incremented automatically so
outcoming data is written to consecutive registers automatically.

SetInterrupt Enables or disables an interrupt in INTMSK1..3 register. In-
terrupts can be set either individually or all at a time. It is not
possible to set for example two interrupts at a time.

ClearInterrupt Clears flag of interrupt in INT1..3 register. Interrupt flags can
be cleared either individually or all at a time. It is not possible
to clear for example two interrupts.

EnDisComparators This method enables/disables comparators which are enabled by
default. The comparators detect weak battery, supply voltage
status, battery OVP, discharge limit.

Reset This method resets the device registers except INTMASK and
STATUS.

1
2
2.1

Embedded Component Description

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 3

SetChargerMode This method sets charger mode. The charger can be on or off.
When the charger is on, it charges the battery or maintains con-
stant voltage on the battery. In Suspend mode PMID output is
bypassed to VBUS which means that the charger does not in-
fluence output voltage and current. In boost mode the device
provides a regulated output voltage to VBUS from the battery.
In shutdown mode if there is not valid input source the charger
is functional except I2C interface which is turned off in order to
minimize power consumption. The device gets in charge mode
when valid input source is present.

EnDisShutdown Enables/disables shutdown pin which means that the device
is put in shutdown mode. In shutdown mode I2C interface is
turned off in order to minimize power consumption. However,
this applies only in case of invalid input power source. This pin
is not effective as long as a valid input power source is present.

SetAICLCurrentLimit This method sets input current limit by writing to VBUSCTRL
register. This value limits the fastcharge current when the de-
vice is in fastcharge mode. It also sets the limit for adaptivein-
put current limit (AICL) when the device in Startup mode au-
tomatically starts incrementing the input current limit to either
the default or preprogrammed value until either the input cur-
rent limit is detected or the VBUS voltage detects the AICL
threshold, to keep input supply voltage as a valid power source
to provide the load for the application.

SetAICLVoltageThreshold This method sets AICL threshold voltage on VBUS. To keep
the device functional with a current and voltage limited VBUS
source, the device in Startup mode automatically starts incre-
menting the input current limit to either the default or prepro-
grammed value until either the input current limit is detected
or the VBUS voltage detects the AICL threshold, to keep in-
put supply voltage as a valid power source to provide the load
for the application. The device allows the maximum current the
input supply can possibly provide without severely collapsing.

EnDisAICL Enables/disables adaptiveinput current limit (AICL). AICL is
mostly used at the beginning of charging process in cases when
current dissipation is higher than the current that the power
source can provide. This feature prevents the power source from
collapse.

SetPreChargeCurrent Precharge current is current which charges the battery in
precharge mode. The battery charger enters precharge mode
when battery voltage is higher than 2.5 V. If the battery voltage
does not exceed the VVSYS MIN threshold before the precharge
timer expires, charging is suspended and a fault signal is as-
serted via the INTB pin.

SetTopOffCurrent Topoffcharge current is current which charges the battery in
topoff mode. After topoff timer expires the topoff event is re-
ported to the processor via the INTB pin which means that the
battery is fully charged. As soon as the processor reads the in-
terrupt registers, the processor is able to turn off the charger.

SetFastChargeCurrent Fastcharge current is current which charges the battery in
fastcharge mode. The Fastcharge mode is entered when the bat-
tery voltage exceeds the VSYS MIN threshold of a typical 3.6
V. If the battery voltage does not reach the VBAT REG thresh-
old before the timer expires, charging is suspended and a fault
signal is asserted via the INTB pin.

SetDischargeCurrent This method sets discharge current limit in discharge mode.

Embedded Component Description

4 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

EnDisAutostop This method enables or disables autostop feature. If autostop is
enabled after topoff timer is expired, the charger turns off and
goes into DONE state. If it is disabled charger is on continu-
ously and stays in CV mode after topoff timer is expired.

SetWeakBatteryThreshold This method sets the voltage of weak battery threshold. The
threshold ranges from 3.0 V to 3.75 V in 50 mV steps. A weak
battery detection function allows the processor to acknowledge
the lowbattery condition by asserting INTB event.

SetBatteryRegulationThreshold Based on this threshold the charger transits from fastcharge
mode (constant current mode) to fullcharge mode (constant
voltage mode). In fullcharge mode the fast charge current is
reduced to a programmable topoff current. Up to this thresh-
old the VSYS output tracks the battery voltage in Trickle and
Precharge mode.

SetBoostOTGVoltage This method sets OTG voltage in Boost (OTG) mode. In boost
mode the device provides a regulated output voltage to VBUS
from the battery.

SetFastChargeTimer Fast charge timer watches the device during fast charging mode.
If the battery voltage does not reach its required value within
this ”fastcharge” time frame an interrupt is asserted. Possible
values are 3.5, 4.5, 5.5 hours or the timer can be disabled.

SetTopOffTimer Topoff timer watches the device during topoff mode. If the
battery voltage does not reach its required value within this
”topoff” time frame an interrupt is asserted. Possible values are:
10, 20, 30 or 45 minutes.

GetStatus This method returns the content of status register.

2.2 Events

OnInterrupt -This event is invoked every time there is a falling edge on the INT interrupt pin.
Contents of registers in device structure are updated prior this event so you can read the interrupt
registers directly from this structure (without sending I2C command).

ANSIC prototype: void OnInterrupt(void)

2.3 Methods

Init -Initializes the device according to the component properties. This method writes the data
according to the component properties into registers via I2C. When auto initialization is enabled, this
method will be called automatically within PE initialization function - PE low level init().

ANSIC prototype: TDeviceDataPtr Init(TUserDataPtr UserDataPtr)

TUserDataPtr :UserDataPtr - user data pointer

Return value:TDeviceDataPtr - device data pointer

ReadRegister -Reads data from a single register defined by RegAddr argument. If the method returns
ERR OK, it doesn’t mean that reception was successful. The state of reception is detectable by means
of events (OnMasterSendComplete or OnError).

ANSIC prototype: LDD TError ReadRegister(TRegisterAddress RegAddr,uint8 t *RetValPtr)

TRegisterAddress :RegAddr - an address of register to be read

uint8 t : Pointer to RetValPtr - a pointer to memory where incoming data is stored

Return value:LDD TError - error code, ERR OK if successful

WriteRegister -Writes data to a single register defined by RegAddr argument.

ANSIC prototype: LDD TError WriteRegister(TRegisterAddress RegAddr,uint8 t RegVal)

TRegisterAddress :RegAddr - an address of register to be written

uint8 t :RegVal - a variable where outcoming data is stored

Return value:LDD TError - error code, ERR OK if successful

2.2
2.3

Embedded Component Description

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 5

ReadBurstData -This method reads data from multiple registers via I2C. The first parameter is an
address of the first read register. Addresses of following registers are incremented automatically so
incoming bytes of data are content of consecutive registers.

ANSIC prototype: LDD TError ReadBurstData(TRegisterAddress RegAddr,uint8 t
*DataPtr,uint8 t NumBytes)

TRegisterAddress :RegAddr - an address of first register to be read

uint8 t : Pointer to DataPtr - a pointer to memory where incoming data will be stored

uint8 t :NumBytes- a number of bytes to be read from the device

Return value:LDD TError - error code, ERR OK if successful

WriteBurstData -This method writes data to multiple registers via I2C. The first parameter is an
address of the first register to be written. Addresses of following registers are incremented automatically
so outcoming data is written to consecutive registers automatically.

ANSIC prototype: LDD TError WriteBurstData(TRegisterAddress RegAddr,uint8 t
*DataPtr,uint8 t NumBytes)

TRegisterAddress :RegAddr - an address of first register to be written

uint8 t : Pointer to DataPtr - a pointer to memory where outcoming data is stored

uint8 t :NumBytes- a number of bytes to be written to the device

Return value:LDD TError - error code, ERR OK if successful

SetInterrupt -Enables or disables an interrupt in INTMSK1..3 register. Interrupts can be set either
individually or all at a time. It is not possible to set for example two interrupts at a time.

ANSIC prototype: LDD TError SetInterrupt(TInterrupt Interrupt,TEnDisState State)

TInterrupt :Interrupt- an interrupt to be enabled or disabled

TEnDisState :State- possible values: edsENABLED/edsDISABLED, based on this the interrupt
will be either enabled or disabled

Return value:LDD TError - error code, ERR OK if successful

ClearInterrupt -Clears flag of interrupt in INT1..3 register. Interrupt flags can be cleared either
individually or all at a time. It is not possible to clear for example two interrupts.

ANSIC prototype: LDD TError ClearInterrupt(TInterrupt Interrupt)

TInterrupt :Interrupt- an interrupt to be cleared (or all of them)

Return value:LDD TError - error code, ERR OK if successful

EnDisComparators -This method enables/disables comparators which are enabled by default. The
comparators detect weak battery, supply voltage status, battery OVP, discharge limit.

ANSIC prototype: LDD TError EnDisComparators(TEnDisState State)

TEnDisState :State- possible values: edsENABLED/edsDISABLED

Return value:LDD TError - error code, ERR OK if successful

Reset -This method resets the device registers except INTMASK and STATUS.

ANSIC prototype: LDD TError Reset(void)

Return value:LDD TError - error code, ERR OK if successful

SetChargerMode -This method sets charger mode. The charger can be on or off. When the charger is
on, it charges the battery or maintains constant voltage on the battery. In Suspend mode PMID output
is bypassed to VBUS which means that the charger does not influence output voltage and current. In
boost mode the device provides a regulated output voltage to VBUS from the battery. In shutdown
mode if there is not valid input source the charger is functional except I2C interface which is turned off
in order to minimize power consumption. The device gets in charge mode when valid input source is
present.

ANSIC prototype: LDD TError SetChargerMode(TChargerMode Mode)

Embedded Component Description

6 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

TChargerMode :Mode- mode in which the charger will operate, possible values are:
cmSHUTDOWN, cmCHARGE, cmSUSPEND, cmBOOST OTG

Return value:LDD TError - error code, ERR OK if successful

EnDisShutdown -Enables/disables shutdown pin which means that the device is put in shutdown
mode. In shutdown mode I2C interface is turned off in order to minimize power consumption. However,
this applies only in case of invalid input power source. This pin is not effective as long as a valid input
power source is present.

ANSIC prototype: void EnDisShutdown(TEnDisState State)

TEnDisState :State- possible values: edsENABLED/edsDISABLED

SetAICLCurrentLimit -This method sets input current limit by writing to VBUSCTRL register.
This value limits the fast-charge current when the device is in fast-charge mode. It also sets the limit
for adaptive-input current limit (AICL) when the device in Start-up mode automatically starts
incrementing the input current limit to either the default or pre-programmed value until either the
input current limit is detected or the VBUS voltage detects the AICL threshold, to keep input supply
voltage as a valid power source to provide the load for the application.

ANSIC prototype: LDD TError SetAICLCurrentLimit(uint16 t CurrentVal)

uint16 t :CurrentVal - value of maximum input current, admissible values are from 100 mA to 2050
mA in 50 mA steps (default value is 500 mA), please insert this value in mA (for example 2050 so
it is integer type) instead of amperes.

Return value:LDD TError - error code, ERR OK if successful

SetAICLVoltageThreshold -This method sets AICL threshold voltage on VBUS. To keep the device
functional with a current and voltage limited VBUS source, the device in Start-up mode automatically
starts incrementing the input current limit to either the default or pre-programmed value until either
the input current limit is detected or the VBUS voltage detects the AICL threshold, to keep input
supply voltage as a valid power source to provide the load for the application. The device allows the
maximum current the input supply can possibly provide without severely collapsing.

ANSIC prototype: LDD TError SetAICLVoltageThreshold(TAICLThreshold AICLThreshold)

TAICLThreshold :AICLThreshold - this is an enumerated type, possible values are: aicl4 3V,
aicl4 4V, aicl4 5V, aicl4 6V, aicl4 7V, aicl4 8V, aicl4 9V which correspond to voltage from 4.3 V to
4.9 V in 0.1 step.

Return value:LDD TError - error code, ERR OK if successful

EnDisAICL -Enables/disables adaptive-input current limit (AICL). AICL is mostly used at the
beginning of charging process in cases when current dissipation is higher than the current that the
power source can provide. This feature prevents the power source from collapse.

ANSIC prototype: LDD TError EnDisAICL(TEnDisState State)

TEnDisState :State- possible values: edsENABLED/edsDISABLED

Return value:LDD TError - error code, ERR OK if successful

SetPreChargeCurrent -Pre-charge current is current which charges the battery in pre-charge mode.
The battery charger enters pre-charge mode when battery voltage is higher than 2.5 V. If the battery
voltage does not exceed the VVSYS MIN threshold before the pre-charge timer expires, charging is
suspended and a fault signal is asserted via the INTB pin.

ANSIC prototype: LDD TError SetPreChargeCurrent(TPrechargeCurrent CurrentVal)

TPrechargeCurrent :CurrentVal - this is an enumerated type, admissible values are: pc150MA,
pc250MA, pc350MA, pc450MA which correspond to current from 150 mA to 450 mA in 100 mA
steps.

Return value:LDD TError - error code, ERR OK if successful

SetTopOffCurrent -Top-off-charge current is current which charges the battery in top-off mode. After
top-off timer expires the top-off event is reported to the processor via the INTB pin which means that
the battery is fully charged. As soon as the processor reads the interrupt registers, the processor is able
to turn off the charger.

Embedded Component Description

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 7

ANSIC prototype: LDD TError SetTopOffCurrent(TTopoffCurrent CurrentVal)

TTopoffCurrent :CurrentVal - this is an enumerated type, admissible values are: tc100MA,
tc150MA, tc200MA, tc250MA, tc300MA, tc350MA, tc400MA, tc450MA, tc500MA, tc550MA,
tc600MA, tc650MA which corresponds to top-off current from interval 100 mA - 650 mA in 50 mA
steps. 100 mA is the default.

Return value:LDD TError - error code, ERR OK if successful

SetFastChargeCurrent -Fast-charge current is current which charges the battery in fast-charge
mode. The Fast-charge mode is entered when the battery voltage exceeds the VSYS MIN threshold of a
typical 3.6 V. If the battery voltage does not reach the VBAT REG threshold before the timer expires,
charging is suspended and a fault signal is asserted via the INTB pin.

ANSIC prototype: LDD TError SetFastChargeCurrent(uint16 t CurrentVal)

uint16 t :CurrentVal - admissible range is from 100 mA to 2000 mA in 50 mA steps and with 500
mA default, please insert this in mA so it is integer type instead of amperes.

Return value:LDD TError - error code, ERR OK if successful

SetDischargeCurrent -This method sets discharge current limit in discharge mode.

ANSIC prototype: LDD TError SetDischargeCurrent(TDischargeCurrent CurrentVal)

TDischargeCurrent :CurrentVal - this is an enumerated type with values: dc0 0A, dc2 0A, dc2 5A,
dc3 0A, dc3 5A, dc4 0A, dc4 5A, dc5 0A. These values correspond to current limit from interval
2.0 A - 5.0 A in 0.5 A steps.

Return value:LDD TError - error code, ERR OK if successful

EnDisAutostop -This method enables or disables autostop feature. If autostop is enabled after top-off
timer is expired, the charger turns off and goes into DONE state. If it is disabled charger is on
continuously and stays in CV mode after top-off timer is expired.

ANSIC prototype: LDD TError EnDisAutostop(TEnDisState State)

TEnDisState :State- possible values: edsENABLED/edsDISABLED

Return value:LDD TError - error code, ERR OK if successful

SetWeakBatteryThreshold -This method sets the voltage of weak battery threshold. The threshold
ranges from 3.0 V to 3.75 V in 50 mV steps. A weak battery detection function allows the processor to
acknowledge the low-battery condition by asserting INTB event.

ANSIC prototype: LDD TError SetWeakBatteryThreshold(TWeakBattery WeakBatTh)

TWeakBattery :WeakBatTh- value of weak battery threshold. It is an enumerated type, admissible
values are: wb3 00V, wb3 05V, wb3 10V, wb3 15V, wb3 20V, wb3 25V, wb3 30V, wb3 35V,
wb3 40V, wb3 45V, wb3 50V, wb3 55V, wb3 60V, wb3 65V, wb3 70V, wb3 75V which correspond
to voltage 3.0 V - 3.75 V in 50 mV steps.

Return value:LDD TError - error code, ERR OK if successful

SetBatteryRegulationThreshold -Based on this threshold the charger transits from fast-charge
mode (constant current mode) to full-charge mode (constant voltage mode). In full-charge mode the
fast charge current is reduced to a programmable top-off current. Up to this threshold the VSYS output
tracks the battery voltage in Trickle and Pre-charge mode.

ANSIC prototype: LDD TError SetBatteryRegulationThreshold(TBatteryRegulation VoltageTh)

TBatteryRegulation :VoltageTh- this is an enumerated type, admissible values are: br4 100V,
br4 125V, br4 150V, br4 175V, br4 200V, br4 225V, br4 250V, br4 275V, br4 300V, br4 325V,
br4 350V, br4 375V, br4 400V, br4 425V, br4 450V, br4 475V which correspond to 4.1 V - 4.475 V
in 25 mV steps.

Return value:LDD TError - error code, ERR OK if successful

SetBoostOTGVoltage -This method sets OTG voltage in Boost (OTG) mode. In boost mode the
device provides a regulated output voltage to VBUS from the battery.

ANSIC prototype: LDD TError SetBoostOTGVoltage(TOTGBoost VoltageVal)

Embedded Component Description

8 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

TOTGBoost :VoltageVal - this is an enumerated type whose items are: otg5 0V, otg5 1V, otg5 2V
and correspond to 5.0V, 5.1V and 5.2V of Boost (OTG) voltage.

Return value:LDD TError - error code, ERR OK if successful

SetFastChargeTimer -Fast charge timer watches the device during fast charging mode. If the battery
voltage does not reach its required value within this ”fast-charge” time frame an interrupt is asserted.
Possible values are 3.5, 4.5, 5.5 hours or the timer can be disabled.

ANSIC prototype: LDD TError SetFastChargeTimer(TFastchargeTimeout TimerVal)

TFastchargeTimeout :TimerVal - this is an enumerated type whose items are: ft0 0H, ft3 5H,
ft4 5H, ft5 5H and correspond to 3.5, 4.5, 5.5 hrs or the timer can be disabled.

Return value:LDD TError - error code, ERR OK if successful

SetTopOffTimer -Top-off timer watches the device during top-off mode. If the battery voltage does
not reach its required value within this ”top-off” time frame an interrupt is asserted. Possible values
are: 10, 20, 30 or 45 minutes.

ANSIC prototype: LDD TError SetTopOffTimer(TTopoffTimeout TimerVal)

TTopoffTimeout :TimerVal - this argument is an enumerated type, its items are: tt10MIN,
tt20MIN, tt30MIN, tt45MIN and correspond to 10, 20, 30 and 40 minutes.

Return value:LDD TError - error code, ERR OK if successful

GetStatus -This method returns the content of status register.

ANSIC prototype: LDD TError GetStatus(uint8 t *DataPtr)

uint8 t : Pointer to DataPtr - pointer to variable which stores the value of status register

Return value:LDD TError - error code, ERR OK if successful

2.4 Properties

Component Name - Name of the component.

General Settings - General settings of the charger (modes, pins).

Charger Enabled - Charging enabled after initialization.

There are 2 options:

yes

no

Suspend Mode - Charging suspended after initialization.

There are 2 options:

yes

no

Comparator Enabled - Internal comparators detecting various interrupt events could be
disabled to save the idle current. The comparators are enabled by default. If disabled, Weak
Battery, VSYSOK, VSYS Low, Battery OVP and Discharge Current Limit events are not detected.

There are 2 options:

yes

no

Shutdown Enabled - If shutdown mode is enabled the charger is fully functional except I2C
interface which is turned off in order to minimize power consumption. However Shutdown pin is
not effective as long as a valid input power source is present.

There are 2 options:

yes

no

OTG Enabled - OTG Boost mode after initialization. In OTG Boost mode the device provides a
regulated output voltage to VBUS from the battery with load current up to 900 mA to support
USB OTG devices.

2.4

Embedded Component Description

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 9

There are 2 options:

yes

no

Control Pins - Control pins used to enable or suspend charging and put the charger in shutdown
mode.

CHGEN Link - Linked BitIO LDD component.

CHGEN Enable Pin - CHGEN charger enable pin. This pin is used to enable or suspend
charging.

SHDN Link - Linked BitIO LDD component.

SHDN Shutdown Pin - SHDN shutdown pin. This pin is used to put the charger in
shutdown mode to reduce the idle current as low as possible. I2C is disabled in shutdown
mode.

I2C Communication - I2C communication settings (link to shared I2C component).

I2C Link - Linked I2C LDD component.

VBUS Control - VBUS related settings.

AICL on VBUS - The Adaptive Input Current Limit (AICL) function prevents the current
limited input supply voltage from sagging below a certain preset AICL threshold voltage. The
input current increases as the battery voltage increases. Eventually, the input current may exceed
the VBUS input current limit. If this happens, the AICL function takes over and lowers the charge
current below the programmed value to keep VBUS around AICL threshold voltage.

AICL Threshold [V] - Adaptive Input Current Limit (AICL) voltage threshold. If VBUS
voltage drops below the threshold, input current is reduced. Possible values are 4.3 - 4.9 V,
default value is 4.5 V.

There are 7 options:

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Input Current Limit [mA] - Input current can be limited to ensure USB compliance and
minimize charging time. The value is programmable in range 100 - 2050 mA with 50 mA step.

Charger Control - Programmable charger voltage, current or time limits.

Auto Stop - If enabled, charger is disabled automatically after top-off timer expires and stays in
Done mode. If disabled, the charger stays enabled in Constant Voltage mode after the top-off
timer expires.

There are 2 options:

Enabled: Feature enabled.

Disabled: Feature disabled.

OTG Boost Voltage [V] - Programmable OTG Boost voltage in range 5.0 - 5.2 V. Default value
is 5.0 V.

There are 3 options:

5.0

5.1

5.2

Battery Regulation [V] - Battery regulation voltage threshold in range 4.1 - 4.475 V in 25 mV
steps. Default value is 4.2 V.

There are 16 options:

4.100

Embedded Component Description

10 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

4.125

4.150

4.175

4.200

4.225

4.250

4.275

4.300

4.325

4.350

4.375

4.400

4.425

4.450

4.475

Weak Battery Threshold [V] - A weak battery detection function allows the processor to
acknowledge the low-battery condition. The range is 3.0 - 3.75 V in 50 mV step. Default value is
3.6 V.

There are 16 options:

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

3.50

3.55

3.60

3.65

3.70

3.75

Precharge Current [mA] - Pre-charge mode allows a deeply discharged battery to charge safely.
The pre-charge current is programmable from 150 mA to 450 mA in 100 mA steps. Default value
is 450 mA.

There are 4 options:

150

250

350

450

Fast Charge Current [mA] - The Fast-charge mode is entered when the battery voltage exceeds
the VSYS MIN threshold of a typical 3.6 V. During this mode, the battery is charged with a
programmable fast-charge current. The fast-charge current is programmable from 100 mA to 2000
mA in 50 mA steps. Default value is 500 mA. Fast-charge current is always limited by the input
current limit setting.

Topoff Current [mA] - As soon as the battery voltage reaches the battery regulation voltage
threshold, the fast-charge current is reduced to a programmable top-off current. The range is 100 -
650 mA in 50 mA steps. Default value is 100 mA.

There are 12 options:

Embedded Component Description

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 11

100

150

200

250

300

350

400

450

500

550

600

650

Discharge Current Limit [A] - Discharge current limit in discharge mode. The range is 2.0 -
5.0 A in 0.5 A steps. Default value is 4.0 A.

There are 8 options:

0.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ifast Timeout [h] - During fast-charge mode, the safety timer called fast charge timer counts. If
the battery voltage does not reach the battery regulation voltage threshold before the timer
expires, charging is suspended. The range is 3.5 - 5.5 hours in 1 hours steps or the timer can be
disabled (by default).

There are 4 options:

0.0

3.5

4.5

5.5

Topoff Timeout [min] - If the charge current down to a pre-programmed top-off current
threshold is sensed, the safety timer called top-off timer automatically counts. When the timer
expires, charger is put in Constant Voltage mode or the charging is suspended if Autostop is
enabled. Possible values are 10, 20, 30 and 45 min, default value is 45 min.

There are 4 options:

10

20

30

45

Interrupts - Interrupts reported on the INTB pin after any status change (can be enabled/disabled
individually).

INT Link - Linked ExtInt LDD component.

INT Interrupt Pin - Active-low when status change on interrupt registers occurs.

Thermal Regulation - Thermal regulation threshold detected. (THEMREG)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Thermal Shutdown - Thermal shutdown detected. (THEMSHDN)

Embedded Component Description

12 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Battery OVP - Battery OVP detected. (BATOVP)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

VBUS Limit - VBUS input current limit detected. (VBUSLIMIT)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

AICL Threshold - AICL threshold detected. (AICL)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

VBUS OK - Valid VBUS detected. (VBUSINOK)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

VBUS UVLO - VBUS falling UVLO detected. (VBUSUVLO)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

VBUS OVP - VBUS OVP event detected. (VBUSOVP)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Charger Topoff - Top-off threshold is detected. (TOPOFF)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Charger Done - Top-off charge timer expired. (DONE)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Charger Restart - Charger restart detected. (CHGRSTF)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Precharge Timeout - Pre-charge timer expired. (PRETMROFF)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

OTG Boost Fail - Boost fail detected due to overload. (OTGFAIL)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Typical Usage

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 13

Weak Battery - Weak battery threshold detected. (WEAKBAT)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Battery Detection - No battery detected. (NOBAT)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Fast Charge Timeout - Fast charger timer expired. (FASTTMROFF)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Discharge Current Limit - Current limit threshold detected in discharge mode. (DISLIMIT)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

VSYS Overload - VSYS overload condition debounce is detected in a valid VBUS attached.
(VSYSOLP)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

VSYS Low Threshold - VSYS falling 3.4 V detected in a valid VBUS attached. (VSYSNG)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

VSYS OK - VSYS rising 3.6 V detected in a valid VBUS attached. (VSYSOK)

There are 2 options:

Enabled: Interrupt enabled.

Disabled: Interrupt disabled.

Auto Initialization - When auto initialization is enabled, Init method will be called automatically
within PE initialization function - PE low level init().

There are 2 options:

yes

no

3 Typical Usage

Examples of typical settings and usage of BC MC32BC3770 component

Device initialization.

Reading/writing registers.

Device interrupt processing.

Device initialization.

This example shows how to handle device initialization when auto-initialization feature is disabled.

Required component setup and dependencies:

Auto initialization: no

Methods: Init

3

Typical Usage

14 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

Content of main.c:

Listing 1: Source code

void main (void)
{

BC1 TDeviceDataPtr BC1 DeviceDataPtr ;

. . .

BC1 DeviceDataPtr = BC1 Init(&UserData) ; /∗ I t i s p o s s i b l e to pass
po in t e r to your own data , which i s then s to r ed in dev i c e data s t r u c tu r e
as TUserDataPtr . ∗/

i f (BC1 DeviceDataPtr != NULL) {
/∗ I n i t i a l i z a t i o n was s u c c e s s f u l . ∗/

} e l s e {
/∗ I n i t i a l i z a t i o n was not s u c c e s s f u l . ∗/

}

. . .

TUserData ∗MyData = (TUserData ∗) (BC1 DeviceDataPtr−>UserDataPtr) ;
/∗ You can ac c e s s your data l a t e r . Exp l i c i t re type i s needed because
UserDataPtr i s j u s t typede f o f (void ∗) . ∗/

}

Reading/writing registers.

This example shows how to read/write single or multiple registers of the device.

It is important to note, that all written values are stored in structure representing device global state,
which is accessible through BC1 DeviceDataPtr pointer.

Required component setup and dependencies:

Shutdown Enabled: no

Methods: ReadRegister WriteRegister ReadBurstData WriteBurstData

Content of main.c:

Listing 2: Source code

void main (void)
{

LDD TError Error ;
u i n t 8 t S i ng l e [1] = {0} ; /∗ Var iab le f o r s i n g l e r e g i s t e r read /

wr i t e . ∗/
u i n t 8 t Burst [3] = {0 , 0 , 0} ; /∗ Var iab le f o r burst r e g i s t e r read /

wr i t e . ∗/

. . .

/∗ Reading one r e g i s t e r − f o r example INT1 r e g i s t e r . ∗/
Error = BC1 ReadRegister (BC INT1 , S i ng l e) ; /∗ S ing l e as a po in t e r .

∗/
i f (Error != ERR OK) {

/∗ something went wrong ∗/
}

. . .

/∗ Writing one r e g i s t e r − f o r example INTMSK1 r e g i s t e r . ∗/
Error = BC1 WriteRegister (BC INTMSK1, S i ng l e [0]) ; /∗ S ing l e as a

va lue . ∗/

Typical Usage

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 15

i f (Error != ERR OK) {
/∗ something went wrong ∗/

}

. . .

/∗ Reading mul t ip l e r e g i s t e r s − f o r example INT1 . . 3 r e g i s t e r s . ∗/
/∗ Write only address o f f i r s t r e g i s t e r and t o t a l amount o f

r e g i s t e r s to read . ∗/
Error = BC1 ReadBurstData (BC INT1 , Burst , 3) ; /∗ Burst as a po in t e r .

∗/
i f (Error != ERR OK) {

/∗ something went wrong ∗/
}

. . .

/∗ Writing mu l t ip l e r e g i s t e r s − f o r example INTMSK1 . . 3 r e g i s t e r s . ∗/
/∗ Write only address o f f i r s t r e g i s t e r and t o t a l amount o f

r e g i s t e r s to wr i t e . ∗/
Error = BC1 WriteBurstData (BC INTMSK1, Burst , 3) ; /∗ Burst as a

po in t e r . ∗/
i f (Error != ERR OK) {

/∗ something went wrong ∗/
}

. . .

}

Device interrupt processing.

This example shows how to setup and handle device interrupts.

There are more ways how to setup device interrupts (which internally detected event will be reflected
via interrupt pin):

By configuring these events in component properties under Interrupts.

By using SetInterrupt method.

By using WriteBurstData method to write to INTMSK1..3 registers.

Only the second possibility will be shown in this example (using WriteBurstData method is described
under Reading/writing registers.)

There are also more ways how to handle device interrupts:

By utilization of OnInterrupt event together with ReadBurstData method.

By periodical reading of INT1..3 registers using ReadBurstData method.

In all cases user is responsible for taking corrective actions and clearing interrupt flags (
ClearInterrupt).

The interrupt processing is started by reading (ReadBurstData) actual status data of internal device
events (in registers INT1..3).

Note that if there are multiple pending interrupts at the same time, the OnInterrupt event is invoked
only once and it is up to user to correctly handle all of them. Also the Interrupt pin value will toggle
only after all of the faults are cleared.

You can use BC1 SetInterrupt(intSET ALL, edsENABLED); to enable all interrupts and
BC1 ClearInterrupt(intCLEAR ALL); to clear all flags at once.

Required component setup and dependencies:

Interrupts: Enabled

INT Interrupt Pin properly set

Typical Usage

16 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

Methods: ReadBurstData SetInterrupt ClearInterrupt

Events: OnInterrupt

Content of main.c:

Listing 3: Source code

bool MyInterruptHandler () {
u i n t 8 t InterruptReg [3] ; /∗ Var iab le f o r s t o r i n g INT1 . . 3 r e g i s t e r s

va lue s . ∗/

/∗ Read ac tua l dev i c e i n t e r n a l event f l a g s . ∗/
i f (BC1 ReadBurstData (BC INT1 , InterruptReg , 3) != ERR OK) {

r e turn FALSE;
}

/∗ Take c o r r e c t i v e a c t i on s (i f needed) and c l e a r the f a u l t s − only 3
f a u l t s s e t and handled in t h i s example . ∗/

/∗ VBUSLIMIT − in r e g i s t e r INT1 . ∗/
/∗ VBUS input cur r ent l im i t detec ted . ∗/
i f (InterruptReg [0] & BC INT1 VBUSLIMIT MASK) {

/∗ Write your own code . ∗/

/∗ Clear i n t e r r up t f l a g . ∗/
Error = BC1 ClearInterrupt (intVBUSLIMIT) ;
i f (Error != ERR OK) {

r e turn FALSE;
}

}

/∗ WEAKBAT − in r e g i s t e r INT2 . ∗/
/∗ Weak batte ry th r e sho ld detec ted . ∗/
i f (InterruptReg [1] & BC INT2WEAKBATMASK) {

/∗ Write your own code . ∗/

/∗ Clear i n t e r r up t f l a g . ∗/
Error = BC1 ClearInterrupt (intWEAKBAT) ;
i f (Error != ERR OK) {

r e turn FALSE;
}

}

/∗ DISLIMIT − in r e g i s t e r INT3 . ∗/
/∗ Current l im i t th r e sho ld detec ted in d i s cha rge mode . ∗/
i f (InterruptReg [2] & BC INT3 DISLIMIT MASK) {

/∗ Write your own code . ∗/

/∗ Clear i n t e r r up t f l a g . ∗/
Error = BC1 ClearInterrupt (intDISLIMIT) ;
i f (Error != ERR OK) {

r e turn FALSE;
}

}

r e turn TRUE;
}

bool In t e r ruptF lag = FALSE;

User Types

MC32BC3770 Programming Guide, Rev. 1.0

NXP Semiconductors 17

void main (void)
{

LDD TError Error ;
bool Result ; /∗ Result o f MyInterruptHandler − TRUE i f s u c c e s s f u l l .

∗/

. . .

/∗ Set VBUSLIMIT, WEAKBAT and DISLIMIT events to be r e f l e c t e d v ia
i n t e r r up t pin . ∗/

Error = BC1 SetInterrupt (intVBUSLIMIT , edsENABLED) ;
Error |= BC1 SetInterrupt (intWEAKBAT, edsENABLED) ;
Error |= BC1 SetInterrupt (intDISLIMIT , edsENABLED) ;
i f (Error != ERR OK) {

/∗ something went wrong ∗/
}

. . .

f o r (; ;) { /∗ MAIN LOOP ∗/

. . .

/∗ Checking f l a g s e t in OnInterrupt event . ∗/
i f (In t e r ruptF lag) {

Result = MyInterruptHandler () ;
i f (! Result)

/∗ something went wrong ∗/
e l s e

In t e r ruptF lag = FALSE;
}

. . .

}
}

Content of Events.c:

Listing 4: Source code

extern u i n t 8 t In t e r ruptF lag ;

/∗ I t i s recommended that i n t e r r up t hand le r s should be as s imple as p o s s i b l e
because o f computat ional overhead . ∗/

void BC1 OnInterrupt () {
In t e r ruptF lag = TRUE;

}

4 User Types

ComponentName TDeviceDataPtr = device data pointer

TUserDataPtr = user data pointer

ComponentName TRegisterAddress = enum { regINT1, regINT2, regINT3, regINTMSK1,
regINTMSK2, regINTMSK3, regSTATUS, regCTRL, regVBUSCTRL, regCHGCTRL1,
regCHGCTRL2, regCHGCTRL3, regCHGCTRL4, regCHGCTRL5} address of register

ComponentName TEnDisState = enum { edsDISABLED, edsENABLED} enabled/disabled

ComponentName TReadWrite = enum { rwREAD, rwWRITE} read/write

4

User Types

18 NXP Semiconductors

MC32BC3770 Programming Guide, Rev. 1.0

ComponentName TChargerMode = enum { cmSHUTDOWN, cmCHARGE, cmSUSPEND,
cmBOOST OTG} enumeration of charger operational modes

ComponentName TInterrupt = enum { intTHEMREG, intTHEMSHDN, intBATOVP,
intVBUSLIMIT, intAICL, intVBUSINOK, intVBUSUVLO, intVBUSOVP, intTOPOFF,
intDONE, intCHGRSTF, intPRETMROFF, intOTGFAIL, intWEAKBAT, intNOBAT,
intFASTTMROFF, intDISLIMIT, intVSYSOLP, intVSYSNG, intVSYSOK, intSET ALL,
intCLEAR ALL} enumeration of all charger interrupts

ComponentName TAICLThreshold = enum { aicl4 3V, aicl4 4V, aicl4 5V, aicl4 6V, aicl4 7V,
aicl4 8V, aicl4 9V} enumeration of AICL thresholds

ComponentName TOTGBoost = enum { otg5 0V, otg5 1V, otg5 2V} enumeration of OTG
Boost voltages

ComponentName TBatteryRegulation = enum { br4 100V, br4 125V, br4 150V, br4 175V,
br4 200V, br4 225V, br4 250V, br4 275V, br4 300V, br4 325V, br4 350V, br4 375V, br4 400V,
br4 425V, br4 450V, br4 475V} enumeration of battery regulation voltages

ComponentName TWeakBattery = enum { wb3 00V, wb3 05V, wb3 10V, wb3 15V,
wb3 20V, wb3 25V, wb3 30V, wb3 35V, wb3 40V, wb3 45V, wb3 50V, wb3 55V, wb3 60V,
wb3 65V, wb3 70V, wb3 75V} enumeration of weak battery thresholds

ComponentName TPrechargeCurrent = enum { pc150MA, pc250MA, pc350MA, pc450MA}
enumeration of pre-charge currents

ComponentName TTopoffCurrent = enum { tc100MA, tc150MA, tc200MA, tc250MA,
tc300MA, tc350MA, tc400MA, tc450MA, tc500MA, tc550MA, tc600MA, tc650MA} enumeration
of top-off currents

ComponentName TDischargeCurrent = enum { dc0 0A, dc2 0A, dc2 5A, dc3 0A, dc3 5A,
dc4 0A, dc4 5A, dc5 0A} enumeration of discharge currents

ComponentName TFastchargeTimeout = enum { ft0 0H, ft3 5H, ft4 5H, ft5 5H}
enumeration of fast-charge timeouts

ComponentName TTopoffTimeout = enum { tt10MIN, tt20MIN, tt30MIN, tt45MIN}
enumeration of top-off timeouts

Information in this document is provided solely to enable system and software implementers to use NXP

products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any

integrated circuits based on the information in this document. NXP reserves the right to make changes without

further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular

purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and

specifically disclaims any and all liability, including without limitation, consequential or incidental damages.

"Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters, including "typicals," must be

validated for each customer application by the customer's technical experts. NXP does not convey any license

under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of

sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

How to Reach Us:

Home Page:
NXP.com

Web Support:
http://www.nxp.com/support

NXP, the NXP logo, Freescale and the Freescale logo are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. All rights reserved.

© 2016 NXP B.V.

Document Number: PEXBC3770PUG
Rev. 1.0

2/2016

http://www.nxp.com/terms-of-use.html
http://www.nxp.com/
http://www.nxp.com/support

	MC32BC3770 Programming Guide
	General Info
	Embedded Component Description
	Component API
	Events
	Methods
	Properties

	Typical Usage
	User Types

