-
P N

CodeWarrior™
Development Studio for
Freescale™ 56800/E
Digital Signal
Controllers:
DSP56F80x/DSP56F82x
Family Targeting
Manual

Revised: 20 June 2006

y
A

Freescale, the Freescalelogo, and CodeWarrior are trademarks or registered trademarks of Freescal e Corporation in the
United States and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor company. All rights reserved.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Freescale. Use of this document and related materialsis gov-
erned by thelicense agreement that accompanied the product to which thismanual pertains. Thisdocument may
be printed for non-commercial personal use only in accordance with the aforementioned license agreement. If
you do not have a copy of the license agr eement, contact your Freescalerepresentative or call 1-800-377-5416 (if
outsidethe U.S,, call +1-512-996-5300).

Freescal e reserves the right to make changes to any product described or referred to in this document without further
notice. Freescale makes no warranty, representation or guarantee regarding the merchantability or fitness of its products
for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product
described herein and specifically disclaimsany and al liability. Freescale softwareisnot authorized for and has not
been designed, tested, manufactured, or intended for use in developing applications where the failure, malfunc-
tion, or any inaccuracy of the application carries arisk of death, serious bodily injury, or damage to tangible
property, including, but not limited to, usein factory control systems, medical devices or facilities, nuclear facil-
ities, aircraft navigation or communication, emergency systems, or other applications with a similar degree of
potential hazard.

How to Contact Freescale

Corporate Headquarters Freescale Corporation
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

g |

Table of Contents

1 Introduction 13
CodeWarrior IDE 13

Freescale 56800/E Digital Signal Controllers 14

REfErenCes. 16

2 Getting Started 19
System ReqUIreMeNtS oot e 19

DSP56800 Hardware Requirements.o oo v ie i 19

Installing and Registering the CodeWarrior IDE 20

Installing DSP56800 Hardwaret s 24
UsingParallel Port e 25

Installing the PCI Command Converter, 26

3 Development Studio Overview 31
CodeWarrior IDE 31
CodeWarrior Compiler for DSP56800coiuiiiiii it 31

CodeWarrior Assembler for DSP56800ovvvvviiiin e 32

CodeWarrior Linker for DSP56800ot 32

CodeWarrior Debugger for DSP56800.o vi i 32

Metrowerks Standard Library oo 32

Development ProCESS oo it 32

Project FilesversusMakefiles. i 34

Editing Codeot e 34

CompPIliNg . ..o e 34

LiNKiNg . ..ot 36

DEDUGGING . « v vttt e 36

Viewing Preprocessor QUEPULo oot e 36

4 Tutorial 37
CodeWarrior Development Studio for Freescale 56800 Tutoria 37
CreatingaProject 37

Working withtheDebuggero 52

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 3

Table of Contents

REfErENCESo 61

5 Target Settings 63
Target SEttingS OVEINVIEOWo v vt e 63
Target SettingPanels. 63
Changing Target Settings.o i e e e e 65
Exporting and Importing Panel Optionsto XML Files. 66
Restoring Target Settings.o oo 67
CodeWarrior IDE Target SettingsPanels, 67
DSP56800-Specific Target SettingsPanels. 68
Target SEttingS. . . .o oot 68
MB56800 Targel. . .. o v o v ettt 70
C/C++Language (Conly) . ..ot e e e 72
CICH+ PreproCeSSOL. . . o v vttt e e e e et e e e 75
CICHE WarNiNGgS .« . ottt e et e e 77
M56800 Assembler 82
ELFDisassemblero 83
M56800 ProCESSOr v e ettt 86
M56800 LinKer e 88
Remote Debuggingo o 92
M56800 Target (Debugging)o oo A
Remote Debug Options oot 99

6 Processor Expert Interface 101
Processor EXpert OVErVIieW.o e 101
Processor Expert Code Generation, 102
Processor ExpertBeans. 103
Processor EXpert Menu 105
Processor EXpert Windowso 109
Bean SElector. 109
Bean INSpector.o 110
Target CPUWINAOWo 112
Memory MapWIindow.t 117
CPU TYPES OVEIVIEBW . . .ottt ettt et e e 119
Resource Meter 120

4 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Table of Contents

Installed BEaNSOVEIVIEW 120
PeripheralsUsage Inspectort 121
Processor Expert Tutorialoiiii i e 122
7 Cfor DSP56800 137
General NOtESON C. . ..ottt e 137
Number FOrmats. 137
DSP56800 Integer FOrmats.ooo it 137
DSP56800 Floating-Point Formats.coovi e 138
DSP56800 Fixed-Point Formats.o e 139
Calling Conventions, Stack Frames 139
Calling ConventionSo ottt e 139
Volatile and Non-Volatile Registerst 140
Stack Frame. 143
User Stack Allocation. 144
Sections Generated by the Compiler 149
OMR SEHINGS . -« o ettt 150
Optimizing Code. . ..ot e 151
Page O Register AsSignmentoi it 151
Array Optimizationsot e 151
Multiply and Accumulate (MAC) Optimizations. 152
Compiler or Linker Interactions.t 154
Deadstripping Unused Codeand Dataooiiiiiiienan .. 154
LinK Order. ..o 154

8 Inline Assembly Language and Intrinsic Functions 155
Working With DSP56800 Assembly Languageovovviivennnnn. 155
Inline Assembly Language Syntax for DSP56800 156
Adding Assembly Languageto C SourceCode 157
General Noteson Inline Assembly Language. 158
Creating Labelsfor M56800 Inline Assembly 158
Using Commentsin M56800 Inline Assembly. 159
Calling Assembly Language FunctionsfromCCode 159
Calling Inline Assembly Language Functions 159
Calling Stand-alone Assembly Language Functions 160

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 5

Table of Contents

Calling Functionsfrom Assembly Languagecoooon.. 161
Intrinsic Functionsfor DSP56800.t 162
AnOverview of IntrinsicFunctionsot 162
Fractional Arithmetic. i 163
MacrosUsed with INtrinSics e 163
List of Intrinsic Functions: Definitionsand Examples. 164
Absolute/Negateo 166
A 166
727 = 1= 166
O 1o = 167
Addition/Subtraction. 167
AOd . 167
D 168
Loadd. .. 169
L SUD . o 169
CONtrOl . . o 170
(0] o TR 170
L000] 0177 =T o 170
Cfixed2int. .. 171
_fixed2long 171
_fixed2short 172
Nt2fiXed. . . 172
Cdabs 173
Clong2fixed ... 174
Short2fiXed. . e 174
L0 0 174
NEIMICPY - v e v et et e e e e 175
SOy .« o et e 175
Deposit/ BEXtract.o 176
extract h o 176
eXtract ..o 177
Lodeposit_h. ..o 177
L deposit | . 178
DIVISION . .o e 178
AiV e 178

6 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Table of Contents

iV IS, 179
Multiplication/ MAC.o 179
1070 180
0TS 181

MU . 181
MU T e 182

L MaC . . 183

L MSU . . 184

L MUt 184
L MUt IS o 185
NOrmMalization 185
70) 5 12 T 186
1101 0 T 186
RouNding.o 187

L POUNG . . 187
Shiftingo 188
SNl 188
= 1 189

S 1 (N 190

I o 190

> 0 191

I 2 192
Pipeline Restrictions.o 193
9 Debugging for DSP56800 197
Using Remote ConNNeCtionst e 197
Accessing Remote Connections oo ot i i 198
Understanding Remote Connections. 200
Editing Remote Connections.t 200
Target Settingsfor Debugging oo v v it e 207
Command CoNVErter SEIVErt 207
Essential Target Settings for Command Converter Server 208
Changing the Command Converter Server Protocol to Parallel Port 208
Changing the Command Converter Server Protocol to HTI............ 210
Changing the Command Converter Server Protocol toPCI 211

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 7

Table of Contents

Setting UpaRemote Connectionoiiiiiiiii .. 211
DebuggingaRemote Target Board 214
Launching and OperatingtheDebugger, 214
Setting BreakpointSo oot 217
Setting Watchpoints.o 217
Viewing and Editing Register Values 218
Viewing X: MEemMOTY .. .o e 219
Viewing P: MemMOrY.o e 221
Load/Save MEMONY . . . oottt e e e 225
Fill MEmMOrY. . . 228
Save/ReStOre REQISIEIS oot 230
ONnCE Debugger Featurest e e e 232
Watchpointsand Breakpoints 232
Trace BUffer. 239
Usingthe 56800 Simulator e 240
Cycle/instruction Count.o 241
Memory Map.o 242
Register DetaillsWindow. e e 242
Loading a.elf Filewithout aProject. iii... 243
Using the Command Window 244
System-Level Connectt e 244
DebuggingonaComplex ScanChain, 245
SEtING UP - oot 245
JTAG Initidlization File. 247
Debugginginthe FlashMemory. i 249
FlashMemory Commands.t 249
set hfmclkd <value>........ 249
set hfm base <address> i 250
set_hfm_config base <address>............ i it 250
add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <pageSize>
<progMem> <boot> <interleaved>............................ 250
set_hfm_erase mode units|pages|al 250
set_ hfm_verify erase 1|0.... ... 251
set_hfm_verify program 1]0.......... .o 251
Setting up the Debugger for Flash Programming 251

8 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Table of Contents

UseFashConfigFile............. i i 252
Notesfor Debuggingon Hardware., 253
Flash Programming the Reset and Interrupt Vectors 254

10 Data Visualization 255
Starting DataVisudization. e 255
Data Target DialogBOXES.o o 256

MEMOrY . . . 256

REG SIS . . ottt 258

Variables 258
Graph Window Properties.o 259

11 Profiler 261
12 ELF Linker 263
Structure of Linker Command Files.ooas 263

Memory Segmentt 263

ClosureBIocks 264

SeCtionNS SEgMENt oo 265
Linker Command FileSyntax. 266

AlIGNMENt 266

Arithmetic Operations.t e 266

COMMENES 267

Deadstrip Prevention. 267

Variables, Expressionsand Integral Typest 268

FileSelection.o 270

Function Selection.o 270

ROM tOo RAM COPYiNg. . ..ot et e 271

Stack and Heapo 273

Writing DataDirectly toMemory. 273
Linker Command File Keyword Listing., 273

. (location CoUNtEr) . . . oot e 274

ADD R . 275

ALIGN 276

ALIGNALL. .. 276

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 9

Table of Contents

FORCE _ACTIVE ...t e e e 277
INCLUDE . .. e e e 277
KEEP_SECTION ...ttt e 277
MEMORY .t 277
OBUIECT . . ottt 279
REF_INCLUDEt e 279
SECTIONS . .ot 280
SIZEOF . . 281
SIZEORW ..o 281
WRITEB ... e 282
WRITEH .. 282
WRITES .. 282
WRITEW . . e e 283
Sample M56800 Linker Command File 283
13 Command-Line Tools 289
USA0B. - ittt et e e 289
ReSPONSE Rl . .o e 290
SampleBuild SCript 291
ATQUMBNES . .« . e e 201
General Command-Line Options.ovviiiii it 291
LinKer. . 302
Assembler ... 306
14 Libraries and Runtime Code 307
MSL for DSP56800. . . . oot ettt et et 307
Using MSL for DSP56800ovve et 307
Allocating Stacks and Heaps for the DSP56800. 309
Runtime Initialization 311
15 Troubleshooting 317
Troubleshooting TiPsS. . . .« oo vt 317
The Debugger Crashes or Freezes When Stepping Through a REP Statement.
318
"Can't Locate Program Entry On Start" or "Fstart.c Undefined” 318

10 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Table of Contents

When Opening a Recent Project, the CodeWarrior IDE Asks If My Target

NeedsToBeRebuilt

"Timing values not found in FLASH configuration file. Please upgrade your
configuration file. On-chip timing values will be used which may result in

programming errors”o
IDE Closes Immediately After Opening.

...... 319

Errors When Assigning Physical Addresses With The Org Directive. . . .319

The Debugger ReportsaPlug-inError,
Windows Reports a Failed ServiceStartup.
No Communication With The Target Board
Downloading Codeto DSP Hardware Fails
The CodeWarrior IDE Crashes When Running My Code
The Debugger ActsStrangelyo oo
Problems With Notebook Computers.

How to make Parallel Port Command Converter work on Windows® 2000

Machines 322

A Porting Issues 323
Converting the DSP56800 Projects from Previous Versions 323

Removing “illegal object_c on pragma directive” Warning. 324

Setting-up Debugging Connectionst 324

Using XDEF and XREF Directivesovviie i ieeenn 324

Usingthe ORG Directiveot e 324

B DSP56800x New Project Wizard 327
OV IV BV . . et e e e e e e e e 327

Page RUIES. 329

Resulting Target RUIESo e e 330

RUIENOLES. . ..o 331

DSP56800x New Project Wizard Graphical User Interface. 332

Invoking the New Project Wizard. 332

New Project Dialog BOXo oo 333

Target Pages oo 334
ProgramChoicePage 343

DataMemory Model Page 344

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 11

Table of Contents

External/Internal Memory Page

.................................. 345
FinishPage e 346
Index 349

12 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Introduction

This manual explains how to use the CodeWarrior™ Integrated Development
Environment (IDE) to develop code for the DSP56800 family of processors (DSP56F80x
and the DSP56F82x).

This chapter contains the following sections:
¢ CodeWarrior IDE on page 13

« Freescale 56800/E Digital Signal Controllers on page 14
* References on page 16

CodeWarrior IDE

The CodeWarrior IDE consists of a project manager, agraphical user interface, compilers,
linkers, a debugger, a source-code browser, and editing tools. Y ou can edit, navigate,
examine, compile, link, and debug code, within the one CodeWarrior environment. The
CodeWarrior IDE lets you configure options for code generation, debugging, and
navigation of your project.

Unlike command-line devel opment tools, the CodeWarrior IDE organizes all files related

to your project. Y ou can see your project at a glance, so organization of your source-code
filesis easy. Navigation among thosefilesis easy, too.

When you use the CodeWarrior IDE, there is no need for complicated build scripts of
makefiles. To add filesto your project or delete files from your project, you use your
mouse and keyboard, instead of tediously editing a build script.

For any project, you can create and manage several configurations for use on different
computer platforms. The platform on which you run the CodeWarrior IDE is called he
host. host, you use the CodeWarrior IDE to devel op code to target various platforms.

Note the two meanings of the term target:

« Platform Target — The operating system, processor, or microcontroller fin which/
on which your code will execute.

« Build Target — The group of settings and files that determine what your code s, as
well as control the process of compiling and linking.

The CodeWarrior IDE lets you specify multiple build targets. For example, a project can
contain one build target for debugging and another build target optimized for a particular
operating system (platform target). These build targets can share files, even though each

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 13

|
y

'
A

Introduction
Freescale 56800/E Digital Signal Controllers

build target usesits own settings. After you debug the program, the only actions necessary
to generate afinal version are selecting the project’s optimized build target and using a
single Make command.

The CodeWarrior IDE’ s extensible architecture uses plug-in compilers and linkers to
target various operating systems and microprocessors. For example, the IDE uses a GNU
tool adapter for internal calls to DSP56800 development tools.

Most features of the CodeWarrior IDE apply to several hosts, languages, and build targets.
However, each build target hasits own unique features. This manual explains the features
unique to the CodeWarrior Development Studio for Freescal e 56800.

For comprehensive information about the CodeWarrior IDE, see the CodeWarrior IDE
User’s Guide.

NOTE For the very latest information on features, fixes, and other matters, see the
CodeWarrior Release Notes, on the CodeWarrior IDE CD.

Freescale 56800/E Digital Signal Controllers

The Freescale 56800/E Digital Signal Controllers consist of two sub-families, which are
named the DSP56F80x/DSP56F82x (DSP56800) and the M C56F8xxx/DSP5685x
(DSP56800E). The DSP56800E is an enhanced version of the DSP56800.

The processors in the DSP56800 and DSP56800E sub-families are shown in Table 1.1 on
page 14.

With this product the following Targeting Manuals are included:

* Code Warrior Development Studio for Freescale 56800/E Digital Sgnal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

* Code Warrior Development Studio for Freescale 56800/E Digital Sgnal
Controllers: MC56F8xx/DSP5685x Family Targeting Manual

NOTE Pleaserefer to the Targeting Manual specific to your processor.

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio for
Freescale 56800

DSP56800 DSP56800E
DSP56F801 (60 MHz) DSP56852
DSP56F801 (80 MHz) DSP56853

14

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Introduction
Freescale 56800/E Digital Signal Controllers

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio for
Freescale 56800 (continued)

DSP56800 DSP56800E

DSP56F802 DSP56854

DSP56F803 DSP56855

DSP56F805 DSP56857

DSP56F807 DSP56858

DSP56F826 MC56F8013

DSP56F827 MC56F8014

MC56F8023

MC56F8025

MC56F8036

MC56F8037

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F8322

MC56F8323

MC56F8335

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 15

'
A

Introduction
References

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio for
Freescale 56800 (continued)

DSP56800 DSP56800E

MC56F8345

MC56F8346

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

References

¢ Your CodeWarrior IDE includes these manuals:

CodeWarrior™ |DE User’s Guide

CodeWarrior™ Development Sudio IDE 5.6 Windows® Automation Guide

CodeWarrior™ Development Sudio for Freescale 56800/E Digital Signal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

CodeWarrior™ Development Sudio for Freescale 56800/E Digital Signal
Controllers: MC56F8xx/DSP5685x Family Targeting Manual

CodeWarrior ™ Builds Tools Reference for Freescale 56800/E Digital Signal
Controllers

CodeWarrior™ Development Sudio IDE 5.5 User’s Guide Profiler Supplement

CodeWarrior™ Development Sudio for Freescale™ DSP56800x Embedded
Systems Assembler Manual

Codewarrior™ USB TAP Users Guide

Freescale™ 56800 Family |EEE - 754 Compliant Floating-Point Library User
Manual

Freescale™ 56800E Family |EEE - 754 Compliant Floating-Point Library User
Manual

CodeWarrior™ Development Sudio HTI Host Target Interface (for Once™/
JTAG Communication) User’s Manual

DSP56800 to DSP56800E Porting Guide, Freescale Semiconductors, Inc.

16 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Introduction
References

— 56F807 to 56F8300/56F8100 Porting User Guide, Freescale Semiconductors

— Tolearn more about the DSP56800E processor, refer to the Freescale manual,

« To learn more about the DSP56800 processor, refer to the following manuals:

Inc.

DSP56800E Family Manual.

DSP56800 Family Manual. Freescale Semiconductors, Inc.

DSP56F801 Hardware User Manual.

DSP56F803 Hardware User Manual
DSP56F805 Hardware User Manual

DSP56F807 Hardware User Manual.
DSP56F826 Hardware User Manual.
DSP56F827 Hardware User Manual.
« For more information on the various command converters supported by the

Freescale Semiconductors, Inc.
. Freescale Semiconductors, Inc.
. Freescale Semiconductors, Inc.
Freescale Semiconductors, Inc.
Freescale Semiconductors, Inc.
Freescale Semiconductors, Inc.

CodeWarrior Development Studio for Freescal e 56800 (DSP56F80x/DSP56F82x),
refer to the following manuals:

— Suite56™ Ethernet Command Converter User’s Manual, Freescale

Semiconductors, Inc.

— Suite56™ PCl Command Converter User’s Manual, Freescale Semiconductors,

— Suite56™ Parallel Port Command Converter User’s Manual, Freescale

To download electronic copies of these manuals or order printed versions, visit:

Inc.

Semiconductors, Inc.

http://www.freescale.com/

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

17

wr
4\

Introduction
References

18 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Getting Started

This chapter explains how to install and run the CodeWarrior™ IDE on your Wi ndows®
operating system. This chapter also explains how to connect hardware for each of the
communications protocols supported by the CodeWarrior debugger.

This chapter contains the following sections:
¢ System Requirements on page 19

« Ingtalling and Registering the CodeWarrior IDE on page 20
¢ |nstalling DSP56800 Hardware on page 24

System Requirements

Table 2.1 on page 19 lists system requirements for installing and using the CodeWarrior
IDE for DSP56800.

Table2.1 Requirementsfor the CodeWarrior IDE

Category Requirement
Host Computer PC or compatible host computer with 1.0-GHz Pentium®-compatible
Hardware processor, 512 megabytes of RAM, and a CD-ROM drive

Operating System Microsoft® Windows® 2000/XP

Hard Drive 2.0 gigabytes of free space, plus space for user projects and source code

DSP56800 Har dwar e Requirements

Y ou can use various DSP56800 hardware configurations with the CodeéWarrior I DE.
Table 2.2 on page 20 lists these configurations.

NOTE Each protocol in Table 2.2 on page 20 is selected from the M 56800 T ar get
Settings panel.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 19

'
A

Getting Started
Installing and Registering the CodeWarrior IDE

Table 2.2 DSP56800 Har dwar e Requirements

Target Connection | Boards Hardware Provided With Command
Supported Converter

Parallel port on-board All 56800 targets e 25-pin parallel-port interface

Command Converter cable

¢ Power supply, 9-12 VVdc, 500 mA
with 2.5 mm receptacle (inside

positive)
External Parallel Port All 56800 targets * Freescale Parallel Port Command
Command Converter Converter
e 25-pin paralel-port interface
cable
PCI Command All 56800 targets e 25-pin OCD ribbon cable

Converter » Target Interface Module

e JTAG 14-pinribbon interface
cable

Installing and Registering the CodeWarrior IDE

Follow these steps:
1. Toinstal the CodeWarrior software:

a. Insert the CodeWarrior CD into the CD-ROM drive — the welcome screen
appears.

NOTE If the Auto Install is disabled, run the program Setup . exe in the root
directory of the CD.

b. Click Launch CodeWarrior Setup — theinstall wizard displays welcome page.
Follow the wizard instructions, accepting all the default settings.

d. At the prompt to check for updates, click the Y es button — the CodeWarrior
updater opens.

2. To check for updates:

NOTE If the updater already has Internet connection settings, you may proceed
directly to substep f.

20

56800/E Digital Sgnal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Getting Started
Installing and Registering the CodeWarrior IDE

=)

- o a0

@«

i
j-

k.

Click the Settings button — the Updater Settings dialog box appears.

Click the L oad Settings button — the updater loads settings from your Windows
control panel.

Modify the settings, as appropriate.

If necessary, enter the proxy username and the password.

Click the Save button — the Updater Settings dialog box disappears.
In the updater screen, click the Check for Updates button.

If updates are available, follow the on-screen instructions to download the updates
to your computer.

When you seethe message, “ Y our version ... isup to date”, click the OK button —
the message box closes.

Click the updater Close button — the installation resumes.
At the prompt to restart the computer, select the Y es option button.
Click the Finish button — the computer restarts, completing installation.

3. Toregister the CodeWarrior software:
a. Sdect Start> Programs>Freescale CodeWarrior> CW for DSC56800

b.

R8.0>CodeWarrior IDE.
Select Help > Register Product — the Freescale registration page appears.

Figure 2.1 Freescale Registration Page

C.
d.

Freescale = CodeWarrior Development Tools = Licensing and Registration
Licensing and Registration

CodeWarrior Product Licensing and Registration
To register and activate your neswly-installed Codeiarrior product, followe the steps below.

1. BRegister your Codeiarrior product
2. Authorize your registered Codelarrior procuct

For more information shout licensing and registration your Codediarrior product, please read our Licensing and
Registration Frequently Asked Guestions (FAG).

Click item number 1 — Register your CodeWarrior product.
Login or Register on the Freescale site.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 21

Getting Started
Installing and Registering the CodeWarrior IDE

Freaszcale = Login

Enter your ID and password to log in: To access your personal homepage and your profile, log
into our site now.

I [10hnsmith |

Passward [sesssses [»>]

Forgotten Password?

New to Freescale Semiconductor? REGISTER HOW IO

If this iz your first log in, you will be required to reviews and agree to the Extranst
Access Agreement before access is granted. Please remember that Freescale
Semiconductor takes the protection of confidential information seriously. By clicking
"Redgister Mow" below you signify your intent to comply with the confidentislity
restrictions and other terms contained in the Extranet Access Agreement.

Registered Cust % have to
Freescale Semiconductor

pecial services offered by

Request Information and Assistance (Helpline)

Attend Technical Learning Center courses

Subszcribe to receive updates for Products and Interests

Download special Software packages

Access Secure Application information and services

e. Enter your Registration Code and click the Continue button.

Registration and Licensing System

This online registration system will register your Metrowerks product and maintenance and technical support agreement. If
you have guestions regarding registration or licensing click here,

Step 1 of 3: Enter your Registration code.

ttems marked with an ~ are required.

Product or Support Registration Code.

Registration Code” AsAsA-BBBBB-CCCCC-DDDDD|

- Use the numbers 0 and 1, not the letters "0" and "I" (uppercase ")

Need to Register an Evaluation?

NOTE Inthe next screen you will be asked to confirm your Registration code by
clicking Continue a second time. After registration is complete, you will

22 56800/E Digital Sgnal Controllers: DSP56F80x/DSP56F82x Targeting Manual

h o
g |

Getting Started
Installing and Registering the CodeWarrior IDE

f.

receive an email with the activation code and directions on how to activate
your product.

Click the Activation link in the email that you receive.

g. Login to the Freescae site.
h. Enter the License Authorization Code into the field.

j

Licensing Activation System

This online licensing system will license your Metrowerks product. If you have guestions regarding registration or licensing,
click here.

Step 1 of 3: Enter your Host ID and License Activation Code
ttems marked with an ~ are required.

Enter License Authorization Code™
AAATT-1ATZ3-AATAA 23AA-A5678

Node Lock ID for license™

Select Mode Lock ID Type Erter Mode Lock ID
& Ethernet Lddress \‘_) 01AD4ETBDART
" Solaris HostiD @

' Dongle I \?)
€ Disk D @

[o cioions

For the default selection: Ethernet Address — determine your ethernet address:
Launch a Command Prompt window

Enter ipconfig /all

Copy the Physical Addressvalue of the first Ethernet adapter listed

Paste valueinto the "Node Lock ID for license" text box (remove spaces or dashes)
Click Continue Activation.

k. Click Continue to confirm the Host ID and License Authorization Code.

The website will display your license keys along with instructions on installing the
license. Copy and paste these keys into the top of the "license.dat" file located at the root
of your CodeWarrior installation directory. Y our product should now befully licensed and
operational.

Table 2.3 on page 24 lists the directories created during full installation.

To test your system, follow the instructions of the next section to create a project.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 23

y
A

Getting Started
Installing DSP56800 Hardware

Table 2.3 Installation Directories, CodeWarrior | DE for DSP56800

Directory Contents

(CodeWarrior_Examples) Target-specific projects and code.

(Helper Apps) Applications such as cwspawn.exe and cvs.exe.

bin The CodeWarrior | DE application and associated plug-
in tools.

ccs Command converter server executable files and related
support files.

DSP 56800x_EABI_Support Default files used by the CodeWariior IDE for the

DSP56800 stationery.

DSP56800x_EABI_Tools Driversto the CCS and command line tools, plus IDE
default files for the DSP56800x stationery.

Freescale_Documentation Documentation specific to the Freescale DSP56800
series.

Help Core IDE and target-specific help files. (Access help
files through the Help menu or F1 key.)

License Licensing information.

Lint Support for PCLint.

M56800 Support Initialization files, Metrowerks Standard Library
(MSL) and Runtime Library.

M56800x Support Profiler libraries.

ProcessorExpert Files for the Processor Expert.

Release_Notes Release notes for the CodeWarrior IDE and each tool.

Stationery Templates for creating DSP56800 projects. Each

template pertains to a specific debugging protocol.

| nstalling DSP56800 Har dwar e

This section explains how to connect the DSP568xx hardware to your computer. Parallel
port connections are explained in the Kit Installation Guide for each individual
DSP568xxXEVM board. All descriptions assume the default jumper settings, as explained
in the Hardware Manual for your product, unless otherwise stated.

24 56800/E Digital Sgnal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Getting Started
Installing DSP56800 Hardware

NOTE You can usethe DSP56800 Simulator provided with the CodeWarrior IDE
instead of installing additional DSP568xx hardware. However, the DSP56800
Simulator is acore simulator and will not give you product specific features
(such as peripherals, specialized memory maps, etc.)

Using Parallel Port

Connect the parallel port cable to your DSP568xXEVM board as described below.

Connecting viathe on board Parallel Command
Converter on DSP568xXxEVM Board

1. Connect the 25-pin male connector at one end of aparallel port cable to the 25-pin
femal e connector on your computer (Figure 2.2 on page 25).

2. Connect the 25-pin female connector at the other end of the parallel port cable to the
25-pin male connector on the DSP568XXEVM.

3. Plug the power supply into awall socket.
4. Connect the power supply to the power connector on the DSP568xXEVM board.
The green LED next to the power connector lights up.

Figure2.2 Connecting Parallel Port Cableto DSP568xXxEVM Board

Host
. Computer
DSP568xxEVM 25-pin Parallel Port Cable P
Parallel Port
Connector
Power Supply

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 25

3
4

'
A

Getting Started
Installing DSP56800 Hardware

Connecting via the Suite56™ Parallel Port Command
Converter Module and DSP568xxEVM Board

1

Enable the JTAG port.

See the Hardware Manual or Kit Installation Guide for the jumpers that you need to
change from the default configuration for your particular hardware.

Connect the 25-pin male connector at one end of aparallel port cable to the 25-pin
femal e connector on your computer (Figure 2.3 on page 26).

Figure2.3 Connecting Parallel Port Cableto suite56™™ Paralld Command Converter Module

and DSP568xxEVM Board

Host
Computer

A 25-pin Parallel
14-pin Ribbon
DSPS68XXEVM | Cable Port Cable

|

Suite56™ Parallel
Command Converter

Module Parallel Port
Connector

Connect the 25-pin female connector at the other end of the parallel port cable to the
25-pin male connector on the Suite56™ Parallel Port Command Converter module.

/
JTAG / OnCE port
Power Supply

Locate the 14-pin ribbon cable hanging from the Suite56™ Parallel Port Command
Converter module. Connect the 14-pin female connector of the ribbon cable to the 14-
pin JTAG male connector on the DSP568xXEVM board.

Ensure that the red stripe on the ribbon cable correspondsto pin 1 on the
DSP568xxXEVM card.

5. Plug the power supply into awall socket.
6. Connect the power supply to the power connector on the DSP568xXEVM board.

The green LED next to the power connector lights up.

Installing the PCI Command Converter

Connect the PCI Command Converter and your Freescale DSP568xXEVM board to your
computer as described below.

26

56800/E Digital Sgnal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Getting Started
Installing DSP56800 Hardware

Installing the PCI Command Converter
Install the PCI Command Converter hardware:

1. Placeyour PClI Command Converter card on a static-proof mat.
2. Shut down your compuiter.

WARNING! Do not touch the components and connectors on the board or inside
your computer without first being grounded. Otherwise, you could
damage the hardware with static discharge.

3. Locate an empty card slot in your computer.
4. Insert the PCI Command Converter card in the empty card slot.

NOTE Oneend of the 25-pin cable has a 24-pin female connector. A ground cableis
retrofitted to awire of the 25-pin cable at the same end of the cable. The
ground cable is crimped to a female disconnect terminal.

5. Connect the 24-pin femal e connector at one end of the 25-pin cable to the 24-pin
female connector on the PCI Command Converter card (Figure 2.4 on page 29).

6. Connect the female disconnect terminal of the ground cable to the socket protruding
from the PCI Command Converter card in your computer.

7. Connect the 25-pin female connector at the other end of the 25-pin cable to the 25-pin
male connector on the OCDemon™™ Wi ggler.

Procedurefor Manual Installation of PCI Command
Converter Drivers

Windows® 2000/ Windows® XP

Therequired files are located in the following directory:

\Program Files\Freescale\CodeWarrior\ccs\drivers\pci

1. Copy the * . inf fileto /winnt/inf.

Copy themac_mot . sys file to /winnt/system32/drivers.

Copy the windrvr . sys fileto /winnt/system32/drivers.

Install the * . inf file by right-clicking on this file and selecting the Install button.

o > 0D

From the command prompt, change to the following directory:
\Program Files\Freescale\CodeWarrior\ccs\drivers\pci

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 27

3
4

y
A

Getting Started

Installing DSP56800 Hardware

6.

7.
8.

Type the following:

wdreg -file mac_mot remove
wdreg remove

wdreg install

wdreg -file mac_mot install
Shut down your computer.

Turn on your computer.

Connecting the PCI Command Converter tothe
DSP568xxEVM Board

To connect the PCI Command Converter to your DSP568xXEVM board, follow the steps
explained in “Installing the PCI Command Converter” on page 27 before performing the
stepsin this section.

Connect the PCI Command Converter to your DSP568xXEVM board:

1

Enable the JTAG port.
See the Hardware Manual or Kit Installation Guide for the jumpers that you need
change from the default configuration for your particular hardware.

Locate the 14-pin ribbon cable hanging from the ocDemon™ wi ggler. Connect the
14-pin femal e connector of the ribbon cable to the 14-pin JTAG male connector on the
DSP568xxXEVM board.

Ensure that the red stripe on the ribbon cable correspondsto pin 1 on the
DSP568xXEVM card.

Plug the power supply into awall socket.

4. Connect the power supply to the power connector on the DSP568xXEVM board.

5. The green LED next to the power connector lights up. The board is now connected.

28

56800/E Digital Sgnal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Getting Started
Installing DSP56800 Hardware

Figure2.4 Attaching PCI Command Converter to DSP568xxEVM Board

14-pin Ribbon Host
Cable Ground Cable Computer
DSP568xxEVM)
25-pin Cable
———
——
———
OCDemon™
JTAG / OnCE port Wiggler
"~ PCI Command
Power Supply Converter Card

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 29

wr
4\

Getting Started
Installing DSP56800 Hardware

30 56800/E Digital Sgnal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Development Studio
Overview

This chapter is for new users of the CodeWarrior™ IDE. This chapter contains the
following sections:

¢ CodeWarrior IDE on page 31

« Development Process on page 32

If you are an experienced CodeWarrior IDE user, you will recognize the look and feel of
the user interface. However, it is necessary that you become familiar with the DSP56800
runtime software environment.

CodeWarrior IDE

The CodeWarrior IDE |ets you create software applications. It controls the project
manager, the source-code editor, the class browser, the compiler, linker, and the debugger.

In the project manager, you can organize all the files and settings related to your project so
that you can see your project at aglance and easily navigate among your source-codefiles.
The CodeWarrior IDE automatically manages build dependencies.

A project can have multiple build targets. A build target is a separate build (with its own
settings) that uses some or all of thefilesin the project. For example, you can have both a
debug version and arelease version of your software as separate build targets within the
same project.

The CodeWarrior IDE has an extensible architecture that uses plug-in compilers and
linkers to target various operating systems and microprocessors. The CodeWarrior CD
includes a C compiler for the DSP56800 family of processors. Other CodeWarrior
software packages include C, C++, and Java compilers for Win32, Linux, and other
hardware and software combinations.

CodeWarrior Compiler for DSP56800

The CodeWarrior compiler for DSP56800 is an ANSI-compliant C compiler. This
compiler is based on the same compiler architecture used in all CodeWarrior C compilers.
When it is used together with the CodeWarrior linker for DSP56800, you can generate
DSP56800 applications and libraries.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 31

3
4

'
A

Development Studio Overview
Development Process

NOTE The CodeWarrior compiler for DSP56800 does not support C++.

CodeWarrior Assembler for DSP56800

The CodeWarrior assembler for DSP56800 has an easy-to-use syntax. The CodeWarrior
IDE assemblesany filewith an . asm extension in the project. For information on features
and syntax of the assembiler, refer to the Code Warrior Development Sudio Freescale
DSP56800x Embedded Systems Assembler Manual. For opcode listings, refer to the
DSP56800 Family Manual.

CodeWarrior Linker for DSP56800

The CodeWarrior linker for Freescale DSP56800 isin an Executable and Linker Format
(ELF) linker. Thislinker lets you generate an ELF file (the default output file format) for
your application and generate an S-record output file for your application.

CodeWarrior Debugger for DSP56800

The CodeWarrior debugger controls your program’s execution and lets you see what
happens internally as your program runs. Use the debugger to find problemsin your
program’s execution.

The debugger can execute your program one statement at atime and suspend execution
when control reaches a specified point. When the debugger stops a program, you can view
the chain of function calls, examine and change the values of variables, inspect the
contents of the processor’ s registers and see the contents of memory.

Metrowerks Standard Library

The Metrowerks Standard Library (MSL) isaset of standard C libraries for usein
developing DSP56800 applications. These libraries are ANSI-compliant. Accessthe
library sources for usein your projects. These libraries are a subset of the same ones used
for all platform targets, but the libraries have been customized and the runtime adapted for
use in DSP56800 devel opment.

Development Process

The CodeWarrior IDE helps you manage your development work more effectively than
you can with atraditional command-line environment. Figure 3.1 on page 33 depicts
application development using the IDE.

32

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Development Studio Overview
Development Process

Figure 3.1 CodeWarrior IDE Application Development

‘Create/Manage ProjectH—
| Manage Files (1)

| Specify Target

| Settings @)

| | Edit Files (3)

| Compile Project

yes

Link Project

Debug Project

yes

Build (Make) Project —— 4

9

— @

Notes:

(1) Use any combination: stationery
(template) files, library files,

or your own source files.

(2) Compiler, linker, debugger
settings; target specification;
optimizations.

(3) Edit source and resource files.
(4) Possible corrections:

adding a file, changing

settings, or editing a file.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 33

3
4

y
A

Development Studio Overview
Development Process

Project Files versus Makefiles

The CodeWarrior IDE project is anal ogous to a collection of makefiles because you can
have multiple builds in the same project. For example, you can have one project that
maintains both a debug version and arel ease version of your code. Y ou can build either or
both of these versions as you wish. Different builds within a single project are called
“build targets.”

The CodeWarrior IDE uses the project window to list the filesin aproject. A project can
contain various types of files, such as source-code files and libraries.

You can easily add or remove files from a project. Y ou can assign filesto one or more
build targets within the same project. These assignments let you easily manage files
common to multiple build targets.

The CodeWarrior |DE automatically handles the dependencies between files, and it tracks
which files have changed since the last build. When you rebuild a project, only those files
that have changed are recompiled.

The CodeWarrior IDE also stores compiler and linker settings for each build target. You
can modify these settings by changing the optionsin the target settings panels of the
CodeWarrior IDE or by using #pragma statements in your code.

Editing Code

The CodeWarrior | DE features atext editor. It handles text filesin MS-DOS®/Windows,®
and UNIX formats.

To open and edit a source-codefile, or any other editablefilein a project, use either of the
following options:
« Double-click thefile in the project window.

¢ Click thefile. Thefileishighlighted. Drag the file to the Freescale CodeWarrior IDE
window.

The editor window has excellent navigational features that allow you switch between
related files, locate any particular function, mark any location within afile, or goto a
specific line of code.

Compiling
To compile any source-code filein the current build target, select the source-code filein

the project window and then select Project > Compile from the menu bar of the
Freescale CodeWarrior window.

To compile all the filesin the current build target that were modified since they were last
compiled, select Project >Bring Up To Date from the menu bar of the Freescale
CodeWarrior window.

34

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Development Studio Overview
Development Process

In UNIX and other command-line environments, object code compiled from a source-code
fileisstored in abinary file (a . o or . obj file). On Windows targets, the CodeWarrior
IDE stores and manages object filesinternaly in the data folder.

A proprietary compiler architectureis at the heart of the CodeéWarrior IDE. This
architecture handles multiple languages and platform targets. Front-end language
compilers generate an intermediate representation (IR) of syntactically correct source
code. The R is memory-resident and language-independent. Back-end compilers generate
code from the IR for specific platform targets. The CodeWarrior |DE manages the whole

process (Figure 3.2 on page 35).

Figure 3.2 CodeWarrior Build System

Front-end Language ‘ Project Manager

C/C++, Java
Object Pascal

Intermediate h - h
Representation Compller) [Assemb]er)
Back-end CodeGen

|M|Ps, PPC, VR, x86 N \
68K, DSP, SH, VY8xx [CodeWarrior Linker)

Asaresult of this architecture, the CodeWarrior IDE uses the same front-end compiler to
support multiple back-end platform targets. In some cases, the same back-end compiler
can generate code from avariety of languages. Users derive significant benefit from this
architecture. For example, an advance in the C/C++ front-end compiler means an
immediate advance in all code generation. Optimizations in the IR mean that any new

code generator is highly optimized. Targeting a new processor does not require compiler-
related changes in the source code, so porting is much simpler.

All compilers are built as plug-in modules. The compiler and linker components are
modular plug-ins. Freescale publishes this API, allowing devel opersto create custom or
proprietary tools. For more information, go to Freescale Support at this URL :

http://www.Freescal e.com/MW/Support

Once the compiler generates object code, the plug-in linker generates the final executable
file. Multiple linkers are avail able for some platform targets to support different object-
code formats.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 35

3
4

y
A

Development Studio Overview
Development Process

Linking
Tolink object code into afinal binary file, select Project > Make from the menu bar

of the Freescale CodeWarrior window. The M ake command brings the active project
up to date, then links the resulting object code into afinal output file.

The CodeWarrior IDE controls the linker through the use of linker command files. There
isno need to specify alist of object files. The Project Manager tracks all the object files
automatically. Y ou can also use the Project Manager to specify link order.

The Target>M56800 Target settings panel lets you set the name of the final output
file.

Debugging

To debug a project, select Project > Debug from the menu bar of the Freescale
CodeWarrior window.

Viewing Preprocessor Output

To view preprocessor output, select the file in the project window and select Project >
Preprocess from the menu bar of the Freescale CodeWarrior window. The
CodeWarrior IDE displays anew window that shows you what your file looks like after
going through the preprocessor.

Y ou can use thisfeature to track down bugs caused by macro expansion or other subtleties
of the preprocessor.

36

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Tutorial

This chapter gives you a quick start at learning how to use the CodeWarrior™
Development Studio for Freescale™ DSC56800/E for the DSP56F80x/D SP56F82x
Controllers.

CodeWarrior Development Studio for
Freescale 56800 Tutorial

This chapter provides atour of the software development environment of the CodeWarrior
Development Studio for Freescale 56800. Y ou will learn how to use the tools to program
for DSP56800 boards.

Thistutoria introduces you to many important elements of the CodeWarrior IDE that you
will use when programming for DSP56800. However, the tutorial does not cover or
explain al the features of the IDE.

You will learn how to create, compile, and link code that runs on DSP56800 systems.

If you are aready familiar with the CodeWarrior software, read through the stepsin this
tutorial anyway. Y ou will encounter the DSP56800 compiler and linker for the first time,
aswell as other features specific to DSP56800 application development.

Thistutoria isdivided into segments. In each segment, you will perform steps that
introduce you to the critical elements of the CodeWarrior IDE programming environment.
The segments are:

¢ Creating a Project on page 37
Working with the Debugger on page 52

le

Creating a Project

Y ou can create a DSP56800x project by using the:
« DSP56800x new project stationery wizard
« DSP56800x EABI stationery

To create a new project with the DSP56800x new project wizard, please see the sub-
section “ Creating a New Project with the DSP56800x New Stationery Project Wizard.”

To create a new project with the DSP56800x EABI stationery, please see the sub-section
“Creating a New Project with the DSP56800x EABI Stationery.”

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 37

3
4

4
A

Tutorial

CodeWarrior Development Studio for Freescale 56800 Tutorial

Creating a New Project with the DSP56800x New
Stationery Project Wizard

In this section of thetutorial, you work with the CodeWarrior IDE to create a project. with
the DSP56800x New Stationery Project Wizard.

To create a project:
1. From the menu bar of the Freescale CodeWarrior window, select File>New.
The New dialog box appears.

Figure 4.1 New Dialog Box

New
Project | Fie | Obiect |

48 DSP56800x EABI Stationery Project name:
ﬁ DSPR6E00E: EVM Examples Stationeny]thEJ:nroject
48 DSP56800« New Project Wizard
8 Empty Project Location:
S Makefile Importer Wizard o m—ry -
| Ay _projects'the_project Set...
ﬁ Processor Expert Examples Stationery J L_I
‘i Processor Expert Stationery 1 Add Targets to Project:

Project:

0K Cancel

2. Select DSP56800x New Project Wizard (Figure 4.2 on page 39).
3. Inthe Project Name text box, type the project name. For example, the_project.

4. Inthe L ocation text box, type the location where you want to save this project or
choose the default location.

5. Click OK. The DSP56800x New Project Wizard — Target dialog box (Figure
4.2 on page 39) appears.

38

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.2 DSP56800x New Project Wizard — Target Dialog Box

DSP56800x New Project Wizard - Target

Select family and then processor for this project...

DSP56800: Famiby
DSPSEFE0x
DSPoEFE2:
DSP568R
MCH6F801x
MC56F802x
MC56F 803
MCEEFE 1o
MC56F 8 Zo:
Simulataors

Processar
DSPRE800_simulatar
DSP5EB00E_simulator

Meod = Cancel

6. Select thetarget board and processor

a. Sdect thefamily, such as Simulators, from the DSP56800x Family list.
b. Select the processor, such as DSP56800_simulator, from the Processor s list.
7. Click Next. The DSP56800x New Project Wizard — Program Choice diaog box

(Figure 4.3 on page 40) appears.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

39

4
A

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.3 DSP56800x New Project Wizard — Program Choice Dialog Box

DSP56800x New Project Wizard - Program Choice

Select the starter main{) program for this project...

Program

{* Simple C

™ Simple Mixed Assembly and C
" Simple Assembly

" Blank C

< Back Mendt = Cancel

8. Sdlect the example main[] program for this project, such as Simple C.
9. Click Next. The DSP56800x New Project Wizard — Finish dialog box () appears.

40 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.4 DSP56800x New Project Wizard — Finish Dialog Box

DSP56800x New Project Wizard - Finish

Click Finish to create the project. ..

< Back | Finish | Cancel

10. Click Finish to create the new project.

NOTE For more details of the DSP56800x New Project Stationery Wizard, please see
“DSP56800x New Project Wizard” ..

Creating a New Project with the DSP56800x EABI
Stationery

In this section of the tutorial, you work with the CodeWarrior IDE to create a project with
the DSP56800x EABI Stationery.

You will start using a project stationery. A project stationery file is atemplate that
describes a pre-built project, complete with source-code files, libraries, and all the
appropriate compiler and linker settings. When you create a project based on stationery,
the stationery is duplicated and becomes the basis of your new project.

Y ou can create customized project stationery aswell. Project stationery is a useful feature
of the CodeWarrior IDE.

Practice working with a sample project as follows:

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 41

y
A

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

1. Launch the CodeWarrior IDE.

The Freescale CodeWarrior window appears with a menu bar at the top.
To create anew project from project stationery:

1. From the menu bar of the Freescale CodeWarrior window, select File > New.

The New window appears with alist of optionsin the Project tab (Figure 4.5 on
page 42).

Figure 4.5 New Window

MNew

Proiect | File | Object |

8 DSP56800« EABI Stationery Project name:
@ DSPREE0I: EVM Examples Stationery Isarnple
@ DSPREE00: New Project Wizard
‘i Empty Project Location:
2 Makefile Importer Wizard ———ry
E Processor prpert Examples Stationeny IC' Vny_projects'sample “Se{;]
48 Processor Expert Stationeny I A
Project:
| [~

oK | Cancel

2. Sdect DSP56800x EABI Stationery inthe Project tab.

NOTE Tocreateanew project without using stationery, select Empty Project inthe
New window. This option lets you create a project from scratch. If you are a
beginner, you should not try to use an Empty Project asit will not have any
of the necessary target settings, startup files, or libraries included that are
specific to the DSP56800 that allow you to quickly get up and running. Thisis
why we include the DSP56800x_EABI Stationery, asit takes care of these
tasks and minimizes the startup effort that is required.

42 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

3. Typeanameinthe Project name field (in thistutorial use “sample”’ asthe name).

The CodeWarrior IDE adds the . mcp extension automatically to your file when the
project issaved. The .mcp extension allows any user to recognize thefileasa
Freescale CodeWarrior project file. In thistutoria, the file name is sample . mcp.

4. Set the location for the project.
If you want to change the default location, perform the following steps:

a Inthe New window, click the Set button. The Create New Project dialog
box (Figure 4.6 on page 43) appears:

Figure 4.6 Create New Project Dialog Box

Create New Project...
Save in: |) my_projects ﬂ =5 Ef-

[CiMewProjl
[Ctest
[)testa
[testh
[ithe_project
[Zthe_projects

Save as type: |F‘n:ujeu:1 Files {".mcp) j Cancel

[v Create Folder

b. Usethe standard navigation controlsin the Create New Project dialog box to
specify the path where you want the project file to be saved.

c. Click the Save button. The CodeWarrior IDE closesthe Create New Project
dialog box.

If you want to use the default location for your project, go to step 5.

In either case, the CodeWarrior IDE creates a folder with the same name as your
project in the directory you select.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 43

y
A

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

NOTE Enablethe Create Folder checkbox inthe Create New Project filediaog
box to create a new folder for your project in the selected location.

5. Click OK inthe New window.

The New Project window appears (Figure 4.7 on page 44) with alist of board-
specific project stationeries.

Figure 4.7 New Project Window

Mew Project

Select project stationery:

H Project Stationery
= DSPREF30: -
v DSPSEFS01_BOMHz

- DSPREFS01_B0MHz

- DSPREFE02

- DSPREFE03

- DSPREFE05

- Blank

Simple_fsm
Simple_fzm_and_C
< imple

=N ol md et el T o]

o[e[e[e[

|
k. | Cancel |

6. Select DSP56F80x asthe Project Stationery for your target.

Click the hierarchical control for the Project Stationery to expand the hierarchical
view. Then, select DSP56F805 and select Simple_C language from the hierarchical
tree.

7. Click OK inthe New Project window.

A project window appears (Figure 4.8 on page 45). This window displays all the files
and libraries that are part of the project stationery.

44 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.8 CodeWarrior Project Window

Target Run Project
Seitings | Aphspector
sample.mcp ‘ /
| % exdemal memory j B @ =
Fil A A Debug
Synchronize ez] Link Elrder] Talgets] Make
Modfication e T Fie Code | Data |40
% [#{] code] 0« « =
w [#{_] DSPSEF205 suppart n 0+ + =

The project window is the central location from which you control development. Y ou can
use this window to:

Add or remove sourcefiles

Add libraries of code

Compile code

Generate debugging information and much more

Confirm that the Filestab is selected in the project window (it should be selected by
default).

Click the hierarchical controlsnextto‘code’ and ‘support’ toexpand and
view their contents (Figure 4.9 on page 46).

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 45

y
A

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.9 CodeWarrior Project Window with Expanded Hierarchical Folders

=l
sample _mcp l
Iﬂ external memary j B v ¢ % >
Files I Lirk. Elrderl Targetsl
“ | Fie | Code | Data I-B.I |=
Elaccu:le 169 168 « = =
..... Yrain.c 169 168 »
Elasuppn:nrt B2 . |
=<3 D5PEEFE0e 212 2=« =
Elastartup a0 0« « =
P B DSPSEFA05_ini.. an 0+ « =
Elalnterrupt vectars 132 2+ s =
¢ i-fR DSPSEFBOE v, 132 2 e » =
¢ fR DSPSEFE0S_v.. néa néa |
Eﬁllnker command files 0 0 = =l
----- - DSPEEFE05_ex.. nta nia =
----- “ Bl DSPREFA05_x.. ha h#a =
HE3 b 5K K s+ oo
-8 FPSEE00 It 2724 2 =
- MS5L CBE800.LIb G083 3248 . =

8. View aSourceFile

a Double-click the main.c filein the project window, the source code in thefileis
displayed in a CodeWarrior source-code editor window (Figure 4.10 on page 47).

NOTE For more details about the CodeWarrior editor and its features, see the IDE
User’s Guide.

46 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.10 CodeWarrior Editor Window

O EE— -0l
L IR | W - o' - Path |EI:\my_proiec:ts_folder\sample\main.c: <
| g
<% metrowerks =amnple code *®7
#include <stdio h:
#include <stdlib . h:>
#define SIZE 10
prototypes
wvolid swap (int *a, int =hb):
void print_arraviint arr[]. int length):
int main{woid)
int arr[SIZE] = {4.6.7.1.2.3.4.12.4 .5}
int 1.3:
Ling 1 Coll | |4] | vz

9. Examine the build target settings.

The CodeWarrior IDE allows your project to have severa different configurations
contained within the project. These are called “build targets.” When you work with a
new CodeWarrior project, you will want to examine your build target settings.

a. To specify abuild target, double-click the Settings icon in the Project window
(see Figure 4.8 on page 45 for location of icons in the Project window).
The Target Settings window {external RAM (mode 3) Settings in
sample} appears (Figure 4.11 on page 48).

Thiswindow contains severa different panels. In Figure 4.11 on page 48, the
Target Settings Panels isdisplayed in the Target Settings window.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual a7

y
A

Tutorial

CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.11 Target Settings Window

@ external memory Settings ﬂll

IE Target Settings Panels IE Target Seftings
= Target I

Target Settings
- Access Paths) -
. Build Extras Linker:[MEEE00 Linker
- File Mappings Pre-linker:lNone
- Source Trees .
. MEEB00 Target Post-llnker:lNone
= Language Settings Output Directony:

- CAC++ Language Chooze... |

- CAC++ Preprocessor {Projectioutput

- CAC++ Wamings | ﬂl
- MBEB00 Assembler
=~ Code Generation

- ELF Disaszembler
- MBE300 Processor
- [Global Optimizations
= Linker

o MBEE00 Lirker |

Target Name: Iextemal memory

K1 {EN{EY

[V Save project entries using relative paths

Factory Settings Frewert Import Panel... | Export Panel... |

QK | Cancel | Apply |

b. If itisnot already visible, click Target from the tree structure in the Target
Settings Panels pane to expand the hierarchical view.

c. Click Target Settings from the hierarchical tree.

The Target Settings panel appears which displays all the options related to
selecting a build target.

NOTE By selecting M56800 Linker from the Linker list box, the CodeWarrior
IDE recognizes that the code you are writing is intended for DSP56800
processors, and popul ates the Target Settings Panel with the DSP56800
specific panels.

The Target Settings window isthe location for all options related to the build
target. Every panel and option is explained in the CodeWarrior documentation. Most
of the general settings panels are explained in the IDE User Guide. DSP56800 target-
specific panels are explained in this targeting manual.

10. Set build target options:

a IntheTarget Settings Panels panel, click Target in the tree structure to
expand the hierarchical view.

b. Click M56800 Target from the hierarchical tree.
The M56800 Target panel appears (Figure 4.12 on page 49).

48

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.12 M56800 Target Settings Panel

@ external memory Settings ﬂﬂ
E Target Settings Panel: |E MBES00 T arget
= Target 15 _ _

. Target Settings Froject Type:lAplecatlon j

AC_CESS Paths Application Info

- Build Extras)

- File Mappings Output File Mame Iextemal_memory.elf

- Source Trees

[Language Settings

- C/C++ Language
- CAC++ Preprocessor
- CAC++ Wamings

- MBEB00 Assembler
=~ Code Generation

- ELF Disazzembler
- MBEB00 Processor
- [alobal Optimizations
= Lirker

o MBEE00 Linker |

Factary Settings Fevert Impart Panel... | Expart Panel... |

QK Cancel | Apply |

11. Set linker options.

a IntheTarget Settings Panels pane, click Linker in the tree structure to
expand the hierarchical view.

b. Click M56800 Linker from the hierarchical tree.
The M56800 Linker panel appears (Figure 4.13 on page 50).

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 49

y
A

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.13 M56800 Linker Settings

IE Target Settings Panels |E MEES00 Linker
(= Target = . .
- Target Settings [V Generate Symbalic Info I Disable Deadstripping
- Aocess Paths W Stare Full Path Names V¥ Generate ELF Symbal Table
B_u'ld Extn.as ¥ Generate Lirk Map [T Suppress wWaring Messages
- File Mappings I ListU d Obiect
- Source Trees sLEnLse IECE
- MB5ES00 T arget ™ Show Transitive Closure
= Language Settings [Generate 5-Fecord File
E::EH Ii;anguage I~ St By ddress Max Record Length: 252
++ Preprocessor)
/D Warings ™| Generate Byte Addresses EOL Character: Dos -
- MBEBO0 Azzembler _ —
[= Code Generation o Entey Point Finit_M5EB05_
- ELF Dizazzembler Force Active Symbals:
- MBEB00 Processor
- [alobal Dptimizations
= Lirker
O ASER00 Lirker

Factory Settings | Frewert | Import Panel... | E xport Panel... |

QK | Cancel | Apply |

12. Examine the default settings and select the options according to your requirements.
Close the Target window when you are finished by clicking the OK button.

13. Verify debugging information is generated.

For the debugger to work, it needs certain information from the CodeWarrior IDE so
that it can connect object code to source code. Y ou must instruct the CodeWarrior IDE
to produce this information.

Thereis a debug-related column in the project window (Figure 4.14 on page 51).
Every file, for which the IDE generates debugging information, has adot in the Debug
column. To enable symbolic information for afile, click the Debug column next to the
file. A dot appears confirming that debugging information is generated for that file.

50 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.14 Turning on Debugging Per File

==l

sample _mcp l

Ilﬂ external memary j B % @ 5(>

Files I Link Drderl Targetsl

¢ | File | Code | Data #0|e€ |-

¥ EE3 code 0 Oe o ==
¢ @ il O+ « =
¥ EHE3 support a 0= « =
% [=E3D5PEEFE0S 0 0= « =
W 23 startup 0 0« « =
w . fl DSPSEFE05_init.c 0 0 « =
W 3 inkermpt wectars 0 0+ « =
W oM DEPEEFE0G_vectar_pRAk. asm a 0 « =
o[DSPSEFS05_vector_pROM.asm nia n'a =l
W EH23 linker command files 0 o s =
W -f DSPEEF805_external_mem_linker.cmd nta n'a =l
-l DSPSEFS05_s<ROM-2RaM_linker.crmd néa n'a =l
¥ 0 I =
L 0 0 =
W 0 0 =

Debug Column

14. Compile the code using either of the following options:

 From the menu bar of the Freescale CodeWarrior window, select Project >
Make.

* In the project window, click the Make icon.

The above step updates all files that need to be compiled and re-linked in the project.
The IDE tracks these dependencies automatically.

NOTE TheMakecommand in the menu bar of the Freescale CodeWarrior window
compiles selected files, not al changed files. The Bring Up To Date
command in the menu bar compiles all changed files, but does not link the
project into an executable.

When you select the Make command, the IDE compiles all of the code. This may take
some time as the IDE locates the files, opens them, and generates the object code.
When the compiler compl etes the task, the linker creates an executable from the
objects. Y ou can see the compiler’s progress in the project window and in the toolbar.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 51

A 4
4\

Tutorial

CodeWarrior Development Studio for Freescale 56800 Tutorial

Editing the Contents of a Project

To change the contents of a project:
1. Add sourcefilesto the project.

Most stationery projects contain source files that act as placeholders. Replace these
placehol ders with your own files.

To add files, use one of the following options:

¢ From the menu bar of the Freescale CodeWarrior window, select Project > Add
Files.

¢ Drag files from the desktop or Windows Explorer to the project window.
To removefiles:
a. Sdect thefilesin the project window that you want to delete.
b. PresstheBackspace or Delete key.
2. Edit codein the sourcefiles.

Use the IDE’ s source-code editor to modify the content of a source-code file. To open
afilefor editing, use either of the following options:

« Double-click thefile in the project window.
» Select the file in the project window and press Enter.
Oncethefileis open, you can use all of the editor’ s features to work with your code.

Y ou have now been introduced to the major components of CodeWarrior Devel opment
Studio for Freescale 56800, except for the debugger. Y ou are now familiar with the project
manager, source code editor, and settings panels.

Working with the Debugger

In this section, you will explore the CodeWarrior debugger.
Thistutorial assumesthat you have aready started the CodeéWarrior IDE and have opened
asample project.

NOTE CodeWarrior IDE automatically enables the debugger and sets debugger-
related settings within the project.

1. Accessthe Target Settings window (Figure 4.12 on page 49).
2. Set debugger options.

a IntheTarget Settings Panels pane, click Debugger inthetree structure
to expand the hierarchical view.

52

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

b. Click M56800 Target Settings from the hierarchical tree
The M56800 Target Settings panel appears (Figure 4.15 on page 53).

Figure 4.15 Selecting Debugger Settings

E Target Settings Fanels ||E MEES00 T arget Settings
= Language Settings ;I
- C/C++ Language [... IV Always reset on download
i CAC++ Preprocessor
- CAC++ Wamings ™ Use Flash Config File I Ehoose... I
o MBEB00 Assembler
B :Eode Generation Breakpoint mode: |Aut0matic: vi
i ELF Disassembler
i ME6800 Frocessar [~ Auto-clear previous hardware breakpoint
“e Global Optimizations
= Linker ¥ Initialize OMR For prograr memory
o MEES00 Linker
= ;Edltm Frogram memory mode: |Extemal vl
e Custom Kepwords
= Debugger

i Diebugger Settings

- Remote Debugging Frocessor: |DSP58F805 vI

800 Target Set.

o Remote Debug Opt... »

Factory Settingsl Frewert | Import Panel.... | Export Panel... |

Ok | Cancel | Apply |

3. Set protocol specific options:
¢ Always reset on download

Select this option to reset the board every time you download code to the board. If
unchecked, the board is reset only before theinitia download.

NOTE Thisoptionisnot displayed if you select Simulator from the Pr otocol
menu.

« Breakpoint Mode
From the pull-down menu, select Software.
« Initialize OMR for Program Memory
Enable OMR For Program Memory checkbox and select External memory.
4. Debug the project by using either of the following options:
» From the Freescale CodeWarrior window, select Project > Debug.
* Click the Debug button in the project window.

This command instructs the IDE to compile and link the project. An ELF fileis
created in the process. ELF isthe file format created by the CodeWarrior linker for

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 53

A 4
4\

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

DSP56800. The ELF file contains the information required by the debugger and
prepared by the IDE. When you debug the project on DSP hardware, the debugger
displays the following message:

Resetting hardware. Please wait.

This reset step occurs automatically only once per debugging session. To reset the
boards manually, pressthe Reset button on your board. Next, the debugger displays
this message:

Download external memory.elf

When the download to the board is complete, the IDE displays the Program window
(external_memory .elf in sample) shown in Figure 4.16 on page 55.

NOTE Source codeisshown only for files that are in the project folder or that have
been added to the project in the project manager, and for which the IDE has
created debug information. Y ou must navigate the file system in order to locate
sources that are outside the project folder and not in the project manager, such
aslibrary sourcefiles.

54 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.16 Program Window

Kill Step Over

Step Into
Step Out

Break

Run

=10l x|

i, ext rna ‘me aor .elf

s ExOOEBEE

E Stack || | [§e Variables: &l | Walue | Location =i
init_MBEE05_ Bl 0x3221 w3221 j
i sies P
i 55 MRS
~ ~
-

|E Source: Chmy_projects_foldertsampletmain.c

A4 prototypes
wold swap (int *a, int =*b):
void print_array(int arr[]. int length):

1o

int main{void)

»
int arr[SIZE] = {4.6.7.1.2.3.4.12 4 5};
int 1i.3:

printf (" “n nsn===s===================================
printf{" Are wou ready to be a DSP Warrior?- 5
B T e e R T R L R R R R T R T R R T R TR AT

. Line 24 Coll | Souce M4] |

5. Navigate through your code.
The Program window has three panes:

e Stack pane
The Stack pane shows the function calling stack.

¢ Variablespane
The Variables pane displays local variables.

* Source pane
The Sour ce panel displays source or assembly code.

The toolbar at the top of the Program window has buttons that allows you access to
the execution commands in the Debug menu.

6. Set breakpoints.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 55

4
A

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

a. Scroll through the code in the Sour ce pane of the Program window until you
come acrossthemain () function.

b. Click thegray dashin thefar left-hand column of the window, next to thefirst line

of codeinthemain () function. A red dot appears (Figure 4.17 on page 56),
confirming you have set your breakpoint.

Figure 4.17 Breakpoint in the Program Window

TE
PEx a0 ORE
IEStack =i} @ Variahles: Al | Walue | Location (=]
init_M56805_ - [H- an 0x3221 Ox3221 -
[5185 MRS
i Bh iMRE
| =
A4

|E Source: C:vmy_projects foldertsampletmain.c

A7 prototypes
void swap (int *a, int *b);
void print_arraviint arr[]., int length);

s =

Breaprim int main{wvoid)} J
Setting —Pte »{
= int arr[SIZE] = {4.6.7.1.2.3.4.12.4.5};

nt 1.5
printii"inininscssscssssccennsosnssnssccos s nna s
printf{" Are you ready to be a DSP Warrior?-n"):
Drimtf("======S==s=====foc-==-mmoo-mmsmmmooo-mmswphn)

{4 Line 24 Col1 | Souce SRl | LI_L

NOTE Toremove the breakpoint, click the red dot. The red dot disappears.

7. View and edit register values.

8. Registers are platform-specific. Different chip architectures have different registers.

a From the menu bar of the Freescale CodeWarrior window, select View >
Registers.

Expand the General Pur pose Register s tree control to view theregistersasin
Figure 4.18 on page 57, or double-click on General Pur pose Register sto view the
registers as in Figure 4.19 on page 58.

56 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.18 General Purpose Registers for DSP56800

JS=IEY
B Register [alue
- is&800 Simulator [
- external_memory.elT
= .
- General PUrpose Registers
A Ox 0000000000
- Al Qeoooo
-oAl Qeoooo
- A2 [equla]
- B Qe=00a000aooog
- BO Qeoooo
- Bl Qeoooo
- B2 [equla]
- X0 Qeoooo bz
- Qe00a000aoo
S 1] Qeoooo
S Qeoooo
- RO Qeoooo
- R1 O=z221lE
- B2 Q2002
- B3 Q2002
- M Qeoooo
- Mol 0=FFFF
- 5P 0x321E
- PiC Q=00s0 ;l
- IPR Qeoooo 5

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 57

y
A

Tutorial

CodeWarrior Development Studio for Freescale 56800 Tutorial

Figure 4.19 General Purpose Registers Window

_iBix]
external_rmemnany. elf []

A 00000000000 OMR. 0O=0103 ;I
Al Ox0ooo HwS O=0000
Al Ox0ooo LiZ O=000l1
A2 Ox0a0 LA O=01&D
E 00000000000 PCRO Q=0000
EO Ox0ooo FZR1 O=0z200
El Ox0ooo MRO C=0000
EBZ Ox0a0 MR1 O=0000
=0 Ox0o0o MR2 O=0000
N Ox000o0o0o0 MR3 O=0000
"0 Ox0ooo MR.4 C=0000
1 Ox000o MRS O=0000
RO 0000 MR& O=0000
Rl Ox221E MEF O=0000
F.2 Oxz20o0z MRS O=0000
R3 0z 00z MRS Ox0000
M 0000 MR10 C=0000
MOl O=FFFF MR11 Q0000
=1 Ox321E MR1z2 O=0000
PC 0Ox00S0 MR13 Ox0000
IFR O=0000 MR.14 O=0000
BCZR O=0000 MR1E O=<221B

SR Ox0114
’:I
S

b. To edit valuesin the register window, double-click aregister value. Change the
value as you wish.

9. View Data X:Memory.
All variables reside at a specific memory address determined at runtime.

a. To view the memory address range of avariable, select Data > View Memory
from the menu bar of the Freescale CodeWarrior window.

TIP If Data> View Memory is greyed out, make sure that you have the
Program window as the highlighted window and that you either have the

cursor in the Sour ce pane or have a function selected in the Stack pane.

The Memory window appears (Figure 4.20 on page 59).

58

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

b. LocatethePage list box at the bottom of the View Memory window. Select X
Memory from the Page list box.

Figure 4.20 View X:Memory Window

{ mexternal_memory.elf Memory 1 - | Ellil

Display: |2000) View: [Faw data =l
R Address Hew: 00001C04:00002C04 Bxcii
00002000 4C10 0000 0400 0600 0700 L - A
00002006 | (0100 0200 0300 0400 OC00 0400 - - =]

aooozong Q500 0AQ0 QADD DADD 2000 2000 e e e = =
aooozolz 2000 2000 2000 2000 2000 2000 = = = = = =
oooozols 2000 3000 3000 32000 2000 32000 = = = = = =
O00o0z01E 2000 3000 3000 32000 2000 32000 = = = = = =
aooozozd4 2000 2000 2000 2000 2000 2000 = = = = = =
aooozoza (12000 2000 2000 2000 2000 2000 = = = = = =

oooozo30 3000 3000 3000 3000 2000 2000 = = = = = = -
00002036 0A00 0000 2000 2000 4100 7200 A
aooozozc EE00 2000 7300 &F00 FEOO 2000 = ¥ ooou
aooozo4gz F200 500 €100 400 72300 2000 r e ady
ooo02043 F400 6F00 2000 6200 &500 2000 t o h e

00002 04E 6100 2000 4400 5300 5000 2000 a o s P -
aooozocd EFO0 100 7200 7200 300 &F00 W a r r i o ot

Word Size: |1 g vl Page: |>< kemany "I v

10. Enter the memory addressin the Display field.
Enter a hexadecimal addressin standard C hex notation, for example, 0x100.

The window displays the contents of X: memory.

If you are using the EVM hardware, type the address, 0x2000 inthe Display text
field and press Enter. Y ou see the memory starting at that location. Thisis the
beginning of the . data section. The memory address location for . data section (or
any other section) are set through a combination of the Memory Segment on page 263
and Sections Segment on page 265 of the linker command file. Note that you see both
the hexadecimal and ASCII values for X: memory. The contents of this window are
editable as well.

11. View Program P:Memory.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 59

3
4

y
A

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

a. To view the memory address range of avariable, select Data > View Memory
from the menu bar of the Freescale CodeWarrior window.

TIP If Data> View Memory is greyed out, make sure that you have the
Program window as the highlighted window and that you either have the
cursor in the Sour ce pane or have a function selected in the Stack pane.

The Memory window appears (Figure 4.21 on page 60).

b. Locatethe Page list box at the bottom of the View Memory. Select P
Memory from the Page list box.

c. Using the View list box, you have the option to view four types of P.Memory:
* Raw Data
¢ Disassembly
* Source
¢ Mixed
d. Enter the memory addressin the Display field.
Enter a hexadecimal addressin standard C hex notation, for example, 0x1000.
Figure 4.21 on page 60 shows Raw Data.

Figure 4.21 View P:Memory Window

=T
Display: |0:x1000 iews: |Fiaw data =l
[f&ddress | [JHex DODOOC04:000071C04 [2sci
oooo1oo00 F4FF 2545 23BE SEAZ 2ARD 2842 - 5 2 U g i
oooo100s FE30 FRBE 24E2 370F 1FFA 40EQ g T
oooo100c S2B0O F250 FRBO 145E O2AF F2AS i
ooooiolz 1400 FOBA 40E0 S2BL FOBEO 5174 - -2 o
oooo1o01s F330 F3BE 1lAAF FIED 3164 2330 =« = .« 1 3 1
oo0o101E 3020 03A3 38E8 BE4A 1400 3944 o - 8 e
oooo1oz4 33BE FAAZ FOBA FIEL 83B0 4364 3 Z [
oooo10zA 5331 F3BS 8781 OBSF FEE4 CEFO
oooolo3o0 FAFF 0074 FES& CEDO FAFF FEEGS L L él
inininink BnieNa TR CALD OQon SO A0 g2 Qn |

Word Size:l‘l E vI FPage: IF' b ernary vI v

12. Run the debugger.
Use either of the following options:

60 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

a. Select Project > Run.
b. Click the Run icon in thetoolbar of the Program window.

In this simple example, the debugger will halt at a debug instruction after printing out
messages to the console window. This debug instruction is the portion of the startup
code which handles the program’ s exit.

13. Quit the application.

From the menu bar of the Freescale CodeWarrior window, select Debug > Kill.
This stops the code execution and quits debugging.

Use either of the following options:
a Select Debug > Kill
b. Click theKill icon in the toolbar of the Program window.

Thiswill stop code execution and close the Program window if the project is
running. In this case, it will simply close the Program window, aswe are
currently halted.

References

Y ou have completed the tutorial and used the basic elements of the CodeWarrior
Development Studio for Freescale 56800.

Refer to the IDE User Guide to learn more about the features available to you.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 61

wr
4\

Tutorial
CodeWarrior Development Studio for Freescale 56800 Tutorial

62 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Target Settings

Each build target in a CodeWarrior™ project has its own settings. This chapter explains
the target settings panels for DSP56800 software development. The settings that you
select affect the DSP56800 compiler, linker, assembler, and debugger.

This chapter contains the following sections:
o Target Settings Overview on page 63

¢ CodeWarrior IDE Target Settings Panels on page 67
« DSP56800-Specific Target Settings Panels on page 68

Target Settings Overview

The target settings control:
e Compiler options
¢ Linker options
« Assembler options
« Debugger options
¢ Error and warning messages

When you create a project using stationery, the build targets, which are part of the
stationery, already include default target settings. Y ou can use those default target settings
(if the settings are appropriate), or you can change them.

NOTE Usethe DSP56800 project stationery when you create a new project.

Target Setting Panels
Table 5.1 on page 64 lists the target settings panels:

¢ Linksidentify the panels specific to DSP56800 projects. Click the link to go to the
explanation of that pandl.

¢ The Use column explains the purpose of generic IDE panels that also can apply to
DSP56800 projects. For explanations of these panels, see the IDE User Guide.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 63

y
A

Target Settings
Target Settings Overview

Table 5.1 Target Setting Panels

page 68

Group Panel Name Use
Target Target Settings on

Access Paths

Selects the paths that the IDE
searches to find files of your project.
Types include absolute and project-
relative.

Build Extras Sets options for building a project,
including using a third-party
debugger.

File Mappings Associates a filename extension,

such as .c, with a plug-in compiler.

Source Trees

Defines project -specific source trees
(root paths) for your project.

M56800 Target on
page 70

Language Settings

C/C++ Language (C

only) on page 72

C/C++ Preprocessor on

page 75

C/C++ Warnings on
page 77

M56800 Assembler on
page 82

Code Generation

ELF Disassembler on
page 83

M56800 Processor on
page 86

Global Optimization

Configures how the compiler
optimizes code.

Linker

M56800 Linker on
page 88

64 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
Target Settings Overview

Table 5.1 Target Setting Panels (continued)

Group Panel Name Use

Editor Custom Keywords Changes colors for different types of
text.

Debugger Debugger Settings Specifies settings for the

CodeWarrior debugger.
Remote Debugging on

page 92

M56800 Target
(Debugging) on page 94

Remote Debug
Options on page 99

Changing Target Settings
To change target settings:
1. Select Edit > Target Name Settings.
Target isthe name of the current build target in the CodeWarrior project.

After you select this menu item, the CodeWarrior IDE displaysthe Target
Settings window (Figure 5.1 on page 66).

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 65

y
A

Target Settings
Target Settings Overview

Figure 5.1 Target Settings Window

IE Target Settings Panel: IE T arget Settings

[Target =

S T arget S ettings T arget Mame: |simulator
- Access Paths

- Build Extras Linker:{M5EG00 Linker

- File Mappings Pre-linker:lNone
- Source Trees

- M5E800 Target Pastiinker:{None

Leflefled

- C/C++ Language

- C/C++ Preprocessor [{Project foutput

= Language Settings Output Directary:
- CAC++ Warnings ’7

Choose... |
Clear |

- MEE300 Azzembler
= Code Generation =
- ELF Disaszembler
- MBEB00 Processor
- Global Optimizations
= Linker

‘o MEG300 Lirker |

[T Save project entries uzing relative paths

Factom Settings | Revert

Impoart Panel... | Export Panel... I

Ok

Cancel | Apply I

Theleft sideof the Target Settings window containsalist of target settings panels

that apply to the current build target.
2. Toview the Target Settings panel:

Click on the name of the Target Settings panel inthe Target Settings panels

list on the Ieft side of the Target Settings window.

The CodeWarrior IDE displays the target settings panel that you selected.

3. Change the settings in the panel.
4. Click OK.

Exporting and Importing Panel Options to

XML Files

The CodeWarrior IDE can export options for the current settings panel to an Extensible
Markup Language (XML) file or import options for the current settings panel from a

previously saved XML file.

Exporting Panel Options to XML File

1. Click the Export Panel button.

2. Assign anametothe XML file and save thefile in the desired location.

66 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
CodeWarrior IDE Target Settings Panels

Importing Panel Options from XML File

1. Click the Import Panel button.
2. Locatethe XML file to where you saved the options for the current settings panel.
3. Openthefileto import the options.

Saving New Target Settings in Stationery

To create stationery files with new target settings:
1. Create your new project from an existing stationery.

2. Change the target settings in your new project for any or al of the build targetsin the
project.

3. Savethe new project in the Stationery folder.

Restoring Target Settings

After you change settings in an existing project, you can restore the previous settings by
using any of the following methods:

 To restore the previous settings, click Revert at the bottom of the Target
Settings window.

« To restore the settings to the factory defaults, click Factory Settings at the
bottom of the window.

CodeWarrior IDE Target Settings Panels

Table 5.2 on page 68 lists and explains the CodeWarrior I DE target settings panels that
can apply to DSP56800.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 67

y
A

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.2 Code Warrior IDE Target Settings Panels

Target Settings
Panels

Description

Access Paths

Use this panel to select the paths that the

CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and
project-relative.

See IDE User Guide.

Build Extras Use this panel to set options that affect the way the
CodeWarrior IDE builds a project, including the use of a
third-party debugger.

See IDE User Guide.
File Mappings Use this panel to associate a file name extension, such

as.c, with a plug-in compiler.

See IDE User Guide.

Source Trees

Use this panel to define project-specific source trees (root
paths) for use in your projects.

See IDE User Guide.

Custom Keywords

Use this panel to change the colors that the
CodeWarrior IDE uses for different types of text.

See IDE User Guide.

Global Optimizations

Use this panel to configure how the compiler optimizes the
object code.

See IDE User Guide.

Debugger Settings

Use this panel to specify settings for the CodeWarrior
debugger.

DSP56800-Specific Target Settings Panels

This section explains individual settings on DSP56800-specific target settings panels.

Target Settings

The Target Settings panel (Figure 5.2 on page 69), |ets you set the name of your build
target, aswell asthe linker and post-linker plug-ins to be used with the build target. By

68 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

selecting alinker, you are specifying which family of processorsto use. The other
available panelsin the Target Settings window change to reflect your choice.

Because the linker choice affects the visibility of other related panels, you must first set
your build target before you can specify other options, like compiler and linker settings.

Figure 5.2 Target Settings Panel

lE T arget Settings

Target Mame: Isimulatu:ur

Linker:!MEEBDD Linker

Pre-linker:INune

Leflefle]

P'u:ust-linker:lN.:.ne

- Dutput Directany:

Chooze... |
Clear |

i{F'ru:uieu:t}u:uutput

[Save project entries using relative paths

Target Name

Usethe Target Name field to set or change the name of a build target. When you use
the Targets view in the project window, you see the name entered in the Target
Name field.

The name you specify hereis not the name of your fina output file. It isinstead aname for
your personal use that you assign to the build target. Y ou specify the name of the final
output filein the Output File Name field of the M56800 Target panel.

Linker

Select alinker from theitems listed in the Linker menu.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 69

3
4

y
A

Target Settings
DSP56800-Specific Target Settings Panels

For DSP56800 projects, you must select the M56800 Linker. The selected linker
defines the build targets. After you select alinker, only the panels appropriate for your
build target (in this case, DSP56800) are available.

Pre-Linker

Some build targets have pre-linkers that perform additional work, such as data-format
conversion, before the final executable fileis built. CodeWarrior Devel opment Studio for
Freescale 56800 does not require a pre-linker, so set the Pre-Linker menuto None.

Post-Linker

Some build targets have post-linkers that perform additional work, such as data-format
conversion, on the fina executable file. CodeWarrior Development Studio for Freescale
56800 does not require a post-linker, so set the Post-Linker menu set to None.

Output Directory

Thisfield shows the directory to which the IDE saves the executable file that is built from
the current project. The default output directory is the same directory in which the project
fileislocated. If you want to save the executable file to adifferent directory, click the
Choose. To erase the contents of thisfield, click Clear.

M56800 Target

The M 56800 Target panel (Figure 5.3 on page 71) instructs the compiler and linker about
the environment in which they are working, such as available memory and stack size. This
panel isonly available when the current build target uses the M56800 Linker.

70

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.3 M56800 Target Panel

@ external memory Settings ﬂﬂ
B Target Settings Panels lE MEES00 T arget
= Target | : —

- Target Gettings Project Type: |Appllcatlon _vJ

- Access Paths Application

- Build Extrag)

- File Mappings Dutput File Name |extemal_mem0r_l,l.elf

= La
- C/C++ Language
- C/C++ Preprocessor
- CAC++ Warnings
- MEEE00 Azsembler
= Code Generation =
- ELF Disassembler
- MBE200 Processor
- Global Optirizations
[= Linkar
e MBBE00 Linker -

Fa-:torySettingsl Heyert Impart Panel... | Expart Panel... |

kK | Cancel | Apply |

Theitemsin the M56800 Target pand are:

Project Type

The Project Type menu determines the kind of project you are creating. The available
project types are Application and Library.

Use this menu to select the project type that reflects the kind of project you are building
(Figure 5.3 on page 71).

Output File Name

The Output File Name field specifies the name of the executable file or library to
create. Thisfileis also used by the CodeWarrior debugger. By convention, application
names must end with the extension “ . e1 £” (without the quotes), and library names must
end with the extension “.1ib” (without the quotes).

NOTE When building alibrary, ensure that you use the extension“ . 1ib,” asthisis
the default file-mapping entry for libraries.

If you wish to change an extension, you must add a file-mapping entry in the File
Mappings settings panel.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 71

y
A

Target Settings
DSP56800-Specific Target Settings Panels

C/C++ Language (C only)

Use the C/C++ Language (C Only) pand (Figure 5.4 on page 72) to specify C language
features. Table 5.3 on page 73 explains the elements of this panel that apply to the

processor, which supports only the C language.

Figure 5.4 C/C++ Language Panel (C only)

|E C/C++ Language [C only]

™| Force C++ Compilation
[T 150 C++ Template Farser
[T | Uze Instance b anager
[T Enable C++ Exceptions
™ Enable BTTI

™| Enable bool Support

™| Enable wehar b Suppart
™| EC++ Compatibity fade

[P ||:|ff j

Irlife Depth:lgmart j
[Autcdrline
[” Bottom-up Inlining

I~ AMSI Shrict

[T AMSI Kewwords Only

[~ E=pand Trigraphs

[” Legacy for-scoping

¥ Fequire Function Prototypes

™| Enable 359 Extensions
™| Enable GEE Extensions

[~ Erums Always Int
[Use Unzsigned Chars

[Poal Stings
¥ Reuse Stings

NOTE Alwaysdisable the following optionw, which do not apply to the DSP56800
compiler: Legacy for-scoping and Pool Strings

72

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.3 C/C++ Language (C Only) Panel Elements

Element

Purpose

Comments

IPA list box

Specifies Interprocedural Analysis
(IPA):

Off — IPA is disabled

File — inlining is deferred to the end
of the file processing

Program — Inlining is deferred until
all files within the program are
processed.

When the Program option is
selected the Disable
Deadstripping option on the
linker preference panel must
be enabled.

Inline Depth
list box

Together with the ANSI Keyword
Only checkbox, specifies whether to
inline functions:

Don't Inline — do not inline any

Smart — inline small functions to a
depth of 2 to 4

1 to 8 — Always inline functions to
the number’s depth

Always inline — inline all functions,
regardless of depth

If you call an inline function, the
compiler inserts the function
code, instead of issuing calling
instructions. Inline functions
execute faster, as there is no
call. But overall code may be
larger if function code is
repeated in several places.

Auto-Inline
checkbox

Checked — Compiler selects the
functions to inline

Clear — Compiler does not select
functions for inlining

To check whether automatic
inlining is in effect, use the
__option(auto_inline)
command.

Bottom-up
Inlining
checkbox

Checked — For a chain of function
calls, the compiler begins inlining
with the last function.

Clear — Compiler does not do
bottom-up inlining.

To check whether bottom-up
inlining is in effect, use the
__option(inline_bottom_up)
command.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 73

y
A

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.3 C/C++ Language (C Only) Panel Elements (continued)

Element Purpose Comments
ANSI Strict Checked — Disables CodeWarrior Extensions are C++-style
checkbox compiler extensions to C comments, unnamed

arguments in function
definitions, # not and argument
in macros, identifier after
#endif, typecasted pointers as
Ivalues, converting pointers to
same-size types, arrays of zero
length in structures, and the D
constant suffix.

Clear — Permits CodeWarrior
compiler extensions to C

To check whether ANSI
strictness is in effect, use the
__option(ANSI_strict)

command.
ANSI Checked — Does not permit Additional keywords are asm
Keywords additional keywords of CodeWarrior (use the compiler built-in
Only C. assembler) and inline (lets you
checkbox Clear — Does permit additional Qe_clare a C function to be
inline).
keywords.
To check whether this keyword
restriction is in effect, use the
__option(only_std_keywords)
command.
Expand Checked — C Compiler ignores Many common character
Trigraphs trigraph characters. constants resemble trigraph
checkbox sequences, especially on the

Clear — C Compiler does not allow
trigraph characters, per strict ANSI/
ISO standards.

Mac OS. This extension lets
you use these constants
without including escape
characters.

NOTE: If this option is on, be
careful about initializing strings
or multi-character constants
that include question marks.

To check whether this option is
on. use the __option(trigraphs)
command.

74 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.3 C/C++ Language (C Only) Panel Elements (continued)

Element

Purpose

Comments

Require
Function
Prototypes
checkbox

Checked — Compiler does not allow
functions that do not have
prototypes.

Clear — Compiler allows functions
without prototypes.

This option helps prevent
errors from calling a function
before its declaration or
definition.

To check whether this option is
in effect, use the
__option(require_prototypes)
command.

Enums
Always Int
checkbox

Checked — Restricts all
enumerators to the size of a singed
int.

Clear — Compiler converts
unsigned int enumerators to signed
int, then chooses an
accommodating data type, char to
long int.

To check whether this
restriction is in effect, use the
__option(enumalwasysint)
command.

Use
Unsigned
Chars
checkbox

Checked — Compiler treats a char
declaration as an unsigned char
declaration.

Clear — Compiler treats char and
unsigned char declarations
differently.

Some libraries were compiled
without this option. Selecting
this option may make your
code incompatible with such
libraries.

To check whether this option is
in effect, use the
__option(unsigned_char)
command.

Reuse
Strings
checkbox

Checked — Compiler stores only
one copy of identical string literals,
saving memory space.

Clear — Compiler stores each string
literal.

If you select this option,
changing one of the strings
affects them all.

C/C++ Preprocessor

The C/C++ Preprocessor (Figure 5.5 on page 76) panel controls how the preprocessor
interprets source code. By modifying the settings on this panel, you can control how the
preprocessor translates source code into preprocessed code.

More specifically, the C/C++ Preprocessor panel provides an editable text field that can be
used to #define macros, set #pragmas, or #include prefix files.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 75

'
A

Target Settings

DSP56800-Specific Target Settings Panels

Figure 5.5 The C/C++ Preprocessor Panel

H C/C++ Preprocessor

Prefis Tt

Source encoding: |ASC) -

Preproceszsing O ptions
[v Emit file changes [Show full paths

[v Emit #pragmas [Eeep comments

[Usze prefis text in precompiled headers

[Usze Hine
[Keep whitespace

Table 5.4 on page 76 providesinformation about the options in this panel.

Table 5.4 C/C++ Language Preprocessor Elements

Element

Purpose

Comments

Source
encoding

Allows you to specify the default
encoding of source files. Multibyte
and Unicode source text is
supported.

To replicate the obsolete
option “Multi-Byte Aware”, set
this option to System or
Autodetect. Additionally,
options that affect the
"preprocessing" request
appear in this panel.

Use prefix
text in
precompiled
header

Controls whether a *.pch or *.pch++
file incorporates the prefix text into
itself.

This option defaults to “off” to
correspond with previous
versions of the compiler that
ignore the prefix file when
building precompiled headers.
If any #pragmas are imported
from old C/C++ Language (C
Only) Panel settings, this
option is set to “on”.

76 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.4 C/C++ Language Preprocessor Elements (continued)

Element Purpose Comments
Emit file Controls whether notification of file
changes changes (or #line changes) appear
in the output.
Emit Controls whether #pragmas This option is essential for
#pragmas encountered in the source text producing reproducible test
appear in the preprocessor output. cases for bug reports.
Show full Controls whether file changes show
paths the full path or the base filename of
the file.
Keep Controls whether comments are
comments emitted in the output.
Use #line Controls whether file changes
appear in comments (as before) or
in #line directives.
Keep Controls whether whitespace is This is useful for keeping the
whitespace stripped out or copied into the starting column aligned with

output.

the original source, though we
attempt to preserve space
within the line. This doesn’t
apply when macros are
expanded.

C/C++ Warnings

Use the C/C++ Warnings panel (Figure 5.6 on page 78) to specify C language features for
the DSP56800. Table 5.5 on page 79 explains the elements of this panel.

NOTE

The CodeWarrior compiler for DSP56800 does not support C++.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 77

y
A

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.6 C/C++ Warnings Panel

[§ CAC++ Wamings

— Diagnostics
¥ llegal Fragmas
¥ Possible Emrars
¥ Estended Emor Checking
I Hidden Yirtual Functions
[Implicit Arithmetic Conversions
™| Float Tadnteger
T Sigred # Ursigned
[T Integer To Fioat
[Pointer/lntegral Conversions
[T Unuszedariables
[Unused Arguments
[T Misszing ‘retum’ Statemerts
[E=pression Haz Mo Side Effect

Enable 2l | Dizable &l |

— Partability
v Estra Commas

¥ Inconsistent 'claszs' / 'stuct Usage
¥ Empty Declarations
[Include File Capitalization
[T Check System Ineludes #
[PadBytes Added
™ Undefined Macro ln i

— Olptimization
¥ Mondnlined Functions *

[Treat &l ammings &z Emars

*Mate: likely bo generate many spurious
warningsz!

78 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.5 C/C++ Warnings Panel Elements

Element

Purpose

Comments

lllegal
Pragmas
checkbox

Checked — Compiler issues
warnings about invalid pragma
statements.

Clear — Compiler does not issue
such warnings.

According to this option, the
invalid statement #pragma
near_data off would prompt
the compiler response
WARNING: near datais not a
pragma.

To check whether this option is
in effect, use the
__option(warn_illpragma)
command.

Possible
Errors
checkbox

Checked — Compiler checks for
common typing mistakes, such as
== for =.

Clear — Compiler does not perform
such checks.

If this option is in effect, any of
these conditions triggers a
warning: an assignment in a
logical expression; an
assignment in a while, if, or for
expression; an equal
comparison in a statement that
contains a single expression; a
semicolon immediately after a
while, if, or for statement.

To check whether this option is
in effect, use the
__option(warn_possunwant)
command.

Extended
Error

Checking
checkbox

Checked — Compiler issues
warnings in response to specific
syntax problems.

Clear — Compiler does not perform
such checks.

Syntax problems are: a non-
void function without a return
statement, an integer or
floating-point value assigned to
an enum type, or an empty
return statement in a function
not declared void.

To check whether this option is
in effect, use the
__option(extended_errorcheck
) command.

Hidden
Virtual
Functions

Leave clear.

Does not apply to C.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

79

y
A

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.5 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
Implicit Checked — Compiler verifies that If this option is in effect, the
Arithmetic operation destinations are large compiler would issue a warning
Conversions enough to hold all possible results. in response to assigning a long
checkbox . value to a char variable.
Clear — Compiler does not perform
such checks. To check whether this option is
in effect, use the
__option(warn_implicitconv)
command.
Pointer/ Checked — Compiler checks for See #pragma
Integral pointer/integral conversions. warn_any_ptr_int_conv and

Conversions

Clear — Compiler does not perform
such checks.

#pragma warn_ptr_int_conv.

Unused Checked — Compiler checks for The pragma unused overrides
Variables declared, but unused, variables. this option.
checkbox . . L
Clear — Compiler does not perform To check whether this option is
such checks. in effect, use the
__option(warn_unusedvar)
command.
Unused Checked — Compiler checks for The pragma unused overrides
Arguments declared, but unused, arguments. this option.
checkbox . . .
Clear — Compiler does not perform Another way to override this
such checks. option is clearing the ANSI
Strict checkbox of the C/C++
Language (C Only) panel, then
not assigning a name to the
unused argument.
To check whether this option is
in effect, use the
__option(warn_unusedarg)
command.
Missing Checked — Compiler checks for See #pragma
‘return’ missing ‘return’ statements. warn_missingreturn.
Statements

Clear — Compiler does not perform
such checks.

80

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.5 C/C++ Warnings Panel Elements (continued)

Element

Purpose

Comments

Expression
Has No Side
Effect

Checked — Compiler issues
warning if expression has no side
effect.

Clear — Compiler does not perform
such checks.

See #pragma
warn_no_side_effect.

Extra
Commas
checkbox

Checked — Compiler checks for
extra commas in enums.

Clear — Compiler does not perform
such checks.

To check whether this option is
in effect, use the
__option(warn_extracomma)
command.

Inconsistent
Use of ‘class’
and ‘struct’
Keywords
checkbox

Leave clear.

Does not apply to C.

Empty
Declarations

checkbox

Checked — Compiler issues
warnings about declarations without
variable names.

Clear — Compiler does not issue
such warnings.

According to this option, the
incomplete declaration int ;
would prompt the compiler
response WARNING.

To check whether this option is
in effect, use the
__option(warn_emptydecl)
command.

Include File
Capitializatio
n

Checked — Compiler issues
warning about include file
capitialization.

Clear — Compiler does not perform
such checks.

See #pragma
warn_filenamecaps.

Pad Bytes
Added

Checked — Compiler checks for
pad bytes added.

Clear — Compiler does not perform
such checks.

See #pragma warn_padding.

Undefined
Macro In #if

Checked — Compiler checks for
undefined macro in #if.

Clear — Compiler does not perform
such checks.

See #pragma
warn_undefmacro.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 81

'
A

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.5 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
Non-Inlined Checked — Compiler issues a To check whether this option is
Functions warning if unable to inline a function. | in effect, use the
checkbox Clear — Compiler does not issue __option(warn_notinlined)
) command.

such warnings.
Treat All Checked — System displays
Warnings As warnings as error messages.
Errors

Clear — System keeps warnings

checkbox and error messages distinct.

M56800 Assembler

The M 56800 Assembler panel (Figure 5.7 on page 82) determines the format used for the
assembly source files and the code generated by the DSP56800 assembler.

Figure 5.7 M56800 Assembler Settings Panel
;ﬂ M5E300 Azzembler

¥ Case Sensitive Identifisrs
[Generate Ligting File
v Detects pipeline emor for delays o M register loads

Prefis File :

Theitemsin this panel are:

82 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

Case Sensitive ldentifiers

When this option is enabled, the assembler distinguishes lowercase characters from
uppercase characters for symbols. For example, the identifier £1ag isthe not the same as
Flag when the option is enabled.

NOTE Thisoption must be enabled when mixing assembler and C code.

Generate Listing File

The Generate Listing File option determines whether or not alisting fileis
generated when the CodeWarrior IDE assembles the source filesin the project. The
assembler creates alisting file that containsfile source a ong with line numbers, relocation
information, and macro expansions when the option is enabled. When the option is
disabled, the assembler does not generate the listing file.

When alisting file is output, thefile is created in the same directory as the assembly file it
islistingwith a . 1st extension appended to the end of the file name.

Detects pipeline errors for delays to N register
loads

Checking this option enables the assembler to generate error messages.

Inthefollowing instruction: [move X: (Rn+offset),N],Nisnotavailableinthe
instruction following immediately. This option allows the assembler to flag error for
pipeline dependencies.

Prefix File

The Prefix File field contains the name of afile to be included automatically at the
beginning of every assembly filein the project. Thisfield lets you include common
definitions without using an include directivein every file.

ELF Disassembler

The ELF Disassembler panel (Figure 5.8 on page 84) appearswhen you disassemble
object files. To view the disassembly of amodule, select Project > Disassemble.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 83

y
A

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.8 ELF Disassembler Panel

iﬂ ELF Dizazzembler

—Iv Show Code Modulez

¥ Show Headers [Werbose Info
¥ Show Sumbol and String T ables ¥ Show Felocations

¥ Use Extended Mnemonics ¥ Show Source Code
V¥ Show Addresses and Object Code ¥ Show Comments

—Iv Show Diata Modules

" Dizaszemble Exception Tables

[T Show Debug Info

The ELF Disassembler panel options are:
e Show Headers

The Show Headers option determines whether the assembled file lists any ELF
header information in the disassembled output.

¢ Show Symboal and String Tables

The Show Symbol and String Tables option determines whether the
disassembler lists the symbol and string table for the disassembled module.

Verbose Info

The Verbose Info option instructs the disassembler to show additional
information in the ELF file. For the . symtab section, some of the descriptive
constants are shown with their numeric equivalents. The sections . 1ine and

. debug are shown with an unstructured hex dump.

Show Relocations

The Show Relocations option shows relocation information for the
corresponding text (. rela.text) or data(.rela.data) section.

Show Code Modules

84

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

The Show Code Modules option determines whether the disassembler outputs
the ELF code sections for the disassembled module.

If enabled, the Use Extended Mnemonics, Show Source Code, Show
Addresses and Object Code, and Show Comments options become
available.

Use Extended M nemonics

The Use Extended Mnemonics option determines whether the
disassembler lists the extended mnemonics for each instruction of the
disassembled module.

This option is available only if the Show Code Modules option is enabled.
Show Addresses and Object Code

The Show Addresses and Object Code option determines whether the
disassembler lists the address and object code for the disassembled module.

This option is available only if the Show Code Modules option is enabled.
Show Sour ce Code

The Show Source Code option determines whether the disassembler lists
the source code for the current module. Source code is displayed in mixed mode
with line number information from the original C source.

This option is available only if the Show Code Modules option is enabled.
Show Comments

The Show Comments option displays comments produced by the
disassembler, in sections where comment columns are provided.

This option is available only if the Show Code Modules option is enabled.

¢ Show Data M odules

The Show Data Modules option determines whether or not the disassembler
outputs any ELF data sections (such as . data and . bss) for the disassembled
module.

NOTE

Disassemble Exception Tables

The Disassemble Exception Tables option determines whether or not
the disassembler outputs any C++ exception tables for the disassembled module.

This option is available when you select Show Data Modules.

Disassemble Exception Tablesis not available for DSP56800, since it
does not support C++.

¢ Show Debug Info

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 85

'
A

Target Settings
DSP56800-Specific Target Settings Panels

The Show Debug Info option directs the disassembler to include DWARF
symbol information in the disassembled output.

M56800 Processor

The M56800 Processor settings panel (Figure 5.9 on page 86) determines the kind of
code the compiler creates. This pand is available only when the current build target uses
the M56800 Linker.

Figure 5.9 M56800 Processor Settings Panel

|E MBES00 Processor

[Peephole Optimization

[Instruction Scheduling

[Allow Rep Instuctions

[T &llow DO Instuctions

[Make Stings Readdnly

[Create Assembly Output

v Compiler adjusts for delayed load of M register
[T 'wiite constant data to rodata section

[~ Generate code for profiing

Theitemsin this panel are:

Peephole Optimization

This option controls the use of peephole optimizations. The peephol e optimizations are
small local optimizations that eliminate some compare instructions and optimize some
address register updates for more efficient sequences.

86 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

Instruction Scheduling

This option determines whether the compiler rearranges instructions to take advantage of
the M56800' s scheduling architecture. This option resultsin faster execution speed, but is
often difficult to debug.

NOTE Instruction Scheduling can make source-level debugging difficult because the
source code might not correspond exactly to the underlying instructions.
Disable this option when debugging code.

Allow REP Instructions

This option controlsREP instruction usage. Such instructions are generally more efficient,
but they prevent you from servicing any incoming interruptsinside aREP construct. If you
are using interrupts or writing atime-critical real-time application, avoid using REP
instructions.

Allow DO Instructions

This option controls the compiler’s support for the DO instruction. Since the compiler
never nests DO instructions, interrupt routines are always free to use those instructions.

Make Strings ReadOnly

This option determines whether you can specify alocation to store string constants. If this
option is disabled, the compiler stores string constants in the data section of the ELF file.
If this option is enabled, the compiler stores string constants in the read-only . rodata
section.

Create Assembly Output

This option allows the compiler to produce a . asm assembler-compatible file for each C
sourcefilein the project. The. asm fileislocated in the same path as the Project/Debug
file and has the same name as the .c file containing main.

For example, MyProgram. ¢ would produce the assembly output MyProgram. asm.

Compiler adjusts for delayed load of N-registers

When N-register (offset registers) are used consecutively, this option allows the compiler
to send NOP instruction to resolve the restrictions in pipeline dependencies.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 87

A 4
4\

Target Settings
DSP56800-Specific Target Settings Panels

Write const data to .rodata section

This option allows the compiler to write all constant datato aread-only memory section
(.rodata). Y ou must add .rodata section in the linker command file. Thisoptionis
overridden by the use_rodata pragma.

Generate code for profiling

This option allows the compiler to generate code for profiling. For more details about the
profiler, see the “Profiler” on page 261.

M56800 Linker

The M56800 Linker panel (Figure5.10 on page 88) controls the behavior of the linker.
This panel isonly available if the current build target uses the M56800 Linker.

Figure 5.10 M56800 Linker Settings Panel
[§ M5E500 Lirker

v Generate Sumbolic Info [Disable Deadstipping
¥ Store Full Path Mames IV Generate ELF Symbal Table
W Generate Link Map [T Suppress Wamning Messages

[T List Unuszed Objects
[T Show Tranzitive Closure
[Generate 5-Recard File

[T Sort Budddriess tdax Fecord Length: I253

[T! Gererate Bute Sddiezses EOL Character: oos -

Entry Paint: Finit_M56305_

Force Active Symbals:

The M 56800 Linker panel options are:
¢ Generate Symbalic I nfo

The Generate Symbolic Info option controls whether the linker generates
debugging information. If the option is enabled, the linker generates debugging

88 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

information. Thisinformation isincluded within the linked ELF file. This setting
does not generate a separate file.

If you select Project > Debug, the CodeWarrior IDE enables the Generate
Symbolic Info option for you.

If the Generate Symbolic Info option is not enabled, the Store Full Path
Names option is not available.

NOTE If you decide to disable the Generate Symbolic I nfo option, you cannot
debug your project using the CodeWarrior debugger. For this reason, the
compiler enables this option by default.

— Store Full Path Names

The Store Full Path Names option controls how the linker includes path
information for source files when generating debugging information.

If this option is enabled, the linker includes full path names to the sourcefiles. If
this option is disabled, the linker uses only the file names. By default, this option
is enabled.

Thisoptionisavailable only if you enable the Generate Symbolic Info on page 88
option.

e GenerateLink Map

The Generate Link Map option controls whether the linker generates alink
map. Enable this option to let the linker generate alink map.

Thefile name for the link map adds the extension . xMAP to the generated file name.
The linker places the link map in the same folder asthe output . e1f file.

For each object and function in the output file, the link map shows which file
provided the definition. The link map also shows the address given to each object
and function, amemory map of where each section residesin memory, and the value
of each linker-generated symbol.

Although the linker aggressively strips unused code and data when the CodeWarrior
IDE compiles the relocatable file, it never deadstrips assembler relocatable files or

relocatable files built with other compilers. If arelocatable file was not built with the
CodeWarrior C compiler, thelink map listsall of the unused but unstripped symbols.

— List Unused Objects

The List Unused Objects option controls whether the linker includes
unused objects in the link map. Enable the option to let the linker include unused
objectsin the link map. The linker does not link unused code in the program.

Usually, this option is disabled. However, you might want to enable it in certain
cases. For example, you might discover that an object you expect to be used is not

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 89

y
A

Target Settings
DSP56800-Specific Target Settings Panels

actually used. This option is not available unless you enable the Generate
Link Map option.

— Show Transitive Closure

The Show Transitive Closure option recursively listsin the link map file
all of the objects referenced by main(). Listing 5.1 on page 90 shows some
sample code. To show the effect of the Show Transitive Closure option,
you must compile the code.

Listing 5.1 Sample Code to Show Transitive Closure

void foot(void){ int a = 100; }
void pad(void){ int b = 101; }

int main(void) {
foot () ;
pad() ;
return 1;

}

After you compile the source, the linker generates alink map file. Note that this
option is not available unless you enable the Generate Link Map option.

Listing 5.2 Effects of Show Transitive Closure in the Link Map File

Link map of Finit sim_
1] interrupt vectors.text found in 56800 vector.asm
2] sim_intRoutine (notype,local) found in 56800 vector.asm
2] Finit sim_(func,global) found in 56800 init.asm
3] Fmain (func,global) found in M56800 main.c
4] Ffoot (func,global) found in M56800 main.c
4] Fpad (func,global) found in M56800 main.c
3] F_init sections (func,global) found in Runtime 56800.1lib
initsections.o
4] Fmemset (func,global) found in MSL C 56800.1ib mem.o
5] F_ fill mem (func,global) found in MSL C 56800.1lib
mem_funcs.o
1] Finit sim (func,global) found in 56800 init.asm

« Disable Deadstripping

The Disable Deadstripping option prevents the linker from removing unused
code and data.

¢ Generate ELF Symbol Table

90 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

The Generate ELF Symbol Table option instructs the linker to generate an
ELF symbol table, aswell asalist of relocationsin the ELF executable file.

 Suppress Warning M essages

The Suppress Warning Messages option controls whether the linker
displays warnings. If this option is disabled, the linker displays warnings in the
Message window. If this option is disabled, the linker does not display warnings.

¢ Generate S-Record File

The Generate S-Record File option controls whether the linker generates an
S-record file based on the application object image. The S-record files have the
extension . s.

In the case of the DSP56800, the linker generates three different S-record files. Their
contents are:

- {output file name}.S

S-record file containing both P and X memory contents.
- {output file name}.p.S

S-record file containing P memory contents only.
- {output file name}.x.S

S-record file containing X memory contents only.

The linker places the S-record files in the output folder, which is a sub-folder of the
project folder.

The linker generates the following S3 type S-records:
— Sort by Address

This option enables the compiler to sort S-records generated by the linker using
byte address. This option is not available unless you enable the Generate S-
Record File on page 91 option.

— Generate Byte Addresses

This option enables the linker to generate S-recordsin bytes. This option is not
available unless you enabl e the Generate S-Record File on page 91 option.

— Max Record Length

TheMax Record Length field specifies the maximum length of the S-record
generated by the linker. Thisfield is available only if the Generate S-Record
File on page 91 option is enabled. The maximum value for an S-record length is
256 bytes.

NOTE Most programsthat load applications onto embedded systems have amaximum
length for S-records. The CodeWarrior debugger can handle S-records as large

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 91

3
4

y
A

Target Settings
DSP56800-Specific Target Settings Panels

as 256 bytes. If you are using something other than the CodeWarrior debugger
to load your embedded application, you need to determine its maximum length.

— EOL Character
The EOL Character list box definesthe end-of-line character for the S-record
file. Thislist box isavailable only if you enable the Generate S-Record File on
page 91 option.
« Entry Point
The starting point for aprogram is set in the Entry Point field in the M56800

settings panel. The Entry Point field specifiesthe function that the linker first uses
when the program runs.

Thedefault function found in thisfield islocated within the startup code that setsup
the DSP56800 environment before your code executes. Thisfunction and its
corresponding startup code will be different depending upon which stationery you
have selected. In the case of hardware targeted stationery, the startup code can be
found in the stationery-generated project’s startup folder.

The startup code performs other tasks, such as clearing the hardware stack,
creating an interrupt table, and getting the stack start and exception handler
addresses.

Thefinal task performed by the startup codeisto call your main () function.

* ForceActive Symbols
The Force Active Symbols field instructs the linker to include symbolsin the
link even if the symbols are not referenced. In essence, it is away to make symbols

immune to deadstripping. When listing multiple symbols, use a single space between
them as a separator.

Remote Debugging

Use the Remote Debugging panel (Figure 5.11 on page 93, Figure 5.12 on page 93) to set
parameters for communication between a DSP56800 board or Simulator and the
CodeWarrior DSP56800 debugger. Table 5.6 on page 94 explains the elements of this
panel.

NOTE Communications specifications also involve settings of the debugging M56800
Target panel (Figure 5.13 on page 95).

92 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.11 Remote Debugging Panel (56800 Simulator)

§ Remate Diebugging

— Connection Settings

Ennnectiun:lEEEDD Sirnulatar ;I

Edit Connection...

"Hemute dawnload path

|7|_ Launch remote host application

Figure 5.12 Remote Debugging Panel (Local Connection)

|E Femote Debugging

— Connection Settings

EDnnEDtiDnZIEEBDD Local Hardware Connection j

Edit Connection...

— Remote download path

—[Launch remate host application

lannn

Core Index; IEI ﬂ

—[Muli-Core Debugging———— {JT.-’-'-.G Clock Speed

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

93

y
A

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.6 Remote Debugging Panel Elements

Element

Purpose

Comments

Connection list
box

Specifies the connection type:

¢ 56800 Simulator —
appropriate for testing
code on the simulator
before downloading code
to an actual board.

» 56800 Local Hardware
Connection (CSS) —
appropriate for using your
computer’'s command
converter server,
connected to a DSP56800
board.

Selecting 56800 Simulator
keeps the panel as Figure
5.11 on page 93 shows.

Selecting 56800 Local
Hardware Connection adds
the JTAG Clock Speed text
box to the panel, as Figure
5.12 on page 93 shows.

Remote
Download Path
text box

Not supported at this time.

Launch Remote
Host

Not supported at this time.

Speed text box

local hardware connection. (Default
is 600 kilohertz.)

Application

checkbox

Multi-Core Allows debugging of multiple boards For more details, see

Debugging on a complex scan chain. Debugging on a Complex
Scan Chain on page 245

JTAG Clock Specifies the JTAG lock speed for This list box is available only

if the Connection list box
specifies 56800 Local
Hardware Connection
(CSS). The HTI will not work
properly with a clock speed
over 800 kHz.

M56800 Target (Debugging)

The M56800 Target Settings panel lets you set communication protocols for
interaction between the DSP56800 board and the CodeWarrior debugger.

94

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.13 M56800 Target Settings Panel

{ @ simulator Settings ﬂﬁl

R Target Settings Panels | IE MBE800 T arget S ettings
[= Language Settings :I

CAC++ Language ... ¥ always rezet on download

C/C++ Preprocessar

C/C++ Warnings " Use Flash Config File | Chooss, |
MEER00 Azsembler

= _Eode Generation

Breakpoint mode: IAutomatic - l

ELF Digazzembler
MSEE00 Processor I Auto-clear previous hardware breakpoint
Global Optimizations
[= Linker I Initialize OMP for program memony
o MBBE00 Linker

= ;Editm Frogram memaory mode: Ilntemal vI

----- Cusgtom Keypwords
[= Debugger
i Debugger Settingz
Femate D ebuggin
Target Se
Remaote Debug Opt... «

Processar: IDSF‘EBBDD_S imulatar vl

Fa-:torySettingsl Fiewvert | Irpart Panel... | Expart Panel... |

kK | Cancel | Apply |

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 95

y
A

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.7 Debugging M56800 Target Panel Elements

Element

Purpose

Comments

Always reset on
download
checkbox

Checked — IDE issues a
reset to the target board
each time you connect to the
board.

Clear — IDE does not issue
a reset each time you
connect to the target board.

Use flash config
file checkbox

checked — When the
Use Flash Config File
option is enabled,
you can specify the
use of aflash
configuration file
(Listing 5.3 0n
page 98) in the text
box .

Clear — Debugger assumes
no flash on the target.

If the full path and
file name are not
specified, the
default location is
the same asthe
project file. You
can click the
Choose button to
specify thefile. The
Choose File
dialog box appears
(Figure 5.14 on
page 97).

Breakpoint
Mode
checkbox

Specifies the breakpoint
mode:

e Automatic —
CodeWarrior
software
determines when
to use software or
hardware
breakpoints.

« Software —
CodeWarrior
software always
uses software
breakpoints.

e Hardware —
CodeWarrior
software always
uses the available
hardware
breakpoints.

Software breakpoints contain debug
instructions that the debugger writes
into your code. You cannot set such
breakpoints in flash, as it is read-
only.

Hardware breakpoints use the on-
chip debugging capabilities of the
DSP56800. The number of available
hardware breakpoints limits these
capabilities.

Note, Breakpoint Mode only effects
HW targets.

96 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

h

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.7 Debugging M56800 Target Panel Elements (continued)

Element Purpose Comments

Auto-clear Checked — Automatically

previous clears the previous harware

hardware breakpoint.

breakpoint Clear — Does not
Automatically clears the
previous harware breakpoint.

Initialize OMR Checked — Choose the

for program program memory mode

memory (external or internal) at

checkbox connect.

Clear —OMRis
unchanged.

Processor list
box

Specifies the processor

Currently this selects the register

layout.

Figure 5.14 Choose File Dialog Box

Choose File L

Laak, jr: I = sample

x| e ®er @&

21

ek

oukput
sample_Data
suppark

main.c
main_hoskio,c
sample. mcp

File name: I j Open

Files of type: | j Cancel |
F

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 97

y
A

Target Settings
DSP56800-Specific Target Settings Panels

Listing 5.3 Flash Configuration File Line Format

startAddr endAddr
Tpgs Tprog Tnvh

Each text line of the configuration file specifies aflash unit on the target. The prototypeis
shown in Listing 5.3 on page 98 and its arguments are shown in Table 5.8 on page 98.

baseAddr
TME Tnvs

progMem Terase

Tnvhl

regBaseAddr
Trcv

Table 5.8 Flash Configuration File Line Format

Argument Description

baseAddr address where row 0 (zero) starts

startAddr first flash memory address

endAddr last flash memory address

progMem 0 =data (X:), 1 = program memory (P:)

regBaseAddr location in data memory map where the
control registers are mapped

Terase erase time

TME mass erase time

Tnvs PROG/ERASE to NVSTR set up time

Tpgs NVSTR to program set up time

Tprog program time

Tnvh NVSTR hold time

Tnvhl NVSTR hold time(mass erase)

Trev recovery time

A sample flash configuration file for DSP56F803 and DSP56F805 isin Table 5.9 on

page 98. Do not change the contents of thisfile.

Table 5.9 Sample Flash Configuration File for DSP56F803/5

0x0
004

0x7
dff

0x0
f40

0x0
002

|

|

0x0
006

0x0
01A

0x0
033

0x0
066

0x0
01A

0x0
19A

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.9 Sample Flash Configuration File for DSP56F803/5 (continued)

Q 0x8 0x8 1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
000 7ff £80 002 006 01A 033 066 01A 19A 006

Q ox1 ox1 0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
000 fff f60 002 006 01A 033 066 01A 19A 006

NOTE You cannot use Flash ROM with the board set in development mode. Ensure
the Debugger sets OMR on launch is not enabled if you are using this
feature.

Remote Debug Options

Use the Remote Debug Options panel (Figure 5.15 on page 99) to specify different remote
debug options.

Figure 5.15 Remote Debug Options

'E Femate Debug Options

— Program Dawnload Ophions

|nitial Launch Succeszive Rung
Section Type | Download Yerify Dawnload — Werify

Executable I~
Conztant Data v
Initialized [1ata v

Initialized [ata v

i i
EUEUEEY
i i

— Memary Configuration Ophians

[~ Use Memary Configuration File

Bravize,.. |

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 929

y
A

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.10 Remote Debug Options Panel Elements

Options area

section types to be
downloaded on initial
launch and on successive
runs.

Checked Verify
checkboxes specify the
section types to be verified
(that is, read back to the
linker).

Element Purpose Comments
Program Checked Download Section types:
Download checkboxes specify the

« Executable — program-
code sections that have X
flags in the linker
command file.

« Constant Data — program-
data sections that do not
have X or W flags in the
linker command file.

« Initialized Data —
program-data sections with
initial values. These
sections have W flags, but
not X flags, in the linker
command file.

¢ Uninitialized Data —
program-data sections
without initial values.
These sections have W
flags, but not X flags, in the
linker command file.

Use Memory
Configuration
File checkbox

Not supported at this time.

100 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

6

Processor Expert Interface

Y our CodeWarrior™ |DE features a Processor Expert™ plug-in interface, for rapid
development of embedded applications. This chapter explains Processor Expert concepts,
and Processor Expert additions to the CodeWarrior visua interface. This chapter includes
abrief tutorial exercise.

This chapter contains these sections:
 Processor Expert Overview on page 101

¢ Processor Expert Windows on page 109
« Processor Expert Tutorial on page 122

Processor Expert Overview

The Processor Expert Interface (PEI) is an integrated devel opment environment for
applications based on DSP56800/E (or many other) embedded microcontrollers. It reduces
development time and cost for applications. Its code makes very efficient use of
microcontroller and peripheral capabilities. Furthermore, it helps develop code that is
highly portable.

Features include:

« Embedded Beans™ components— Each bean encapsul ates abasic functionality of
embedded systems, such as CPU core, CPU on-chip peripherals, and virtual devices.
To create an application, you select, modify, and combine the appropriate beans.

— The Bean Selector window lists all available beans, in an expandable tree
structure. The Bean Selector describes each bean; some descriptions are
extensive,

— The Bean Inspector window lets you modify bean properties, methods, events,
and comments.

* Processor Expert page— Thisadditional page for the CodeWarrior project window
lists project CPUs, beans, and modules, in atree structure. Selecting or double-
clicking items of the page opens or changes the contents of related Processor Expert
windows.

e Target CPU window — This window depicts the target microprocessor asasimple
package or a package with peripherals. Asyou move the cursor over this picture’s

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 101

3
4

y
A

Processor Expert Interface
Processor Expert Overview

pins, the window shows pin numbers and signals. Additionally, you can have this
window show a scrollable block diagram of the microprocessor.

¢ CPU Structurewindow — This window shows the relationships of all target-
microprocessor elements, in an expandable-tree representation.

¢ CPU Types Overview — This reference window lists all CPUs that your Processor
Expert version supports.

¢ Memory Map — Thiswindow shows the CPU address space, plus mapping for
internal and external memory.

* Resource Meter — Thiswindow shows the resource allocation for the target
Mi Croprocessor.

¢ Peripheral Usage I nspector — Thiswindow shows which bean all ocates each on-
chip peripheral.

¢ Installed Beans Overview — This reference window provides information about all
installed beansin your Processor Expert version.

« Driver generation — The PEI suggests, connects, and generates driver code for
embedded-system hardware, peripherals, and algorithms.

¢ Top-Down Design — A developer starts design by defining application behavior,
rather than by focussing on how the microcontroller works.

« Extensible beanslibrary — Thislibrary supports many microprocessors,
peripherals, and virtual devices.

« Beanswizard — This external tool helps devel opers create their own custom beans.

« Extensive help information — Y ou access this information either by selecting Help
from the Program Expert menu, or by clicking the Help button of any Processor
Expert window or dialog box.

Processor Expert Code Generation

The PEI manages your CPU and other hardware resources, so that you can concentrate on
virtual prototyping and design. Y our steps for application development are:

1. Creating a CodeWarrior project, specifying the Processor Expert stationery
appropriate for your target processor.

2. Configuring the appropriate CPU bean.
3. Sdlecting and configuring the appropriate function beans.
4. Starting code design (that is, building the application).

Asyou create the project, the project window opensin the IDE main window. This project
window has a Processor Expert page (Figure 6.1 on page 103). The Processor Expert
Target CPU window also appears at this time. So does the Processor Expert bean selector
window, although it is behind the Target CPU window.

102

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Overview

Figure 6.1 Project Window: Processor Expert Page

=l

MNewProji mcp I

Ilﬁ 2dm extermal memary _vJ B & @ -

Files | Link Order | Targets Processor Expett |

= Configurations
(= Operating System
B = CPUs
(i s el
% G CpuSEFEE
% i CpuEFa34E
(= Beans
El = User Modules
< MewPrajl.c:main
= Generated Modules
(= Extemal Modules
(= Diocumentation
[= PESL

When you start code design, the PEI generates commented code from the bean settings.
This code generation takes advantage of the Processor Expert CPU knowledge system and
solution bank, which consists of hand-written, tested code optimized for efficiency.

To add new functionalities, you select and configure additional beans, then restart code
design. Another straightforward expansion of PEI code is combining other code that you
aready had produced with different tools.

Processor Expert Beans

Beans encapsul ate the most-required functionalities for embedded applications. Examples
include port bit operations, interrupts, communication timers, and A/D converters.

The Bean Selector (Figure 6.2 on page 104) hel ps you find appropriate beans by category:
processor, MCU external devices, MCU internal peripherals, or on-chip peripherals. To
open the bean selector, select Processor Expert > View > Bean Selector, from the main-
window menu bar.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 103

y
A

Processor Expert Interface
Processor Expert Overview

Figure 6.2 Bean Selector

e
Bean Categories I Or Chip Peripherals I Bluick help >

= CFU
(= CPU extemnal devices
B = CPU internal perpherals
= Commurication
= Converter
= Intermupts
= Measurement
= Memary
= Peripheral beans
B Part /0
= Jeiio)
g @ Bisi0
g M pyte2i0
g M B30 |

Filker: | alliCPU | Licensed &~

The bean selector’ s tree structures list all available beans; double-clicking the name adds
the bean to your project. Clicking the Quick Help button opens or closes an explanation
pane that describes the highlighted bean.

Once you determine the appropriate beans, you use the Bean Inspector (Figure 6.3 on
page 105) to fine tune each bean, making it optimal for your application.

ry

104 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Processor Expert Interface
Processor Expert Overview

Figure 6.3 Bean Inspector

'--.-_'"-Bean Inspector AM1:AsynchroMaster - |EI|5|

< Bean Itemsz Vizibility Help

Properties | Methods | Events | Comment

Chanmel SCI0 | =|SCIO
+Interrupt ze Dizable
-Settings
Parity wake-up i hardware wake-up

Width 9 bitz 9 bitz
Stop bit 1 |1
+Heceiver |Dizable
+T ransmitti| Dizable
Baud rate ... | Unazzigned iming
Stop in wait|fo
+Initializatior

N 2 R N N N a2 I

BASIC ADYAMNCED ExPERT S

Using the Bean Inspector to set a bean’sinitialization properties automatically adds bean
initialization code to CPU initialization code. Y ou use the Bean Inspector to adjust bean
properties, so that generated code is optimal for your application.

Beans greatly facilitate management of on-chip peripherals. When you choose a peripheral
from bean properties, the PEI presentsall possible candidates. But the PEI indicates which
candidates already are allocated, and which are not compatible with current bean settings.

Processor Expert Menu

Table 6.1 on page 106 explains the selections of the Processor Expert menu.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 105

y
A

Processor Expert Interface

Processor Expert Overview

Table 6.1 Processor Expert Menu Selections

Iltem Subitem Action

Open Processor none Opens the PEI for the current project.

Expert (Available only if the current project does
not already involve the PEI.)

Code Design none Generates code, including drivers, for the

<Project> current project. Access these files via the
Generate Code folder, of the project-
window Files page.

Undo Last Code none Deletes the most recently-generated

Design code, returning project files to their state
after the previous, error-free code
generation.

View Project Panel Brings the Processor Expert page to the

front of the CodeWarrior project window.

(Not available if the project window does
not include a Processor Expert page.)

Bean Inspector

Opens the Bean Inspector window,
which gives you access to bean
properties.

Bean Selector

Opens the Beans Selector window,
which you use to choose the most
appropriate beans.

Target CPU Package

Opens the Target CPU Package window,
which depicts the processor. As you
move your cursor over the pins of this
picture, text boxes show pin numbers
and signal names.

Target CPU Block
Diagram

Opens the Target CPU Package window,
but portrays the processor as a large
block diagram. Scroll bars let you view
any part of the diagram. As you move
your cursor over modules, floating text
boxes identify pin numbers and signals.

Error Window

Opens the Error Window, which shows
hints, warnings, and error messages.

106 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Overview

Table 6.1 Processor Expert Menu Selections (continued)

Iltem

Subitem

Action

Resource Meter

Opens the Resource Meter window,
which shows usage and availability of
processor resources.

View (continued)

Target CPU Structure

Opens the CPU Structure window, which
uses an expandible tree structure to
portray the processor.

Peripherals Usage
Inspector

Opens the Peripherals Usage Inspector
window, which shows which bean
allocates each peripheral.

Peripheral
Initialization Inspector

Opens the Peripherals Initialization
Inspector window, which show the
initialization value and value after reset
for all peripheral register bits.

Installed Beans
Overview

Opens the Beans Overview window,
which provides information about all
beans in your project.

CPU Types Overview

Opens the CPU Overview window, which
lists supported processors in an
expandable tree structure.

CPU Parameters

Opens the CPU Parameters window,

Overview which lists clock-speed ranges, number
of pins, number of timers, and other
reference information for the supported
processors.

Memory Map Opens the Memory Map window, which

depicts CPU address space, internal
memory, and external memory.

Tools <tool name> Starts the specified compiler, linker or
other tool. (You use the Tools Setup
window to add tool names to this menu.)

SHELL Opens a command-line window.
Tools Setup Opens the Tools Setup window, which
you use to add tools to this menu.

Help Processor Expert Help | Opens the help start page.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

107

y
A

Processor Expert Interface

Processor Expert Overview

Table 6.1 Processor Expert Menu Selections (continued)

Item Subitem Action
Introduction Opens the PEI help introduction.
Benefits Opens an explanation of PEI benefits.

User Interface

Opens an explanation of the PEI
environment.

Tutorial

[None available for the DSP56800/E.]

Quick Start

Opens PEI quick start instructions.

Help (continued)

Embedded Beans

Opens the first page of a description
database of all beans.

Embedded Beans
Categories

Opens the first page of a description
database of beans, organized by
category.

Supported CPUs,
Compilers, and
Debuggers

Opens the list of processors and tools
that the PEI plug-in supports.

PESL Library User
Manual

Opens the Processor Expert System
Library, for advanced developers.

User Guide

Opens a .pdf guide that focuses on the
DSP56800/E processor family.

Search in PDF
Documentation of the
Target CPU

Opens documentation of the target
processor, in a .pdf search window.

Go to Processor
Expert Home Page

Opens your default browser, taking you
to the PEI home page.

About Processor
Expert

Opens a standard About dialog box for
the PEI.

Update

Update Processor
Exert Beans from
Package

Opens the Open Update Package
window. You can use this file-selection
window to add updated or new beans
(which you downloaded over the web) to
your project.

108

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Windows

Table 6.1 Processor Expert Menu Selections (continued)

Iltem Subitem

Action

Check Processor

Checks for updates available over the

Windows

open PEI windows.

Expert Web for web. If any are available, opens your
updates default browser, so that you can
download them.
Bring PE none Moves PEI windows to the front of your
Windows to Front monitor screen.
Arrange PE none Restores the default arrangement of all

Processor Expert Windows

This section illustrates important Processor Expert windows and dialog boxes.

Bean Selector

The Bean Selector window (Figure 6.4 on page 109) explains which beans are available,
helping you identify those most appropriate for your application project. To open this
window, select Processor Expert > View > Bean Selector, from the main-window menu

bar.

Figure 6.4 Bean Selector Window

-loix]
Bean Categories | On Chip Peripheralsl I < Guick help
El & CPU intemal peripherals ;I Bean: BitsIO -

= Communication
g :ZTnvert:r This bean implements a multi-bit input/output, It
+| . -
HE J:;::E:ment uses 1 to 8 contiguous pins of one port,
5E Memon It is recommended to select this bean
) v exclusively for 2 to 7 bit inputfoutput,
= Peripheral beans
B Part 140 :
5 0 B0 | 1. If you want to use 1 bit only, select the
g @m BitIO bean instead.
g @ B2l 2. If you want to use 8 bits, select the
BytelD bean instead.
& (M Byt=3i0 - =l
4

Filker: | allfcPu | Licensed

4

The Bean Categories page, at the left side of this window, lists the available beansin
category order, in an expandable tree structure. Green string bean symbols identify beans

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

109

3
4

y
A

Processor Expert Interface
Processor Expert Windows

that have available licenses. Grey string bean symbols identify beans that do not have
available licenses.

The On-Chip Peripherals page lists beans available for specific peripherals, alsoin an
expandable tree structure. Y ellow folder symbols identify peripherals fully available.
Light blue folder symbolsidentify partially used peripherals. Dark blue folder symbols
identify fully used peripherals.

Bean names are black; bean template names are blue. Double-click a bean name to add it
to your project.

Click the Quick Help button to add the explanation paneto theright side of the window, as

Figure 6.4 on page 109 shows. This pane describes the selected (highlighted) bean. Use
the scroll bars to read descriptions that are long.

Click the two buttons at the bottom of the window to activate or deactivate filters. If the
all/CPU filter is active, the window lists only the beans for the target CPU. If the license
filter is active, the window lists only the beans for which licenses are available.

Bean Inspector

The Bean I nspector window (Figure 6.5 on page 111) lets you modify bean properties
and other settings. To open this window, select Processor Expert > View > Bean
I nspector, from the main-window menu bar.

110

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Processor Expert Interface
Processor Expert Windows

Figure 6.5 Bean Inspector Window

'--.-_'"-Bean Inspector AM1:AsynchroMaster

e

Bean Items Vizibility Help

roperties |Meth-:u:|$| Eventsl Enmmentl

=10 x|

Bean name

A1

Channel

SCI0 = |SCI0

-Interrupt se

E nable

|nterrupt

|nterrupt Fx

[MT_SCIO[INT_SCI0_R=Ful

|nterrupt Fx

mediun «|1

Interrupt Tx

[HT_SCIO[INT _SCIO_T=Ernpty

Interrupt Tx

mediun |1

|nterrupt E m

[HT_SCIO[INT_SCIO_R=Eroar

|nterrupt E m

mediun |1

[nterrupt [dh

[HT_SCIO[INT_SCI0_T=dle

[nterrupt [dh
[nput buffer

mediun |1
1]

Dutput buff

0

-Settings

Parity

wake-up i hardware wake-up

*idth

3 bits 3 btz

Stop bit

1 -|1

bl ode

Mormal -

| N) e I T I N T N s

-I-n Fl"'FiHFI

Mizahle

o~
BASIC | ADWANCED || ExPERT

fid
/4

This window shows information about the currently selected bean — that is, the
highlighted bean name in the project-window Processor Expert page. Thetitle of the Bean
Inspector window includes the bean name.

The Bean Inspector consists of Properties, Methods, Events, and Comment pages. The
first three pages have these columns:

¢ Item names — Itemsto be set. Double-click on group names to expand or collapse
thislist. For the Method or Event page, double-clicking on an item may open the file
editor, at the corresponding code location.

» Selected settings — Possible settings for your application. To change any ON/OFF-
type setting, click the circular-arrow button. Settings with multiple possible values
have triangle symboals: click the triangle to open a context menu, then select the
appropriate value. Timing settings have an ellipsis (...) button: click this button to
open a setting dialog box.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 111

3
4

y
A

Processor Expert Interface
Processor Expert Windows

¢ Setting status— Current settings or error statuses.
Use the comments page to write any notations or comments you wish.

NOTE If you have specified atarget compiler, the Bean Inspector includes an
additional Build options page for the CPU bean.
If your project includes external peripherals, the Bean Inspector includes an
additional Used page. Clicking a circular-arrow button reserves a resource for
connection to an external device. Clicking the same button again frees the
resource.

The Basic, Advanced, and Expert view mode buttons, at the bottom of the window, let you
change the detail level of Bean Inspector information.

The Bean Inspector window has its own menu bar. Selections include restoring default
settings, saving the selected bean as atemplate, changing the bean’ sicon, disconnecting
from the CPU, and several kinds of help information.

Target CPU Window

The Target CPU window (Figure 6.6 on page 113) depicts the target processor as a
realistic CPU package, asa CPU package with peripherals, or asablock diagram. To open
thiswindow, select Processor Expert > View > Target CPU Package, from the main-
window menu bar. (To have this window show the block diagram, you may select
Processor Expert > View > Target CPU Block Diagram, from the main-window menu
bar.)

112

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

N

Processor Expert Interface
Processor Expert Windows

Figure 6.6 Target CPU Window: Package

Target CPU [Cpu:56F8346]

:

|
Y

56FB8346

AL
oy

F o . . s
B a4 TR =
e * — e = ~ 3
B = = S o S ==
- i - =2 B ¥ = M < -z -~ =
51 [WCAPL [vCap1 JvcC |Core Power when the internal voltage regulator is disabled v

Arrows on pins indicate input, output, or bidirectiona signals. Asyou move your cursor
over the processor pins, text boxes at the bottom of this window show the pin numbers and
signal names.

Use the control buttons at the left edge of this window to modify the depiction of the
processor. One button, for example, changes the picture view the CPU package with
peripherals. However, as Figure 6.7 on page 114 shows, it is not always possible for the
picture of a sophisticated processor to display internal peripherals.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 113

PR 4

Processor Expert Interface
Processor Expert Windows

Figure 6.7 Target CPU Window: Package and Peripherals

Target CPU [Cpu:56F8346]

Ha:"lﬁlﬁ 2P| @ml Q
_ ."*!,'.',"

|l'

Huin B R =
~ — SEN _“ = ~
b p o =~ ‘

. W - = g
= ~

| | 4

S

In such acase, you can click the Always show internal peripheral devices control
button. Figure 6.8 on page 115 shows that this expands the picture size, as necessary, to
alow the peripheral representations. This view also includes bean icons (blue circles)
attached to the appropriate processor pins. Use the scroll bars to view other parts of the
processor picture.

114 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Windows

Figure 6.8 Target CPU Window: Peripherals and Bean Icons

Target CPU [Cpu:DSP56F836]

EmmE sl

[Pt |Prsrastion irame [Pravra, v

Click the Show MCU Block Diagram to change the picture to ablock diagram, as Figure
6.9 on page 116 shows. Use the scroll bars to view other parts of the diagram. (Y ou can
bring up the block diagram as you open the Target CPU window, by selecting Pr ocessor
Expert > View > Target CPU Block Diagram, from the main-window menu bar.)

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 115

(

Processor Expert Interface
Processor Expert Windows

Figure 6.9 Target CPU Window: Block Diagram

'--.-_-"-Target CPU [Cpu:DSP56F836]

_(o x|
& EHTERE ENT-EE PHASER HOME PHAS—
FORT C PORT D PORTE PORT F DHASEA[NDExl pHASEAl
SPIOCE GPIO GPICE GFPIC ADCAN ADCBE Quad DecOf Quac
ee] o0 99| €] 0] 00 L 4 i
ee)] 0|) 0] 0] €0 A
DAI| Q3| €] 0] 00| 00 deeelée
Q3] ee) ee) 00) 00 00
F N F
v v |
SFI0 THRAD TMRBO TMRCO THAF
L 4 L e L {
/[\ e P g T =
(Jd d J A N AN I I N AN N AN
ree
THRAL TMRE1L TMRC1 THAF
L L L4 {
‘ . N o -..--ﬂ F . W o --b

Other control buttons at the |eft edge of the window let you:
» Show bean icons attached to processor pins.
« Rotate the CPU picture clockwise 90 degrees.
» Toggle default and user-defined names of pins and peripherals.

¢ Print the CPU picture.

NOTE

Asyou move your cursor over bean icons, peripheral's, and modules, text boxes

or floating hints show information such as names, descriptions, and the

dlocating beans.

And note these additional mouse control actions for the Target CPU window:

¢ Clicking a bean icon selects the bean in the project window’ s Processor Expert page.

116

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Windows

« Double-clicking a bean icon open the Bean Inspector, displaying information for that
bean.

« Right-clicking abeanicon, apin, or a peripheral opens the corresponding context
menu.

« Double-clicking an ellipsis (...) bean icon opens a context menu of al beans using
parts of the peripheral. Selecting one bean from this menu opens the Bean Inspector.

« Right-clicking an ellipsis(...) bean icon opens a context menu of all beans using parts
of the peripheral. Selecting one bean from this menu opens the bean context menu.

Memory Map Window

TheMemory Map window (Figure 6.10 on page 118) depicts CPU address space, and the
map of internal and external memory. To open this window, select Processor Expert >
View > Memory Map, from the main-window menu bar.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 117

'
A

Processor Expert Interface
Processor Expert Windows

Figure 6.10 Memory Map Window

»."~Memory Map [56F8346] 16bit access 1ol x|
DT, CODE
FFFFFF 1FFFFF
FFFFO0
FFFEFF

EXTERMAL

EXTERMAL 030000
O2FFFF

010000

OOFFFF L _
O20FFF

O0Fo00

OOEFFF
020000

EXTERNAL 01FFFF
002000 EXTERMAL
001FFF

10000

001000 OOFFFF

O0OFFF

000000 000000

The color key for memory blocksis:
« White — Non-usable space
¢ Dark Blue— 1/O space
* Medium Blue— RAM
¢ Light Blue— ROM
¢ Cyan — FLASH memory or EEPROM
¢ Black — Externa memory.

118 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Windows

Pause your cursor over any block of the map to bring up a brief description.

CPU Types Overview

The CPU Types Overview window (Figure 6.11 on page 119) lists supported processors,
in an expandabl e tree structure. To open this window, select Processor Expert > View >
CPU Types Overview, from the main-window menu bar.

Figure 6.11 CPU Types Overview Window

', ~CPU Types Dyeryiew =10 x|
[F & Matarola
=& BEA00

@ 5ee5a
b
@ 5ea55
i 5ea54
i@ 5ee53
@ 5ee52

i@ seraze

@ serar

@ seranr

@ 5eras

i seFana

@ SEFa02TARD
@ SEFazTAR0
@ 5EFB0TFAS0
@ SEFATIFARD
i@ SEFas
@ SEFaass
@ SeFas
@ 5eFE356

nnnnnnn

Right-click the window to open a context menu that lets you add the selected CPU to the
project, expand the tree structure, collapse the tree structure, or get help information.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 119

4
A

Processor Expert Interface
Processor Expert Windows

Resource Meter

The Resour ce M eter window (Figure 6.12 on page 120) shows the usage or availability
of processor resources. To open thiswindow, select Processor Expert > View >
Resour ce M eter, from the main-window menu bar.

Figure 6.12 Resource Meter Window

=0l]

Fins usage: |
Port usage: NN~ 000Dl IIIIIaIIIIILIIlln
Compare regs: Capture regs: |

Communication: [l 0 00 000 A/D channels: |

Bars of this window indicate:
¢ The number of pins used
¢ The number of ports used
< Allocation of timer compare registers
¢ The number of timer capture registers used
« Allocation of serial communication channels
¢ Allocation of A/D converter channels.

Pausing your cursor over some fields of thiswindow brings up details of specific
resources.

Installed Beans Overview

The Installed Beans Overview window (Figure 6.13 on page 121) shows reference
information about the installed beans. To open this window, select Processor Expert >
View > Installed Beans Overview, from the main-window menu bar.

120 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface

Processor Expert Windows

Figure 6.13 Installed Beans Overview Window

“Installed Beans Overview

View Help
BEANS

BytelO

Capture

CIDParzer

CIDTypel

CIDTypel2

CallProgressToneDetection

Bean Info

General Byte Input/Output [8 bits]
Status=encrypted, compressed
Author=Processor Expert/SA
Current version=02.046

Call Frogresz Tone Detection
Status=encrypted, compressed
Author=Processor Expert / Pa
Current version=01.014

Timer capture encapsulation
Status=encrypted, compressed
Author=Processor Expert/AH
Current version=02.082

The Type 1 and 2 Telephany Parser Library
Statug=encrypted, compreszed
Avthar=Processor Expert / ACh

Current version=01.003

The Type 1 Telephony Features Library
Status=encrypted, compreszed
Avthar=Processor Expert / ACh

Current version=01.003

The Type 1 and 2 Telephony Features Library
Status=encrypted, compressed
Avthar=Processor Expert / ACh

Current wersion=01.008

1o x|
|Drivers =
BEE00Bytel 0. dmo
5ES004Eptel 0. dry _I

SEB00NCalProgres:T onel etection. dmo
BEB0MCallPiogressT onel etection.dry

BE200NC apture. dmao
SE80MCapture.dry

BEE0MNCID Parger. dmo
SEB00MCIDParser. dry

SES0MCIDT ppel.dma
SEE0MNCID T ypel . dry

SEE00NCIDT ypel 2 .dma
SEB0MNCIDT ppel 2 dry

=

Thiswindow’s View menu lets you change the display contents, such as showing driver
status and information, restricting the kinds of beans the display covers, and so on.

Peripherals Usage Inspector

The Peripherals Usage window (Figure 6.14 on page 122) shows which bean allocates
each peripheral. To open this window, select Processor Expert > View > Peripherals

Usage I nspector, from the main-window menu bar.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 121

4
A

Processor Expert Interface
Processor Expert Tutorial

Figure 6.14 Peripherals Usage Window

i, Peripheral Usage -0l x|

Wiew Help

I/0 | Interrupts I Timers I Chanrels

-Port GPIOD |
-Pin 0 GRIODO_CS52B
-Pin 1 GRIOD1_CS3B
-Pin 2 GRIODE T=D1
-Pin 3 GRIODT_R=D1

-Port GFIDE Uzed by more beans
-Pin 0 GRIOED T«0oO Uzed by bean: Ak 1:4zpnchio

Alvaayz_OutputDie Cutput Clutput
-Pin 1 GFIOET_R=D0 Uzed by bean: "ak1:Aspnchro
Alwaays_|nputDi | nput Input

-Pin 2 GRIDEZ AR
-Pin 3 GPIOE3 AT
-Pin 4 GRIOE4 SCLED
-Pin & GRIOES _MOSIO
Pin & GRIOEE MISO0
-Pin ¥ GFIOET_SS0B

-Port GRIOF e
-Pin 0 GRIOFO_D7
-Pin 1 GPIOF1_Da
-Pin 2 GPIOF2_DA
Pin 3 GFIOF2 D10 hd

The pages of thiswindow reflect the peripheral categories: I/O, interrupts, timers, and
channdls. The columns of each page list peripheral pins, signal names, and the allocating
beans.

Pausing your cursor over various parts of thiswindow brings up brief descriptions of
items. Thiswindow’s View menu lets you expand or collapse the display.

Processor Expert Tutorial

Thistutoria exercise generates code that flashes the LEDs of a M C56F8346E
development board. Follow these steps:

1. Create aproject:
a Start the CodeWarrior IDE, if it is not started already.
b. From the main-window menu bar, select File > New. The New window appears.
c. Inthe Project page, select (highlight) Processor Expert Examples Stationery.
d. Inthe Project nametext box, enter aname for the project, such as LEDcontrol.

122 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

b -

Processor Expert Interface
Processor Expert Tutorial

[©]

Click the OK button. The New Proj ect window replaces the New window.

In the Project Stationery list, select TestApplications> Tools> LED > 56858.
. Click the OK button.

. Click the OK button. The IDE:

Opensthe project window, docking it the left of the main window. This project
window includes a Processor Expert page.

e -SJQ ™™

Opensthe Target CPU window, as Figure 6.15 on page 123 shows. This window
shows the CPU package and peripherals view.

Opens the Bean Selector window, behind the Target CPU window.

Figure 6.15 Project, Target CPU Windows

File Edt Yew Search Project Debug ProcessorExpert Window Help

A e Ea v < hBAA N EERSERER
L | e R

346 PE.mcp]

[sam v ®5» B

Fies | Link Order| Targets Pracessor Expett |

& Configurations
BI& CPUs

< (@ CpuSEFad46
=%

& Documentation

& PESL

B EIEEIEE e

108 [ANB4 |anE4 [(nane) |analeg Input to ADCE, Channel 2/
B
Bean Categariss | On Chip Peripherals | Quick help >

& CPU -
£ CPU external devices
B &> CPU intemal peripherals
& Communication
E Conwerter
& Intemupte
& Measurement
& Memory
& Peripheral beans
B1E Portl/0
s@IE
§ @ Biti0
§ M Buezin
§ M Bueain |

Filter: | allfCPU | Licensed 4

2. Select the sdm external memory target.

a. Click the project window' s Targets tab. The Targets page moves to the front of the
window.

b. Click thetarget icon of the sdm external memory entry. The black arrow symbol
moves to thisicon, confirming your selection.

3. Add six BitlO beans to the project.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 123

A
4

4
A

Processor Expert Interface
Processor Expert Tutorial

a. Click the project window’ s Processor Expert tab. The Processor Expert page
moves to the front of the window.

b. Makethe Bean Selector window visible:
¢ Minimizethe Target CPU window.

« Select Processor Expert > View > Bean Selector, from the main-window menu
bar.

In the Bean Categories page, expand the entry MCU internal peripherals.
d. Expand the subentry Port |/O.

e. Double-click the Bitl O bean name six times. (Figure 6.16 on page 124 depictsthis
bean selection.) The IDE adds these beans to your project; new bean icons appear
in the project window’ s Processor Expert page.

Figure 6.16 Bean Selector: BitlO Selection

=101
Bean Categories | On Chip Peripherals I Quick help >

& CPU A
= CPU external devices
B = CPU internal peripherals
= Communication
= Converter
= Intermupts
= Measurement
= temary
= Peripheral beans
== Part 140
1 Jeo)
5 &) Bisl0
g M Bye20
g M Butea0 =]

Filter: | allfcPU | Licensed A

NOTE If new bean icons do not appear in the Processor Expert page, the system till
may have added them to the project. Close the project, then reopen it. When
you bring the Processor Expert page to the front of the project window, the
page should show the new bean icons.

4. Add two ExtInt beans to the project.

124

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

a. Inthe Bean Categories page of the Bean Selector window, expand the I nterrupts
subentry.

b. Double-click the Extlnt bean name two times. The IDE adds these beans to your
project; new bean icons appear in the Processor Expert page.

¢. You may close the Bean Inspector window.

5. Rename the eight beans GPIO_C0 — GPIO_C3, GPIO_D6, GPIO_D7, IRQA, and
IRQB.

a. Inthe project window’s Processor Expert page, right-click the name of the first
BitlO bean. A context menu appears.

b. Select Rename Bean. A change box appears around the bean name.

c. Typethenew nameGPIO_CO, then pressthe Enter key. The list shows the new
name; as Figure 6.17 on page 125 shows, this name still ends with Bit I0.

Figure 6.17 New Bean Name

LEDconirol_mcp l

Iﬂ sdm external memary j B % @ % >

Files I Lirk, I:Irderl Target; Processar Expert |

(= Configurations
=& CPUs

@ CpuDSPSEFE3E
El &= Beans
¥a 1 }5PI0_COED
« @@ Bit2BitD
< @@ Bit3BitD
< @@ BitdBitlD
< @@ BitSBitD
< @ Bit5:BitD
€@ Elnt1:Extint
€3 EIntZExtint
= Documentation
% B PESL

HEHEHBRBHB

d. Repeat substeps a, b, and c for each of the other BitlO beans, renaming them
GPIO C1,GPIO C2,GPIO _C3,GPIO D6,and GPIO D7.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 125

y
A

Processor Expert Interface
Processor Expert Tutorial

e. Repeat substeps a, b, and c for the two ExtInt beans, renaming them IRQA and
IRQB. (Figure 6.18 on page 126 shows the Processor Expert page at this point.)

Figure 6.18 New Bean Names

Ixl

LEDconirol mcp l

Iﬂ sdm external memaony j & & @ B >

Files I Lirk. Elrderl Targets Processor Expert |

(= Configurations
=& CPUs

« (@ CpuDSPEEFSI6
B Beans
< @@ GRIO_CO:EHO
< @@ GRIO_C1:EHO
< @@ GRIO_CZEND
< @@ GRIO_CZEND
< @9 GRIO_DEED
< @@ GRIO_D7:EHO
- ﬁ (R Extnt
< € NS
(= Documentation
% B PESL

HEHEHEHBBH

6. Update pin associations for each bean.

a Inthe Processor Expert page, double-click the bean name GPIO_Co0. The Bean
Inspector window opens, displaying information for this bean.

b. Use standard window controls to make the middle column of the Properties page
about 2 inches wide.

c. InthePin for 1/0O line, click the triangle symbol of the middle-column list box.
Thelist box opens.

d. Usethislist box to select GPIOCO0_SCLK1 TBO_PHASEA1. (Figure 6.19 on
page 127 depicts this selection.)

126 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Processor Expert Interface
Processor Expert Tutorial

Figure 6.19 New Pin Association

-.,-_'"-Bean Inspector GPIO_CO:BitI0 -0 x|

< Bean Itemnszizibility Help

roperties |Methl:u:|s| Eventsl Comment

Beanname |GPIO_CO

Fir zignal

STl A EN RIS PO C0 SCLE] TBO PHASEA] | GRIOCO_SCLKT_TEO_P

no pull resistor

b

Pull resistor |autoselected pull

1

Open drain~ [no open drain

b

Input/Output

Initialization

Init. direchior Olutput

Init. walue |0

Safe mode |yes

F
'
w
v
'
e
« | Direction Input/0utput
'
'
w
v
'

Optimization fozpeed

e. Inthe project window’s Processor Expert page, select the bean name GPIO C1.

The Bean Inspector information changes accordingly.

f. UsethePin for I/O middle-column list box to select
GPIOC1 MOSI1 TB1 PHASEBL.

0. Repeat substeps e and f, for bean GPTIO 2, to change its associated pin to
GPIOC2_MISO1_TB2_INDEX1.

h. Repeat substeps e and f, for bean GPIO_C3, to change its associated pin to
GPIOC3_SSA_B_TB3 HOMEL.

i. Repeat substeps e and f, for bean GPIO_Dé, to change its associated pin to
GPIOD6_TxD1.

j- Repeat substeps e and f, for bean GPIO D7, to change its associated pin to
GPIOD7_RxD1.

k. Inthe project window’s Processor Expert page, select the bean name IRQA. The

Bean Inspector information changes accordingly.
I. Usethe Pin middle-column list box to select IRQA_B.

m. Repeat substeps k and |, for bean TRQB, to change its associated pinto IRQB_B.

n. You may closethe Bean Inspector window.
7. Enable BitlO SetDir, ClrVal, and SetVal functions.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

127

y
A

Processor Expert Interface
Processor Expert Tutorial

a Inthe Processor Expert page, click the plus-sign control for the GPIO_CO0 bean.
The function list expands: red X symbolsindicate disabled functions, green check
symbols indicate enabled functions.

b. Double-click function symbols as necessary, so that only SetDir, ClrVal, and
SetVal have green checks. (Figure 6.20 on page 128 shows this configuration.)

Figure 6.20 GPIO_C3 Enabled Functions

[= Beans
= @ ElE
= [GetDir
= [H SetDir
= [Getval
= [Futval
BT [H] Clival
BT [H] Sebfal
= M Megval
= -« @@ GPIO_C1Eit0
B @ GRI0_CZEiD

B -

c. ClicktheGpI0_C0 minus-sign control. The function list collapses.

d. Repeat substeps a, b, and c for beansGPIO C1,GPIO C2,GPIO_C3,
GPIO_Dé6,and GPIO_D7.

8. Enable ExtInt Oninterrupt, GetVal functions.

a. Inthe Processor Expert page, click the plus-sign control for the IRQA bean. The
function list expands.

b. Double-click function symbols as necessary, so that only Onlnterrupt and
GetVal have green check symbals.

c. Click the IRQA minus-sign control. The function list collapses.
d. Repeat substeps a, b, and ¢ for bean TRQB.
9. Design (generate) project code.

a. From the main-window menu bar, select Processor Expert > Code Design
‘LEDcontrol.mcp.’ (This selection shows the actual name of your project.) The
IDE and PEI generate several new files for your project.

b. Youmay close all windows except the project window.
10. Update file Events.c.

a. Click the project window’ s Files tab. The Files page moves to the front of the
window.

128 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

b. Expand the User Modules folder.

c. Double-click filename Events.c. An editor window opens, displaying thisfile's
text. (Listing 6.1 on page 129, at the end of this tutorial, shows thisfile's contents.)

d. FindthelineIRQB OnInterrupt ().

(0]

Abovethisline, enter thenew lineextern short IRQB On;.

A

Inside IRQB_OnInterrupt (), enter thenew lineIRQB On "= 1;.

—h

Find theline IRQA OnInterrupt ().

0@

Abovethisline, enter the new lineextern short IRQA On;.

A

i. InsideIRQA OnInterrupt (), enter thenew line IRQA On “= 1;.

NOTE Ligting 6.1 on page 129 shows these new lines as bold italics.

j- Saveand closefile Events.c.
11. Update file LEDcontrol.c.

a. Inthe project window’s Files page, double-click filename L EDcontrol.c (or the
actual .c filename of your project). An editor window opens, displaying thisfile's
text.

b. Add custom code, to utilize the beans.

NOTE Listing 6.2 on page 132 shows custom entries as bold italics. Processor Expert
software generated all other code of thefile.

c. Saveand closethefile.
12. Build and debug the project.

a. From the main-window menu bar, select Project > Make. The IDE compiles and
links your project, generating executable code.

b. Debug your project, asyou would any other CodeéWarrior project.

This completes the Processor Expert tutorial exercise. Downloading this codeto a
DSP56836E devel opment board should make the board LEDs flash in a distinctive
pattern.

Listing 6.1 File Events.c

/*

ok HHEHEHEHHEHSH SSRGS S S R
* *

* K Filename : Events.C

* %

* % Project : LEDcontrol

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 129

y
A

Processor Expert Interface
Processor Expert Tutorial

* %

ol Processor : DSP56F836

* %

* Beantype : Events

* %

* % Version : Driver 01.00

* %

* % Compiler : Metrowerks DSP C Compiler
* *

* ok Date/Time : 3/24/2003, 1:18 PM

* %

* % Abstract

* %

* % This is user's event module.

* % Put your event handler code here.
* *

* % Settings

* *

* *

ikl Contents

* *

* * IRQB OnInterrupt - void IRQB OnInterrupt (void) ;
* % IRQA OnInterrupt - void IRQA OnInterrupt (void) ;
* *

* *

* % (c) Copyright UNIS, spol. s r.o. 1997-2002
* *

* ok UNIS, spol. s r.o.

* % Jundrovska 33

*x 624 00 Brno

* ok Czech Republic

* %

ikl http : WWW.processorexpert.com

* ok mail : info@processorexpert.com

* %

ok HHAHHEHEHHSHAH A SRS AR A A A A A H A
*/
/* MODULE Events */

/*Including used modules for compilling procedure*/
#include "Cpu.h"

#include "Events.h"

#include "GPIO_CO.h"

#include "GPIO_C1l.h"

#include "GPIO_C2.h"

#include "GPIO_C3.h"

#include "GPIO_D6.h"

#include "GPIO_D7.h"

130 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Processor Expert Interface
Processor Expert Tutorial

#include "IRQA.h"
#include "IRQB.h"

/*Include shared modules, which are used for whole project*/
#include "PE_ Types.h"

#include "PE_Error.h"

#include "PE_Const.h"

#include "IO_Map.h"

/*

** ——mm——
* % Event : IRQB OnInterrupt (module Events)

* %

* % From bean : IRQB [ExtInt]

* % Description

* ok This event is called when the active signal edge/level
*x occurs.

*x Parameters : None

* ok Returns : Nothing

L R R R i R R R R O A R R R N A R A R R N
*/

#pragma interrupt called
extern short IRQB On;
void IRQB OnInterrupt (void)
{
IRQB On “=1;
/* place your IRQB interrupt procedure body here */

/*

L R R R R R i R A O R R O A R A R

* % Event : IRQA OnInterrupt (module Events)

* %

* % From bean : IRQA [ExtInt]

* % Description

* ok This event is called when the active signal edge/level
*x occurs.

*x Parameters : None

* ok Returns : Nothing

** ———m———
*/

#pragma interrupt called
extern short IRQA On;
void IRQA OnInterrupt (void)
{
IRQA On “= 1;
/* place your IRQA interrupt procedure body here */

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 131

4
A

Processor Expert Interface
Processor Expert Tutorial

}

/* END Events */

/*
* %
* %
* %
* %
* %

* %

*/

FHEH R

This file was created by UNIS Processor Expert 03.15 for
the Freescale DSP56x series of microcontrollers.

FHEHH R

Listing 6.2 File LEDcontrol.c

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* *
* *
* %
* *
* *
* %
* *
* *
* %
* *
* *
* %
* *
* *
* %

FHEHH R

Filename : LEDcontrol.C

Project : LEDcontrol

Processor : DSP56F836

Version : Driver 01.00

Compiler : Metrowerks DSP C Compiler
Date/Time : 3/24/2003, 1:18 PM
Abstract

Main module.
Here is to be placed user's code.

Settings

Contents

No public methods

(c) Copyright UNIS, spol. s r.o. 1997-2002

UNIS, spol. s r.o.
Jundrovska 33

132

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

* 624 00 Brno

* % Czech Republic

* %

*x http : WWWwW.processorexpert.com
* % mail : info@processorexpert.com

* %

ok HHAHSHEHHEHS S H SRS S R R
*/
/* MODULE LEDcontrol */

/* Including used modules for compilling procedure */
#include "Cpu.h"

#include "Events.h"

#include "GPIO_CO.h"

#include "GPIO_C1.h"

#include "GPIO C2.h"

#include "GPIO_C3.h"

#include "GPIO_D6.h"

#include "GPIO D7.h"

#include "IRQA.h"

#include "IRQB.h"

/* Include shared modules, which are used for whole project */
#include "PE Types.h"

#include "PE_Error.h"

#include "PE_ Const.h"

#include "IO_Map.h"

/*

* Application Description:

* LED program for the 56836 EVM.

*

* Pattern: "Count" from 0 to 63, using LEDs to represent the bits of
the number.

*

* Pressing the IRQA button flips LED order: commands that previously
went to LED1 go to LED6, and so forth.

* Pressing the IRQB button reverses the enabled/disabled LED states.

*

*/

/* global used as bitfield, to remember currently active bits, used to
* enable/disable all LEDs. */

long num = 0;

short IRQA On,IRQB On;

/* simple loop makes LED changes visible to the eye */
void wait (int);
voide wait (int count)

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 133

y
A

Processor Expert Interface
Processor Expert Tutorial

int i;
for (i=0; i<count; ++1i);

}

/*set the given LED */
void setLED(int) ;
void setLED(int num)

{
if (!IRQA On)
num = 7-num;
if (!IRQB On)
{
switch (num)
{
case 1: GPIO CO0 ClrVal(); break;
case 2: GPIO Cl ClrVal(); break:
case 3: GPIO C2 Clrval(); break;
case 4: GPIO C3 ClrvVal(); break;
case 5: GPIO D6 ClrVal(); break;
case 6: GPIO D7 ClrVal(); break;
}
}
else
{
switch (num)
{
case 1: GPIO CO0 SetVal(); break;
case 2: GPIO Cl SetvVal(); break;
case 3: GPIO C2 SetVal(); break;
case 4: GPIO C3 SetVal(); break;
case 5: GPIO D6 SetVal(); break;
case 6: GPIO D7 SetVal(); break;
}
}
}

/* clear the given LED */
void clrLED(int);
void clrLED(int num)

{
if (!IRQA On)
{
num = 7-num;
}

if (IRQB On)

134 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

{
switch (num)
{
case 1: GPIO CO Clrval(); break;
case 2: GPIO Cl ClrVal(); break;
case 3: GPIO C2 ClrVal(): break;
case 4: GPIO C3 ClrVal(); break;
case 5: GPIO D6 ClrVal(); break;
case 6: GPIO D7 ClrVal(); break;
}
}
else
{
switch (num)
{
case 1: GPIO CO0 SetvVal(); break;
case 2: GPIO Cl SetVal(); break;
case 3: GPIO C2 SetVal(); break;
case 4: GPIO C3 SetVal(); break;
case 5: GPIO D6 SetVal(); break;
case 6: GPIO D7 SetVal(); break;
}
}

}

#define CLEARLEDS showNumberWithLEDs (0)

/* method to set each LED status to reflect the given number/bitfield
*/

void shwNumberWithLEDs (long) ;

void showNumberWithLEDs (long num)

{
int i;
for (i=0; i<6; ++1)
{
if ((num>>i) & 1
setLED (i+1) ;
else
clrLED(i+1) ;
}
}

/* Pattern: "Count" from 0 to 63 in binary using LEDs to represent
bits of the current number. 1 = enabled LED, 0 = disabled LED. */
void pattern();
void pattern()
{

long 1i;

int iz

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 135

y
A

Processor Expert Interface
Processor Expert Tutorial

for (i=0; i<=0b111111; ++i)

{
showNumberWithLEDs (i) ;
wait (100000) ;

}

void main (void)

/*** Processor Expert internal initialization. DON'T REMOVE THIS
CODE!!l **x/

PE low_level init();

/*** End of Processor Expert internal initialization. *k %/

/*Write your code here*/
#pragma warn possunwant off

IRQA On = IRQA GetVal() ? 1 : 0;
IRQB On = IRQB_GetVal () 21 : 0;
for(;;); {

CLEARLEDS;

pattern() ;

}

#pragma warn possunwant reset

/* END LEDcontrol */
*
i* HHHHHHAH RS H R R A R A
i: This file was created by UNIS Processor Expert 03.15 for
* % the Freescale DSP56x series of microcontrollers.
* *
:; HHHHHHAHH S HH A H AR H ARG R A A A A

136 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

C for DSP56800

This chapter explains the CodeWarrior™ compiler for DSP56800.
This chapter contains the following sections:
* Genera Noteson C on page 137

« Number Formats on page 137
¢ Calling Conventions, Stack Frames on page 139

¢ User Stack Allocation on page 144
¢ Sections Generated by the Compiler on page 149

¢ Optimizing Code on page 151
e Compiler or Linker Interactions on page 154

General Notes on C

Note the following on the DSP56800 processors:
¢ C++ languageis not supported.
¢ Floating-point math functions (for example, sin, cos, and sqrt) are not supported.

* The sizeof function in C is not the same as the SIZEOF function in thelinker. In C,
the sizeof function returns a number of type SIZE_T, which the complier declaresto
be of typeunsigned long int. The sizeof function in C returnsthe number of
words, whereas the SIZEOF function in the linker returns the number of bytes.

Number Formats

This section explains how the CodeWarrior compilers implement integer and floating-
point types for DSP56800 processors. Look at 1imits.h for more information on
integer types and £1oat . h for more information on floating-point types. Both
limits.hand float.h are explained in the ML C Reference Manual.

DSP56800 Integer Formats

Table 7.1 on page 138 shows the sizes and ranges of the data types for the DSP56800
compiler.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 137

y
A

C for DSP56800
Number Formats

Table 7.1 Data Type Ranges

Type Option Setting Size Range
(bits)
bool n/a 16 true or false
char Use Unsigned Chars is 16 -32,768 to 32,767
disabled in the C/C++
Language (C Only)
settings panel
Use Unsigned Chars is 16 0 to 65,535
enabled
signed char n/a 16 -32,768 to 32,767
unsigned n/a 16 0 to 65,535
char
short n/a 16 -32,7681032,767
unsigned n/a 16 0t0 65,535
short
int n/a 16 -32,76810 32,767
unsigned n/a 16 010 65,535
int
long n/a 32 -2,147,483,648t0
2,147,483,647
unsigned n/a 32 0t0 4,294,967,295
long

DSP56800 Floating-Point Formats

Table 7.2 on page 138 shows the sizes and ranges of the floating-point types for the
DSP56800 compiler.

Table 7.2 DSP56800 Floating-Point Types

Type Size (bits) | Range
float 32 1.17549e-38103.40282e+38
short double 32 1.17549e-38103.40282e+38

138 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

C for DSP56800
Calling Conventions, Stack Frames

Table 7.2 DSP56800 Floating-Point Types (continued)

Type Size (bits) | Range
double 32 1.17549e-38103.40282e+38
long double 32 1.17549e-38103.40282e+38

DSP56800 Fixed-Point Formats

Table 7.3 on page 139 shows the sizes and ranges of the fixed-point types for the
DSP56800 compiler.

Table 7.3 DSP56800 Fixed-Point Types

Type Declared As Size Range

(bits)
fixed _ fixed 16 (-1.0 <= x < 1.0)
short fixed __ shortfixed 16 (-1.0 <= x < 1.0)
long fixed __longfixed 32 (-1.0 <= x < 1.0)

NOTE For compatibility reasons, preferably use DSP intrinsics instead of fixed-point
typesin Table 7.3 on page 139 for fractional arithmetic.

Calling Conventions, Stack Frames

The CodeWarrior IDE for Freescale DSP56800 stores data and call s functionsin waysthat
might be different from other target platforms.

Calling Conventions

Theregisters A, R2, R3, Y0, and Y1 pass parameters to functions. When afunction is
caled, the parameter list is scanned from left to right. The parameters are passed in this
way:

1. Thefirst 32-bit valueisplaced in A.

2. Thefirst two 16-bit values are placed in YO and Y1, respectively.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 139

3
4

y
A

C for DSP56800
Calling Conventions, Stack Frames

3. Thefirst two 16-bit addresses are placed in R2 and R3.

All remaining parameters are pushed onto the stack, beginning with the rightmost
parameter. Multiple-word parameters have the least significant word pushed onto the
stack first.

When calling aroutine that returns a structure, the caller passes an addressin R0 which
specifies where to copy the structure.

Theregisters A, R0, R2, and Y0 are used to return function results as follows:
e 32-bit values arereturned in A.
¢ 16-bit addresses are returned in R2.
¢ All 16-bit non-address values are returned in Y0.

Volatile and Non-Volatile Registers

Non-volatile Registers
Non-volatile registers are registers that can be saved across functions calls. Theseregisters
are also called saved over acall registers (SOCs).

Volatile Registers

Volatile registers are registers that cannot be saved across functions calls. These registers
are also called non-SOC registers.

NOTE SeeTable 7.4 on page 140 for alist of volatile (non-SOC) and non-volatile
(SOC) registers.

Table 7.4 Volatile and Non-Volatile Registers

Unit Register Size | Type Comments
Name
Arithmetic Y1 16 Volatile (non-
Logic Unit SOC)
(ALU)
YO0 16 Volatile (non-
SOC)
Y 32 Volatile (non-
S0C)

140

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

C for DSP56800
Calling Conventions, Stack Frames

Table 7.4 Volatile and Non-Volatile Registers (continued)

Unit Register Size | Type Comments
Name
X0 16 Volatile (non-
SOCQC)
A2 4 Volatile (non-
SOC)
Al 16 Volatile (non-
SOCQC)
A0 16 Volatile (non-
SOCQC)
Al10 32 Volatile (non-
SOC)
A 36 Volatile (non-
SOCQC)
B2 4 Volatile (non-
SOCQC)
B1 16 Volatile (non-
SOCQC)
BO 16 Volatile (non-
SOCQC)
B10 32 Volatile (non-
SOCQC)
B 36 Volatile (non-
SOC)
Address RO 16 Volatile (non-
Generation Unit SOC)
(AGU)
R1 16 Volatile (non-
SOCQC)
R2 16 Volatile (non-
SOC)
R3 16 Volatile (non-
SOCQC)

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

141

y
A

C for DSP56800

Calling Conventions, Stack Frames

Table 7.4 Volatile and Non-Volatile Registers (continued)

Unit Register Size | Type Comments
Name
N 16 Volatile (non-
SOCQC)
SP 16 Volatile (non-
SOC)
MO01 16 Volatile (non- In certain registers,
SOC) values must be kept for
proper C execution.
Set to OXFFFF for
proper execution of C
code.
Program PC 21 Volatile (non-
Controller SOC)
LA 16 Volatile (non-
SOCQC)
HWS 16 Volatile (non-
SOCQC)
OMR 16 Volatile (non- In certain registers,
SOC) values must be kept for
proper C execution.
For example, set the
CM bit. (See “OMR
Settings.”)
SR 16 Volatile (non-
SOCQC)
LC 16 Volatile (non-
SOC)
Page 0 MRO 16 Volatile (non-
SOCQC)
MR1 16 Volatile (non-
SOCQC)
MR2 16 Volatile (non-
SOCQC)

142 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

C for DSP56800
Calling Conventions, Stack Frames

Table 7.4 Volatile and Non-Volatile Registers (continued)

Unit Register Size | Type Comments

Name

MR3 16 Volatile (non-
SOC)

MR4 16 Volatile (non-
SOC)

MR5 16 Volatile (non-
SOC)

MR6 16 Volatile (non-
SOC)

MR7 16 Volatile (non-
SOC)

MR8 16 Non-volatile
(non-SOC)

MR9 16 Non-volatile
(non-SOC)

MR10 16 Non-volatile
(non-SOC)

MR11 16 Non-volatile
(non-SOC)

MR12 16 Non-volatile
(non-SOC)

MR13 16 Non-volatile
(non-SOC)

MR14 16 Non-volatile
(non-SOC)

MR15 16 Non-volatile
(non-SOC)

Stack Frame

The stack frame is generated as shown in Figure 7.1 on page 144. The stack grows
upward, meaning that pushing data onto the stack increments the address in the stack
pointer.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 143

y
A

C for DSP56800
User Stack Allocation

Figure 7.1 The Stack Frame

SpP called function stack
user locals
compiler locals
nonvolatile registers
status registers
return address
parameters
volatile register space

SP-size calling function stack

The stack pointer register (SP) is a 16-hit register used implicitly in all PUSH and POP
instructions. The software stack supports structured programming, such as parameter
passing to subroutines and local variables. If you are programming in both assembly-
language and high-level language programming, use stack techniques. Note that it is
possible to support passed parameters and local variables for a subroutine at the sametime
within the stack frame.

User Stack Allocation

The 56800 compilers build frames for hierarchies of function calls using the stack pointer
register (SP) to locate the next available free X memory location in which to locate a
function call’ s frame information. There is usually no explicit frame pointer register.
Normally, the size of aframeisfixed at compile time. The total amount of stack space
required for incoming arguments, local variables, function return information, register
save locations (including those in pragmainterrupt functions) is calculated and the stack
frameis allocated at the beginning of afunction call.

Sometimes, you may need to modify the SP at runtime to all ocate temporary local storage
using inline assembly calls. Thisinvalidates al the stack frame offsets from the SP used to
accesslocal variables, arguments on the stack, etc. With the User Stack Allocation feature,
you can use inline assembly instructions (with some restrictions) to modify the SP while
maintaining accurate local variable, compiler temps, and argument offsets, i.e., these
variables can still be accessed since the compiler knows you have modified the stack
pointer.

The User Stack Allocation feature is enabled with the #pragma

check inline sp effects [on]|off|reset] pragmasetting. The pragma
may be set on individual functions. By default the pragma s off at the beginning of
compilation of each filein a project.

144

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

C for DSP56800
User Stack Allocation

The User Stack Allocation feature alows you to simply add inline assembly modification
of the SP anywhere in the function. The restrictions are straight-forward:

1. The SP must be modified by the same amount on al paths leading to a control flow
merge point.

2. The SP must be modified by aliteral constant amount. That is, address modes such as
“(SP)+N" and direct writes to SP are not handled.

3. The SP must remain properly aligned.

4. You must not overwrite the compiler’s stack allocation by decreasing the SPinto the
compiler alocated stack space.

Point 1 above is required when you think about an if-then-else type statement. If one
branch of a decision point modifies the SP one way and the other branch modifies SP
another way, then the value of the SP is run-time dependent, and the compiler is unable to
determine where stack-based variables are located at run-time. To prevent this from
happening, the User Stack Allocation feature traverses the control flow graph, recording
the inline assembly SP modifications through all program paths. It then checks all control
flow merge points to make sure that the SP has been modified consistently in each branch
converging on the merge point. If not, awarning is emitted citing the inconsistency.

Once the compiler determined that inline SP modifications are consistent in the control
flow graph, the SP's offsets used to reference local variables, function arguments, or
temps are fixed up with knowledge of inline assembly modifications of the SP. Note, you
may freely allocate local stack storage:

1. Aslongasitisequally modified along all branches leading to a control flow merge
point.

2. The SPis properly aligned. The SP must be modified by an amount the compiler can
determine at compile time.

A single new pragmais defined. #pragma check inline sp effects
[on|off|reset] will generate awarning if the user specifies an inline assembly
instruction which modifies the SP by a run-time dependent amount. If the pragmais not
specified, then stack offsets used to access stack-based variables will beincorrect. It isthe
user’sresponsibility to enable #pragma check_inline sp effects, if they
desire to modify the SP with inline assembly and access local stack-based variables. Note
this pragma has no effect in function level assembly functions or separate assembly only
sourcefiles (. asm files).

In general, inline assembly may be used to create arbitrary flow graphs and not al can be
detected by the compiler.

For example:

REP #3
LEA (SP)+

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 145

y
A

C for DSP56800
User Stack Allocation

This example would modify the SP by three, but the compiler would only see a
modification of one. Other cases such as these might be created by the user using inline
jumps or branches. These are dangerous constructs and are not detected by the compiler.

In cases where the SP is modified by a run-time dependent amount, awarning is issued.

Listing 7.1 Example 1 — Legal modification of SP Using Inline Assembly

#define EnterCritical () { asm(lea (SP)+); \
asm(move SR,X: (S PN
asm(bfset #Ox0300 SR) \
asm(nop) ; \
asm (no)-}

#define ExitCritical() { asm(lea (SP)-;\
asm(move X:SP) ,SR); \
asm(nop) ; \
asm(nop) ; }
#pragma check_inline_sp effects on
int func ()
{
int a=1, b=1, c;
EnterCritical () ;

c = a+b;

ExitCritical() ;

This case will work because there are no control flow merge points. SP is modified
consistently along all paths from the beginning to the end of the function and is properly
aligned.

Listing 7.2 Example 2 — lllegal Modification of SP using Inline Assembly

#define EnterCritical() { asm(lea (SP)+); \
asm(move SR,X: (S i\
asm(bfset #Ox0300 SR) \
asm(nop) ; \
asm (no)-}

#define ExitCritical() { asm(lea (SP)-;\

asm(move X:SP) ,SR); \
asm (nop) ; \

146 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

C for DSP56800
User Stack Allocation

asm(nop) ; }
#pragma check_inline_sp effects on
int func()
{ int a=1, b=1, c;
if (a)
EnterCritical () ;

c = a+b;

}

else {

}

ExitCritical () ;

(¢}

b++;

return (b+c);

This example will generate the following warning because the SP entering the
‘ExitCritica’ macro is different depending on which branch istakenin theif. Therefore,

accesses to variables a, b, or ¢ may not be correct.

Warning : Inconsistent inline assembly modification of SP in this

function.

M56800 main.c line 29 ExitCritical () ;

Listing 7.3 Example 3 — Modification of SP by a Run-time Dependent Amount

#define EnterCritical() { asm
asm
asm
asm

nop) ;

#define ExitCritical() { asm(lea (SP

#pragma check_inline sp effects on

move n,SP) ;\
move SR,X: (SP)+);

nop) ; }

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 147

4
A

C for DSP56800
User Stack Allocation

int func()

{

int a=1, b=1l, c¢;

if (a)

{
EnterCritical () ;
c = a+b;

}

else {
EnterCritical () ;
c = b++;

return (b+c);

This example will generate the following warning:

Warning : Cannot determine SP modification value at compile time
M56800 main.c line 20 EnterCritical () ;

This exampleis not legal since the SP is modified by run-time dependent amount.

If al inline assembly modifications to the SP along all branches are equal approaching the
exit of afunction, it isnot necessary to explicitly deallocate theincreased stack space. The
compiler “cleansup” the extrainline assembly stack allocation automatically at the end of
the function.

Listing 7.4 Example 4 — Automatic Deallocation of Inline Assembly Stack Allocation

#pragma check_inline sp effects on
int func()

{
int a=1, b=1, c;
if (a)

EnterCritical () ;

c = a+b;

148 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

C for DSP56800
Sections Generated by the Compiler

else {
EnterCritical () ;
c = b++;

return (b+c);

This example does not need to call the ‘ ExitCritical’ macro because the compiler will
automatically clean up the extrainline assembly stack allocation.

Sections Generated by the Compiler

The compiler creates certain sections by default when compiling C source files. These
default sections are all handled by the default LCF and are as follows:

e _.text

The compiler places executable code here by default.
e .data

The compiler places initialized data here by default.
e .bss

The compiler places uninitialized data here by default.

NOTE These sections are the sections generated by the compiler in the default case.
Other user-defined sections can be generated through the use of the #pragma
define_section.

If the project has the Write constant data to .rodata section checkbox enabled in the
M56800 Processor portion of the Target Settings, then the compiler will generate the
.rodata section for constant data. This option is overridden by the #pragma
use_rodata.

NOTE The.rodata sectionisnot handled by the default LCF. Thus, you need to
add how you would like the LCF to place this section within the memory map.
For more details on how to work with LCFs, see“ELF Linker.”

By default, zero-initialized dataisput into the .bss section by the compiler. Thisisdone
to reduce the load size of the application. The load size is reduced because instead of the
debugger loading a sequence of zeros into the . data section (aloadable section), the
compiler simply moves the zero-initialized data to the . bss section (not aloadable

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 149

'
A

C for DSP56800
OMR Settings

section) which isinitialized to zero by the startup code. This behavior can be overridden
by using the #pragma explicit zero data or by using the #pragma
use_rodata, which put al constant datainto aspecia . rodata section.

Table 7.5 on page 150 shows the memory map.

Table 7.5 Memory Map

Section Size Range (Hexadecimal)
PROGRAM 64K x 16 bit 0000 - FFFF
DATA 64K x 16 bit 0000 - FFFF

OMR Settings

The Operating Mode Register (OMR) is part of the program controller of the DSP56800
core. Thisregister is responsible for the mgjority of how the core operates.

NOTE For genera details about the OMR, see the DSP56800 Family Manual. For
specific register details of your chip, see your chip manual.

The CodeWarrior compiler has some requirements about the value contained within this
register and the mode in which the DSP56800 core operated. These requirements are
described in Table 7.6 on page 150.

Table 7.6 OMR Bit Requirements

Bit Number Bit Name Requirements

4 Saturation or SA bit This bit must be cleared for the
compiled code to work properly.

5 Rounding or R bit This bit must be cleared for the
compiled code to work properly.

8 Condition code or CC bit | This bit must be set for the
compiled code to work properly.

NOTE For genera details about the OMR, see the DSP56800 Family Manual. For
specific register details of your chip, see your chip manual.

150 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

C for DSP56800
Optimizing Code

Optimizing Code

Optimizations that are specific to DSP56800 development with the CodeWarrior IDE are:
» Page 0 Register Assignment on page 151

¢ Array Optimizations on page 151
* Multiply and Accumulate (MAC) Optimizations on page 152

Page O Register Assignment

The compiler uses page 0 addresslocationsX: 0x0030 - 0xO003F asregister
variables. Frequently accessed local variables are assigned to the page O registersinstead
of to stack locations so that load and store instructions are shortened. Addresses X :
0x0030 - 0x0037 (pageOregistersMRO-MR7) are volatile registers and can be
overwritten. The remaining registers (page O registers MR8 -MR15) are treated as non-
volatile and, if used by aroutine, must be saved on entry and restored on exit.

Array Optimizations

Array indexing operations are optimized when optimizations are turned oninthe Global
Optimizations settings panel.

In Listing 7.5 on page 151, the i index is optimized out and the operation performs with
address registers.

Listing 7.5 C Code Example for Array Optimizations

void main(void) {
short a[100], b[100];
int i;

// ... other code
for (i = 0; i < 100; i++) {

ArrayA[i] = ArrayBI[il; }
// ... other code

Itis easier to understand the optimization process by viewing the assembler code mixed
with C code, created both before (Listing 7.6 on page 152) and after (Listing 7.7 on
page 152) optimizations are turned on.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 151

y
A

C for DSP56800
Optimizing Code

Listing 7.6 Array Example Before Optimizations - Mixed View

for (i = 0;1i < 100; i++)
00001004: A7B20000 moves #0,X:0x0032
00001006: A90B bra main+0x18 (0x1018) ; 0x000812
alil = blil;
00001007: 880F move SP,RO
00001008: DE40FF9D 1lea (RO+-99)
0000100A: BC32 moves X:0x0032,N
0000100B: F044 move X: (RO+N) ,X0
0000100C: 880F move SP,RO
0000100D: DE40FF39 lea (R0O+-199)
0000100F: BC32 moves X:0x0032,N
00001010: D044 move X0,X: (RO+N)
}

The optimization level has been set to 3 (Listing 7.7 on page 152). Notethat 1 is
optimized out and the operation is now performed with address registers. This
optimization is called induction.

NOTE Withinduction, the variable "i" is no longer used.

Listing 7.7 Array Example After Optimizations - Mixed View

for (1 = 0; 1 < 100; 1i++)
00001008: A7B20000 moves #0,X:0x0032
0000100A: A9O05 bra START_+0x3 (0x101a) ; 0x000810

alil = blil;

0000100B: FO1l6 move X: (R2),X0
0000100C: DO17 move X0,X: (R3)
0000100D: DEO2 lea (R2) +
0000100E: DEO3 lea (R3) +

}

Multiply and Accumulate (MAC)
Optimizations

Multiply and Accumulate optimizations use address register calculations and perform
arithmetic operationswith aMACR instruction. The effect of these optimizationsreflectsin
the source code examplesin Listing 7.8 on page 153 and Listing 7.9 on page 153.

152 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

C for DSP56800
Optimizing Code

Listing 7.8 Sample Multiply and Accumulate Operation

void main(void)

{
_ fixed afll00], b[100];
_ fixed sum = 0;

int i=0;

for (i = 0; 1 < 100; i++){
sum += al[i] * b[i];
}
}

The mixed view without optimizationsis as follows:

Listing 7.9 Assembly Output for Multiply and Accumulate Operation

for (1 = 0; 1 < 100; i++)
00001006: A7B20000 moves #0,X:0x0032
00001008: AS0E bra START _ (0x101f) ; 0x000817
{
sum += al[i] * bl[i];
00001009: 880F move SP,RO
0000100A: DE40FF39 1lea (RO+-199)
0000100C: BC32 moves X:0x0032,N
0000100D: F344 move X: (RO+N) ,Y1
0000100E: 880F move SP,RO
0000100F: DE40FF9D lea (R0O+-99)
00001011: BC32 moves X:0x0032,N
00001012: F144 move X: (RO+N) ,YO
00001013: B033 moves X:0x0033,X0
00001014: 7C79 macr +Y1,Y0,X0
00001015: 9033 moves X0,X:0x0033
}

The optimized version with level 3 optimizations (Listing 7.10 on page 153):

Listing 7.10 Assembly Output for Optimized Multiply and Accumulate Operation

for (1 = 0; 1 < 100; 1i++)

0000100A: A7B20000 moves #0,X:0x0032

0000100C: A908 bra START_+0x5 (0x1021) ; 0x000815
{
sum += al[i] * bl[i];

0000100D: F316 move X:(R2),Y1

0000100E: F117 move X:(R3),Y0

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 153

y
A

C for DSP56800
Compiler or Linker Interactions

0000100F:
00001010
00001011:
00001012:
00001013

}

B033 moves X:0x0033,X0
7C79 macr +Y1,Y0,X0
9033 moves X0,X:0x0033
DEO02 lea (R2) +

DEO3 lea (R3) +

Compiler or Linker Interactions

This section explains important concepts about how the DSP56800 compiler and linker
interact.

Deadstripping Unused Code and Data

The DSP56800 linker deadstrips unused code and data only from files compiled by the
CodeWarrior C compiler. Assembler relocatable files and C object files built by other
compilers are never deadstripped. Libraries built with the CodeWarrior C compiler only
contribute the used objects to the linked program. If alibrary has assembly or other C
compiler-built files, only those files that have at least one referenced object contribute to
the linked program. Completely unreferenced object files are alwaysignored when
deadstripping is enabled. Deadstripping is enabled by default in the Linker > M56800
Linker Target Settings panel.

Link Order

The DSP56800 linker always processes C and assembly sourcefiles, aswell as archive
files(.a and . 1ib) in the order specified under the Link Order tab in the project
window. Thisisimportant in the case of symbol duplication. For example, if asymbol is
defined in a source-code file and alibrary, the linker uses the definition which appears
firstin thelink order.

If you want to change the link order, select the Link Order tab in the project window
and drag your source or library file to the preferred location in the link order list. Files that
appear at the top of thelist are linked first.

154

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

8

Inline Assembly Language
and Intrinsic Functions

This chapter explains the support for assembly language and intrinsic functions that is
built into the CodeWarrior™ compiler. This chapter only covers the CodeWarrior IDE
implementation of Freescale assembly language.

Working With DSP56800 Assembly
Language

This section explains how to use the CodeWarrior compiler and assembler for assembly
language programming, including assembly language syntax.

This chapter contains the following sections:
» Working With DSP56800 Assembly L anguage on page 155

¢ Calling Assembly L anguage Functions from C Code on page 159
« Cadling Functions from Assembly L anguage on page 161

« |ntrinsic Functions for DSP56800 on page 162
Genera Notes on Stand-Alone Assembly and Inline Assembly

The CodeWarrior IDE for the DSP56800 distinguishes between stand-alone assembly
language and inline assembly language.

Stand alone assembly language files (files containing assembly language statements and
having the file mapping suffix associated with the stand-alone assembler, usualy . asm)
are handled with an explicit stand-alone assembler plugin called theasm m56800.d11.
This plugin assembler supports a feature-rich assembly language syntax. The exact syntax
of the assembly language statements and directives are found in the
DSP56800x_Assembly.pdf.

Inline assembly language, on the other hand, is a DSP56800 instruction syntax handled
directly by an internal compiler assembly language syntax parser and assembler. Inline
assembly isnormally distinguished by asm { } constructswithin a C language function
or as an explicit assembly language function in C, such asasm int

functionname (). Theinline assembler is meant for light duty enhancements or
changes to instructions emitted by the compiler.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 155

V¥ ¢
i

Inline Assembly Language and Intrinsic Functions
Working With DSP56800 Assembly Language

The following outlines afew of the key differences between stand-alone and inline
assembly:

« Inline assembly statements are restricted to simple mnemonics and operand syntax as
documented in the DSP56800 Family manual.

¢ Directives are not supported in inline assembly.
¢ Single and dua parallel move syntax is supported in both assemblers.

« Labelsmay bedefined ininline assembly language, but their scopeisrestricted to the
current function being compiled.

¢ Labelsin the stand-alone assembler may be defined and exported (viathe GLOBAL
directive) in either X: or P: address space, therefore these |abels are not scope
limited.

« Datavariables may not be defined in inline assembly language as the ORG directive
is not supported in inline assembly (datarequiresORG X: directive).

¢ Colons arerequired for any label definition in the inline assembler. The stand-alone
assembler does not require acolon on labels aslong as the label symbol name begins
in the first character position.

« Mnemonics may begin at any character position on alinein the inline assembler.
Mnemonics may not begin at the first character position in the stand-alone
assembler.

¢ The stand-alone assembler allows semicolon comments. The inline assembler does
not allow semicolon comments.

Inline Assembly Language Syntax for
DSP56800

This section explains the inline assembly language syntax specific to DSP56800
development with the CodeWarrior IDE.

Function-level Inline Assembly Language

To specify that ablock of codein your file should be interpreted as assembly language,
use the asm keyword and standard DSP56800 instruction mnemonics.

To ensure that the C compiler recognizes the asm keyword, you must disable the ANSI
Keywords Only optioninthe C/C++ Language (C Only) panel.

Y ou can use the M56800 inline assembly language to specify that an entire functionisin
assembly language by using the syntax displayed in Listing 8.1 on page 157.

156

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
Working With DSP56800 Assembly Language

Listing 8.1 Function-level Syntax

asm <function header>
{

<assembly instructionss>

}

The function header is any valid C function header, and the local declarations are any
valid C local declarations.

Statement-level Inline Assembly Language

The M56800 inline assembly language supports single assembly instructions as well as
asm blocks, within afunction using the syntax in Listing 8.2 on page 157. Theinline
assembly language statement is any valid assembly language statement.

Listing 8.2 Statement-level Syntax

asm { inline assembly statement
inline assembly statement

}
asm (inline assembly statement ;
inline assembly statement ;

There are two different ways to represent statement-level assembly. In the first way, you
use braces"{}" to contain the block. Within this type of block, the semicolon that
separates statementsis optional. In the second way, you use parentheses ()" to contain the
block and the semicolon between statements is mandatory.

Adding Assembly Language to C Source
Code

There are two ways to add assembly language statementsin a C source code file. Y ou can
define afunction with the asm qualifier, or you can use the inline assembly language.

Thefirst method uses the asm keyword to specify that all statementsin thefunction arein

assembly language, as shown in Listing 8.3 on page 158 and Listing 8.7 on page 160.
Notethat if you are using this method, you must define local variables within the function.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 157

y
A

Inline Assembly Language and Intrinsic Functions
Working With DSP56800 Assembly Language

Listing 8.3 Defining a Function with asm

asm long MyAsmFunction (void)
{
/* Local variable definitions */
/* Assembly language instructions */

}

The second method uses the asm qualifier as a statement to provide inline assembly
language instructions, as shown in Listing 8.4 on page 158. Note that if you are using this
method, you must not define local variables within the inline asm statement.

Listing 8.4 Inline Assembly with asm

long MyInlineAsmFunction (void)

asm { move x:(r0)+,x0 }

General Notes on Inline Assembly
Language
Keep these points in mind as you write inline assembly language functions:
 All statements must either be alabel:
[LocalLabel:]
Or an instruction:
((instruction) [operands])
 Each statement must end with anew line
« Assembly language directives, instructions, and registers are not case-sensitive:
add x0,vy0
ADD X0,YO

Creating Labels for M56800 Inline
Assembly

A label can be any identifier that you have not aready declared asalocal variable. A label
must end with a colon.

158 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
Calling Assembly Language Functions from C Code

Listing 8.5 Labels in M56800 Assembly

x1: add
x2: add
x3 add

x0,v1l,a
x0,vy1l,a
x0,yv1l,a //ERROR, MISSING COLON

Using Comments in M56800 Inline
Assembly

Comments in inline assembly language can only be in the form of C and C++ comments.
Y ou cannot begin the inline assembly language comments with a semicolon (;) nor with a
pound sign (#) - the preprocessor uses the pound sign. Y ou can use the semicolon for
commentsin . asm sources. The proper comment format is shownin Listing 8.6 on

page 159.

Listing 8.6 Comments Allowed in M56800 Inline Assembly Language

move
add

move
adda

x:(r3),y0 # ERROR
x0,vy0 // OK

r2,x: (sp) ; ERROR
ro,rl,n /* OK */

Calling Assembly Language Functions from
C Code

Y ou can call assembly language functions from C just like you would call any standard C
function. Y ou need to use standard C syntax for calling inline assembly language
functions and stand-al one assembly language functionsin . asm files.

Calling Inline Assembly Language
Functions

Y ou can call inline assembly language functions just like you would call any standard C
function. Listing 8.7 on page 160 demonstrates how to create an inline assembly language
function in a C sourcefile. This example adds two 16-bit integers and returns the result.

Notice that you are passing two 16-bit addressesto the add_int function. Y ou pick up
those addressesin R3 and R2, and in Y 0 pass back the result of the addition.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 159

y
A

Inline Assembly Language and Intrinsic Functions
Calling Assembly Language Functions from C Code

Listing 8.7 Sample Code - Creating an Inline Assembly Language Function

asm int add int(int * i, int * j)
{

move x:(r2),y0

move x:(r3),x0

add x0,y0

// int result returned in yO

rts

}

Now you can call your inline assembly language function with standard C notation, asin
Listing 8.8 on page 160.

Listing 8.8 Sample Code - Calling an Inline Assembly Language Function

int x = 4, y = 2;

y = add_int(&x, &y); /* Returns 6 */

Calling Stand-alone Assembly Language
Functions

In order for your assembly language files to be called from C code, you need to specify a
SECTION mapping for your code so that it islinked appropriately. Y ou must also specify

amemory space location. Codeis usually specified to program memory (P) space with the
ORG directive.

When defining an assembly language function, use the GLOBAL directive to specify the
list of symbols within the current section. Y ou can then define the assembly language
function.

An example of acomplete assembly language function is shown in Listing 8.9 on

page 160. In this function, two 16-bit integers are written to program memory. A separate
function is needed to write to P. memory because C pointer variables cannot be employed.
C pointer values only allow accessto X: data memory.

Thefirst parameter is a short value and the second parameter is the 16-bit address where
the first parameter is written.

Listing 8.9 Sample Code - Creating an Assembly Language Function

;"my_ assym.asm”
SECTION user ;map to user defined section in CODE

160 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
Calling Functions from Assembly Language

ORG P: ;put the following program in P
;memory
GLOBAL Fpmemwrite ;This symbol is defined within the

;current section and should be
;accessible by all sections

Fpmemwrite:
MOVE Y1l,RO ;Set up pointer to address
NOP ;Pipeline delay for RO
MOVE YO0,P: (RO)+ ;Write 16-bit value to address
;pointed to by RO in P: memory and
;post-increment RO
rts ;return to calling function
ENDSEC ;End of section
END ;End of source program

NOTE The compiler prependsthe letter ‘F to every function label name. Therefore,
when calling C functions from either Assembly Language or Inline Assembly,
the’F must be prepended.

Y ou can now call your assembly language function from C, as shown in Listing 8.10 on
page 161.

Listing 8.10 Sample Code - Calling an Assembly Language Function from C

void pmemwrite(short, short); /* Write a value into P: memory */

void main(void)

{

// ...other code
// Write the value given in the first parameter to the address
// of the second parameter in P: memory

pmemwrite ((short)0xE9C8, (short)0x0010);

// other code...

Calling Functions from Assembly Language

Assembly programs can call C function or Assembly language functions. This section
explains the compiler convention for:

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 161

3
4

y
A

Inline Assembly Language and Intrinsic Functions
Intrinsic Functions for DSP56800

« Caling C Functions from Assembly Language

Functionswritten in C can be called from within assembly language instructions. For
example, if you defined your C program function as:

void foot(void) {
/* Do something */
}
Y ou could then call your C function from assembly language as:
jsr Ffoot
¢ Caling Assembly Language Functions from Assembly Language

To call an assembly language function from assembly language, usethe jsr
instruction with the function name as defined in your assembly language source. For
example, you can call your function in Listing 8.9 on page 160 as:

jsr Fpmemwrite

Intrinsic Functions for DSP56800

This section explains issues related to DSP56800 intrinsic functions and using them with
DSP56800 projects.

¢ An Overview of Intrinsic Functions on page 162

* Fractional Arithmetic on page 163

¢ Macros Used with Intrinsics on page 163

An Overview of Intrinsic Functions

CodeWarrior C for DSP56800 hasintrinsic functions to generate inline assembly language
instructions.

Intrinsic functions are used to target specific processor instructions. They can be helpful in
accomplishing afew different things:

« Intrinsic functions et you pass in data to perform specific optimized computations.
For example, some calculations may be inefficient if coded in C because the
compiler hasto follow ANSI C rulesto represent data, and this may cause the
program to jump to runtime math routines for certain computations. In such cases, it
probably is better to code these calcul ations using assembly language instructions
and intrinsic functions.

« Intrinsic functions can control small tasks. For example, with intrinsic functions you
can set a bit in the operating mode register to enable saturation. Thisis more

162 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
Intrinsic Functions for DSP56800

convenient than using inline assembly language syntax and specifying the operation
inan asm block, every time that the operation is required.

NOTE Support for intrinsic functionsis not part of the ANSI C standard. They
comprise an extension provided by the CodeWarrior compiler.

Fractional Arithmetic

Many of theintrinsic functions for Freescale DSP56800 use fractiona arithmetic with
implied fractional values. Animplied fractional value is a symbol, which has been
declared as an integer type, but is to be calculated as afractional type. Datain a memory
location or register can beinterpreted as fractional or integer, depending on the needs of a
user's program.

All intrinsic functions that generate multiply and divide instructions (DIV, MPY, MAC,
MPY R, and MACR) perform fractional arithmetic on implied fractiona values. The
following equation shows the relationship between a 16-bit integer and a fractional value:

Fractional Value = Integer Value/ (21°)
Similarly, the equation for converting a 32-bit integer to a fractional valueis as follows:
Fractional Value = Long Integer Value/ (2°1)

Table 8.1 on page 163 shows how both 16 and 32-bit values can be interpreted as either
fractional or integer values.

Table 8.1 Interpretation of 16- and 32-bit Values

Type Hex Integer Fixed-point Value
Value

short int 0x2000 8192 0.25

short int 0xE000 -8192 -0.25

long int 0x20000000 536870912 0.25

long int 0xE0000000 -536870912 -0.25

Macros Used with Intrinsics
These macros are used in intrinsic functions:

* Word16. A macro for signed short.

« Word32. A macro for signed long.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 163

4
A

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

List of Intrinsic Functions: Definitions and
Examples

The intrinsic functions supported by the DSP56800 are shown in Table 8.2 on page 164.

Table 8.2 Intrinsic Functions for DSP56800

Category Function Category Function
Absolute/Negate on abs on page 166 Multiplication/ mac_r on
page 166 MAC on page 179 page 180
negate on msu_r on
page 166 page 181
L_negate on mult on
page 167 page 181
Addition/ add on page 167 mult_r on
Subtraction on page 182
page 167
sub on page 168 L_mac on
page 183
L_add on page 169 L_msu on
page 184
L_sub on page 169 L_mult on
page 184
Control on page 170 stop on page 170 L_mult Iso
n page 185

164

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Table 8.2 Intrinsic Functions for DSP56800 (continued)

Conversion on fixed2int on Normalization on norm_Il on
page 170 page 171 page 185 page 186
fixed2long on norm_s on
page 171 page 186
fixed2short on Rounding on round on
page 172 page 187 page 187
int2fixed on Shifting on page 188 shl on
page 172 page 188
labs on page 173 shron
page 189
long2fixed on shr_ron
page 174 page 190
short2fixed on L_shlon
page 174 page 190
Copy on page 174 memcpy on L_shron
page 175 page 191
strcpy on L_shr ron
page 175 page 192
Deposit/ Extract on extract_h on
page 176 page 176
extract | on
page 177
L_deposit_h on
page 177
L_deposit_| on
page 178
Division on page 178 div on page 178
div_Is on
page 179
56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 165

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Absolute/Negate

« _onpage 166__abs on page 166
o negate on page 166

e _L_negate on page 167

__abs

Definition

Computes and returns the absol ute value of a 16-bit integer. Generates an ABS instruction.
Assumption

Prototype

int _ abs(int);
Example
int i = -2;

i=_abs(1i);

__negate

Definition
Negates a 16-bit integer or fractional value returning a 16-bit result. Returns Ox7FFF
for an input of 0x8000.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Wordlé _ negate(Wordlé svarl)

166

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
int result, sl = 0xXE000;/* - 0.25 */
result = negate(sl);

// Expected value of result: 0x2000 = 0.25

_L_negate

Definition

Negates a 32-hit integer or fractional value returning a 32-bit result. Returns
Ox7FFFFFFF for an input of 0x80000000.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L negate (Word32 lvarl)

Example
long result, sl = 0xE0000000; /* - 0.25 */
result = L negate(sl);

// Expected value of result: 0x20000000 = 0.25

Addition/Subtraction

e __add on page 167
e __subonpage 168

e _L_addon page 169
e | _subonpage 169

add

Definition
Addition of two 16-hit integer or fractional values, returning a 16-bit result.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 167

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé _ add(Wordlé src_dst, Wordlé src2)

Example
short s1 = 0x4000;/* 0.5 */
short s2 = 0x2000;/* 0.25 */

short result;

result = add(sl,s2);

// Expected value of result: 0x6000 = 0.75

__sub

Definition
Subtraction of two 16-bit integer or fractional values, returning a 16-bit result.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Wordlé _ sub(Wordlé src_dst, Wordlé src2)

Example
short sl1 = 0x4000;/* 0.5 */

short s2 = 0xE000;/* -0.25 */

short result;

result = _ sub(sl,s2);

// Expected value of result: 0x6000 = 0.75

168 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

_L_add
Definition
Addition of two 32-bit integer or fractional values, returning a 32-bit result.
Assumptions
OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Word32 _L add(Word32 src_dst, Word32 src2)
Example
long la = 0x40000000;/* 0.5 */
long 1lb = 0x20000000;/* 0.25 */
long result;
result = L add(la,lb);
// Expected value of result: 0x60000000 = 0.75
L _sub

Definition
Subtraction of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L sub(Word32 src_dst, Word32 src2)

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 169

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
long la = 0x40000000;/* 0.5 */
long 1lb = 0xE0000000;/* -0.25 */

long result;

result = L sub(la,lb);
// Expected value of result: 0x60000000 = 0.75

Control
stop on page 170

__stop

Definition

Generates a STOP instruction which places the processor in the low power STOP mode.

Prototype

void _ stop(void)

Usage

__stop();

Conversion

Thefollowing intrinsics are provided to convert between various integer and fixed point
types. The appropriate intrinsic should always be used when referencing an integer
constant in fixed point context (i.e., assignment and comparisons).

o _ fixed2int on page 171

o _ fixed2long on page 171

o __ fixed2short on page 172
int2fixed on page 172

e _ labsonpage 173

long2fixed on page 174
e _ short2fixed on page 174

170

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

__fixed2int

Definition
Convertsa 16-bit __fixed _ valueto a 16-bit integer.

Prototype

int _ fixed2int (_ fixed);

Example

int 1i;

int 3j;

_ fixed i fix = 0.645;

i = fixed2int(1i_fix); /* Returns 21135 */
j = fixed2int(0.645);

if (4 == 3)

printf ("PASSED\n") ;

if (i == fixed2int(0.645))
printf ("PASSED\n") ;

if (§j == 21135)
printf ("PASSED\n") ;

__fixed2long
Definition
Converts a32-bit __longfixed _ value to a 32-bit long integer.

Prototype
long fixed2long (_ longfixed);

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 171

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example

long 1;

_ _longfixed 1fix = 0.645;

1 = fixed2long(1fix); /* Returns 1385126952 */

__fixed2short
Definition
Converts a 16-bit __shortfixed _ value to a 16-bit short integer.

Prototype

short _ fixed2short (_ shortfixed);

Example
short g;

__shortfixed sfix = 0.645;

s = _ fixed2short(sfix); /* Returns 21135 */

__int2fixed
Definition
Converts a 16-hit integer valueto a 16-bit __fixed _ value.

Prototype

_ fixed _ int2fixed (int);

172 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
int i = 0x2000;
_ fixed ifix;

_ fixed jfix;

/* Returns 0.25%/

ifix = int2fixed(i);
jfix = int2fixed(0x2000);
if (ifix == jfix)

printf ("PASSED\n") ;

if (ifix == _ int2fixed(0x2000))
printf ("PASSED\n") ;

if (jfix == 0.25)
printf ("PASSED\n") ;

__labs

Definition

Computes and returns the absolute value of a 32-bit long integer. Generates an ABS
instruction.

Prototype

long _ labs (long);

Example
long 1 = -2;
1 = _labs(1); /* Returns 2 */

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 173

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

__long2fixed

Definition
Converts a 32-bit long integer to a 32-bit __longfixed__type.

Prototype
__longfixed __long2fixed (long);

Example

long 1 = 2;

_ longfixed 1fix;

/* Returns 9.31le-10 (2730)*/
1fix = long2fixed(1);

__short2fixed

Definition
Converts a 16-bit short integer to a 16-bit __shortfixed _ type.

Prototype

_ _shortfixed = short2fixed (short);

Example

short s = 2;

__shortfixed sfix;

/* Returns 0.0000610 (27 1%)x*/

sfix = _ short2fixed(s);

Copy

D memcpy on page 175
o strcpy on page 175

174

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

__memcpy

Definition
Copy acontiguous block of memory of n characters from the item pointed to by source

to theitem pointed to by dest . Thebehavior of __memcpy () isundefined if the
areas pointed to by dest and source overlap.

Prototype
void * memcpy (void *dest,

const void *source,

size t n);
Example
const int len = 9;
char al[len] = “Socrates\0”;
char a2[len] = null;

/* Now copy contents of al to a2 */

~ _memcpy((char *)a2, (char *)al, len);

__strcpy

Definition

Copies the character array pointed to by source to the character array pointed to by
dest. The source argument must be a constant string. The function will not beinlined
if source isdefined outside of the function call. The resulting character array at dest
isnull terminated as well.

Prototype
char * strcpy (char *dest,

const char *source) ;

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 175

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
char d[11];

__strcpy(d, “Metrowerks\0”);

/* d array now contains the string “Metrowerks” */

Deposit/ Extract

. extract_h on page 176

e _ extract_| on page 177

e | _deposit_hon page 177
e _L_deposit_| on page 178

__extract_h

Definition

Extracts the 16 MSBs of a 32-hit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion. Corresponds to "truncation” when applied to fractional values.

Prototype

Wordlé _ extract h(Word32 lsrc)

Example
long 1 = 0x87654321;

short result;

result = _ extract h(l);

// Expected value of result: 0x8765

176 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

__extract_|

Definition
Extracts the 16 L SBs of a 32-hit integer or fractional value. Returns a 16-bit value. Does

not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion.

Prototype
Wordlé _ extract 1 (Word32 lsrc)

Example
long 1 = 0x87654321;

short result;

result = _ extract 1(1);

// Expected value of result: 0x4321

_L_deposit_h

Definition

Deposits the 16-hit integer or fractional value into the upper 16 bits of a 32-bit value, and
zeroes out the lower 16 bits of a 32-bit value.

Prototype

Word32 L deposit h(Wordlé ssrc)

Example
short sl = Ox3FFF;

long result;

result = _L deposit_h(sl);
// Expected value of result: 0x3f£ff0000

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 177

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

_L_deposit_|

Definition

Deposits the 16-bit integer or fractional value into the lower 16 bits of a 32- bit value, and
sign extends the upper 16 bits of a 32-bit value.

Prototype

Word32 _L deposit_1(Wordlé ssrc)

Example
short sl = Ox7FFF;

long result;

result = L deposit 1(sl);
// Expected value of result: 0x00007FFF

Division
. div on page 178
e _ div_Isonpage 179

div

Definition

Dividestwo 16-hit short integers as a fractional operation and returns the result as a 16-bit
short integer. Generates a DIV instruction.

Prototype

short div(short, short);

178

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short i = 0x2000; /* Assign 0.25 to 1 */
short j = 0x4000; /* Assign 0.50 to j */

_ fixed £;

i = div(i, j); /* Returns 16384 */

f = _ short2fixed(i); /* Returns 0.50 */
_div_ls

Definition

Single quadrant division, that is, both operands are positive two 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns Ox7FFF (occurs naturally).
Note

Does not check for division overflow cases.

Does not check for divide by zero cases.

Prototype

Wordlé _ div_s(Wordlé s_denominator, Wordlé s numerator)

Example
short s1=0x2000;/* 0.25 */
short s2=0x4000;/* 0.5 */

short result;

result = _ div _s(s2,sl1);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

Multiplication/ MAC
e __mac_ron page 180
e __msu_ron page 181
e __mult on page 181

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 179

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

. mult_r on page 182
e _L_mac on page 183
e | _msuonpage 184

e _L_mult on page 184
e | _mult_Ison page 185

__mac_r

Definition

Multiply two 16-hit fractional values and add to 32-hit fractional value. Round into a 16-
bit result, saturating if necessary. When an accumulator is the destination, zeroes out the
L SP portion.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’'sR bit was set to 1 at least 3 cycles before this code, that is, 2’'s complement
rounding, not convergent rounding.

Prototype

Wordlé _ mac_ r(Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short s1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 */
short result;

long Acc = 0x0000FFFF;

result = mac_r(Acc,sl,s2);

// Expected value of result: 0xE001

180

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

_msu_r

Definition
Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional

value. Round into a 16-hit result, saturating if necessary. When an accumulator isthe
destination, zeroes out the L SP portion.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’'sR bit was set to 1 at least 3 cycles before this code, that is, 2’'s complement
rounding, not convergent rounding.

Prototype
Wordlé _ msu_r (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short s1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 */
short result;

long Acc = 0x20000000;

result = msu_r(Acc,sl,s2);

// Expected value of result: 0x4000

__mult

Definition
Multiply two 16-bit fractional values and truncate into a 16-bit fractional result. Saturates

only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out
the LSP portion.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 181

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé _ mult (Wordlé sinpl, Wordlé sinp2)

Example
short s1 = 0x2000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */

short result;

result = mult(sl,s2);

// Expected value of result: 0.625 = 0x0800

__mult_r

Definition

Multiply two 16-bit fractional values, round into a 16-bit fractional result. Saturates only
for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out the
L SP portion.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’'sR bit was set to 1 at least 3 cycles before this code, that is, 2’'s complement
rounding, not convergent rounding.

Prototype

Wordlé _ mult r (Wordlé sinpl, Wordlé sinp2)

182

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short sl1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult r(sl,s2);

// Expected value of result: 0.0625 = 0x0800

_L_mac

Definition
Multiply two 16-bit fractional values and add to 32-bit fractional value, generating a 32-
bit result, saturating if necessary.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L mac (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

long result, Acc = 0x20000000;/* 0.25 */

result = L mac(Acc,sl,s2);

// Expected value of result: 0

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 183

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

_L_msu
Definition
Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value, saturating if necessary. Generates a 32-bit resullt.
Assumptions
OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Word32 L msu(Word32 laccum, Wordlé sinpl, Wordlé sinp2)
Example
short s1 = 0xC000;/* - 0.5 */
short s2 = 0xC000;/* - 0.5 */
long result, Acc = 0;
result = L msu(Acc,sl,s2);
// Expected value of result: 0.25
_L_mult

Definition
Multiply two 16-bit fractional values generating a signed 32-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L mult (Wordlé sinpl, Wordlé sinp2)

184 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short sl1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

long result;

result = L mult(sl,s2);
// Expected value of result: 0.0625 = 0x08000000

_L_mult_Is

Definition

Multiply one 32-bit and one-16-bit fractional value, generating a signed 32-bit fractional
result. Saturates only for the case of 0x80000000 x 0x8000.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L mult ls(Word32 linpl, Wordlé sinp2)

Example
long 11 = 0x20000000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */

long result;

result = L mult 1s(11,s2);
// Expected value of result: 0.0625 = 0x08000000

Normalization

e« _ norm_| on page 186

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 185

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

. norm_s on page 186

__norm_|

Definition

Computes the number of |eft shifts required to normalize a 32-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x00000000.

Note

Does not actually normalize the value!

This operationis NOT optimal on the DSP56800 because of the case of returning O for an
input of 0x00000000.

Prototype

Wordlé _ norm 1 (Word32 lsrc)

Example
long 11 = 0x20000000;/* .25 */

short result;

result = _ norm 1(11);

// Expected value of result: 1

__norm_s

Definition

Computes the number of |€eft shifts required to normalize a 16-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x0000.

Note

Does not actually normalize the value!

186 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

This operationis NOT optimal on the DSP56800 because of the case of returning O for an
input of 0x0000. Seetheintrinsic __norm_| on page 186 which is more optimal but
generates a different value for the case where the input == 0x0000.

Prototype

Wordlé _ norm s (Wordlé ssrc)

Example
short s1 = 0x2000;/* .25 */

short result;

result = norm s(sl);

// Expected value of result: 1

Rounding

round on page 187

__round

Definition

Rounds a 32-bit fractional value into a 16-hit result. When an accumulator isthe
destination, zeroes out the L SP portion.

Assumptions

OMR'sR hit was set to 1 at least 3 cycles before this code, that is, 2's complement
rounding, not convergent rounding.

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé _ round (Word32 lvarl)

Example
long 1 = 0x12348002;/*if low 16 bits = OxFFFF > 0x8000 then

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 187

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

add 1 */

short result;

result = round(1l);

// Expected value of result: 0x1235

Shifting
e __shl on page 188
e _ shronpage189
e __shr_ronpage190
e _L_shl on page 190
e _L_shronpage191
e _L_shr_ronpage 192

__shl

Definition
Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
|eft shift is performed. Otherwise, aright shift is performed. Saturation may occur during a
|eft shift. When an accumulator is the destination, zeroes out the L SP portion.
Note
This operation is not optimal on the DSP56800 because of the saturation requirements and
the bidirectional capability.
Assumptions
OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Wordlé _ shl (Wordlé sval2shft, Wordlée s_shftamount)

188

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example

short result;
short sl = 0x1234;
short s2= 1;

result = _ shl(sl,s2);
// Expected value of result: 0x2468

__shr

Definition
Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. Saturation may occur during a
|eft shift. When an accumulator is the destination, zeroes out the L SP portion.

Note
This operation is not optimal on the DSP56800 because of the saturation requirements and
the bidirectional capability.
Assumptions

OMR'’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Wordlé _ shr(Wordlé sval2shft, Wordlée s_shftamount)

Example
short result;
short sl = 0x2468;

short s2= 1;

result = shr(sl,s2);

// Expected value of result: 0x1234

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 189

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

__shr_r
Definition
Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. If aright shift is performed,
then rounding performed on result. Saturation may occur during aleft shift. When an
accumulator is the destination, zeroes out the L SP portion.
Note
This operation is not optimal on the DSP56800 because of the saturation requirements and
the bidirectional capability.
Assumptions
OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Wordlé _ shr r(Wordlé s_val2shft, Wordlé s_shftamount)
Example
short result;
short s1 = 0x2468;
short s2= 1;
result = shr(sl,s2);
// Expected value of result: 0x1234
_L_shl
Definition
Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, aright shift is performed. Saturation may occur during a
|eft shift. When an accumulator is the destination, zeroes out the L SP portion.
190 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Note

This operation is not optimal on the DSP56800 because of the saturation requirements and
the bidirectional capabhility. Seetheintrinsic _L_shl on page 190 or result = shifts(l,

s1); on page 191 which are more optimal.
Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L shl (Word32 lval2shft, Wordlé s _shftamount)

Example
long result, 1 = 0x12345678;
short s2= 1;

result = L shl(1l,s2);
// Expected value of result: 0x2468ACF0
result = shlfts(l, s1);
// Expected value of result: 0x91A259E0

_L_shr

Definition

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the L SP portion.

Note

This operation isnot optimal on the DSP56800 because of the saturation requirements and
the bidirectional capability.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 191

A 4
4\

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Prototype
Word32 L shr(Word32 lval2shft, Wordlé s shftamount)

Example
long result, 1 = 0x24680000;
short s2= 1;

result = L shr(l,s2);
// Expected value of result: 0x12340000

L shrr

Definition

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. If aright shift is performed,
then rounding performed onresult. Saturation may occur during aleft shift.
Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 _L shr r(Word32 lval2shft, Wordlé s_shftamount)

Example
long 11 = 0x41111111;
short s2 = 1;

long result;

result = L shr r(1l1,s2);

// Expected value of result: 0x20888889

192

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

Pipeline Restrictions

This section gives an overview of how the pipeline restrictions are handled by the
DSP56800 compiler.

Thefollowing list contains pipeline restrictions that are detected and handled. If any of
these cases are detected by the compiler’ sinline assembler, the compiler generates a
warning and inserts a NOP instruction to correct the violation of the pipeline restriction.

1. A NORM instruction cannot be immediately followed by an instruction that accesses
X memory using the RO pointer. The following example shows awarning is generated:

NORM RO,A
MOVE X:(RO)+,A ;Cannot reference RO after NORM

2. Any jump, branch, or branch on bit field may not specify the instruction at LA or LA-
1 of ahardware DO loop as their target addresses.

DO #7,LABEL

BCC LABEL ;Cannot branch to LA
;instruction

LABEL:

3. Any jump, branch, or branch on bit field instructions may not be located in the last two
locations of ahardware DO loop (that is, at LA or at LA-1).

DO #7,LABEL
BCC ULABEL ;Cannot branch in LA
;instruction

LABEL:
NOTE A warning will be emitted when pipeline conflicts are detected.

4. If aMOVE ingtruction changes the value in one of the address registers (R0-R3), then
the contents of the register are not available for use until the second following
instruction. That is, the instruction immediately following the MOV E instruction does
not use the modified register to access X memory or update an address. Thisaso
appliesto the SP register and MO1 register.

MOVE X:(SP-2),R1
MOVE X:(R1)+,A; ; Rl is not available

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 193

A 4
4\

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

In addition, it appliesif a16-bit immediate value is moved to the N register, and the option
for Compiler adjustsfor delayed load of N register in the M56800 Processor target
settings panel is enabled.

MOVE #3,n
MOVE X: (SP+N) , YO ; N is not available

5. If abit-field instruction changes the value in one of the address registers (R0—R3), then
the contents of the register are not available for use until the second following
instruction. That is, the instruction immediately following the MOV E instruction does
not use the modified register to access X memory or update an address. This appliesto
the SP and MO1 registers.

BFCLR #1,R1
MOVE X:(R1)+,A; ; R1 is not available

In addition, it applies to the N register when the Compiler adjusts for delayed
load of N register option in the M56800 Processor target settings panel is enabled.

BFCLR #1,N
MOVE X: (RO+N) , YO ;N is not available

6. For the case of nested hardware DO loops, it is required that there be at least two
instructions after the pop of the LA and L C registers before the instruction at the last
address of the outer loop.

DO #3,0LABEL ; Beginning of outer loop

PUSH LC

PUSH LA

DO X0,ILABEL ; Beginning of inner loop

; (instructions)

REP Y0 ; Skips ASL if y0 = 0

ASL A

; (instructions)

ILABEL: ; End of inner loop
POP LA
POP LC
NOP; 3 instructions required after POP
NOP; 3 instructions required after POP
NOP; 3 instructions required after POP

OLABEL: ; End of outer loop

194

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

7. If the CLR instruction changes the value in one of the address registers (R0O-R3), then
the contents of the register are not available for use until the second following
instruction. That is, the instruction immediately following the CLR instruction does
not use the modified register to acccess X memory or update an address. This also
appliesto the SP register and the MO1 register.

CLR RO
MOVE X: (RO)+,A;Cannot reference RO after NORM

In addition, it applies if the 16-bit immediate value is moved to the N register and the
option for Compiler adjusts for delayed load of N register in the M56800
Processor target settings panel is enabled.

clr N
MOVE X:(SP)+N,YO ;N is not available

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 195

wr
4\

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

196 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Debugging for DSP56800

This chapter, which explains the generic features of the CodeWarrior™ debugger, consists
of these sections:

Using Remote Connections on page 197

Target Settings for Debugaing on page 207

Command Converter Server on page 207
L aunching and Operating the Debugger

L oad/Save Memory on page 225
Fill Memory on page 228

Save/Restore Registers on page 230
ONCE Debugger Features on page 232

Using the 56800 Simulator
Reqgister Details Window on page 242

Loading a .€lf File without a Project on page 243
Using the Command Window on page 244

System-L evel Connect on page 244
Debugaing on a Complex Scan Chain on page 245

Debugging in the Flash Memory on page 249
Setting up the Debugger for Flash Programming on page 251

Notes for Debugging on Hardware on page 253
Flash Programming the Reset and Interrupt Vectors on page 254

Using Remote Connections

Remote connections are settings that describe how the CodeWarrior IDE should connect
to and control program execution on target boards or systems, such as the debugger
protocol, connection type, and connection parameters the | DE should use when it connects
to the target system. This section shows you how to access remote connectionsin the
CodeWarrior IDE, and describes the various debugger protocols and connection types the
IDE supports.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 197

3
4

y
A

Debugging for DSP56800
Using Remote Connections

NOTE

TIP

We have included severa types of remote connections in the default

CodeWarrior installation. Y ou can modify these default remote connectionsto
suit your particular needs.

project, the IDE asks you to specify the type of debugger interface (remote

connection) you want to use. To debug the generated CodeWarrior project, you

When you import a Makefile into the CodeéWarrior | DE to create a CodeWarrior

must properly configure the remote connection you selected when you created the

project.

To access remote connections:

Accessing Remote Connections

Y ou access remote connections in the CodeWarrior | DE Pr efer ences window. Remote

connections listed in the preferences window are available for usein all CodeWarrior
projects and build targets.

1. From the CodeWarrior menu bar, select Edit > Preferences.

The I DE Preferences window (Figure 9.1 on page 198) appears.

Figure 9.1 IDE Preferences Window

i @ IDE Preferences

2 x|
|E |DE Preference Panels | E Build Settings
= General ﬂ)
R " — Settings
- IDE Ewxtras Build before running: IAIwayg vI ¥ Save open files before buid
- Plugin Settings [~ Show message after building up-to-date project
- Shielded Folders .
- Sourss Tress Campiler thread stack. (kb): |325
= Editar .
. Code Campletion —I Use Local Project Data Starag
- Code Formatting |{Eompiler}LocaI_Data_Storage LChoose... |
- Editar Settings .
. Fant 4 Tahs Used when the project data folder cannat be created on read-only volumes.
- Text Colors
= Debugger
- Digplay Settings
- wiindow Settings
- [lobal Settings

- Remote Connections

-]

Facton Settings

Fievert

Import Panel... | Export Panel... I

Ok

Cancel |

Apply

198

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Using Remote Connections

2. Inthe|DE Preference Panelslist, select Remote Connections.
The Remote Connections preference panel (Figure 9.2 on page 199) appears.

Figure 9.2 Remote Connections Preference Panel

R Femate Connections

'E Mame | Type
56800 Local Hardware Connection CCS Remate Connection ﬂ
BE300 Local USETAP Connection IJ5E TAP Connection
BES00 Simulator Simulator
BEB00E Local Hardware Connection CCS Remate Connection
BES00E Local USBTAP Connection JSB TAP Connection
BES00E Simulator Simulator
ha|
Add... | Chatge... | Hemoyve |

NOTE The specific remote connections that appear in the Remote Connections list
differ between CodeWarrior products and hosts.

The Remote Connections preference panel lists all of the remote connections of which
the CodeWarrior IDE is aware. Y ou use this preference panel to add your own remote
connections, remove remote connections, and configure existing remote connections to
suit your needs.

To add a new remote connection, click Add.
To configure an existing remote connection, select it and click Change.
To remove an existing remote connection, select it and click Remove.

TIP To specify aremote connection for a particular build target in a CodeéWarrior
project, you select the remote connection from the Connection list box in the
Remote Debugging target settings panel. For an overview of the Remote
Debugging settings panel, see the CodeWarrior IDE User’s Guide.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 199

|
y

'
A

Debugging for DSP56800
Using Remote Connections

Understanding Remote Connections

Every remote connection specifies a debugger protocol and a connection type.

A debugger protocol isthe protocol the IDE uses to debug the target system. This setting
generally relates specifically to the particular device you use to physically connect to the
target system.

A connection type is the type of connection (such as CCS, USBTAP, or Simulator) the
CodeWarrior IDE uses to communicate with and control the target system.

Table 9.1 on page 200 describes each of the supported debugger protocols.

Table 9.1 Debugger Protocols

Debugger Protocol Description

CCS 56800 Protocol Plugin Select to use a CCS hardware target system.

56800 Simulator Select to use the Simulator on the host computer.

Each of these protocols supports one or more types of connections (CCS, USBTAP, and
Simulator). “Editing Remote Connections’ on page 200 describes each supported
connection type and how to configure them.

Editing Remote Connections

Based on the specified debugger protocol and connection type, the IDE makes different
settings available to you. For example, if you specify a Serial connection type, the IDE
presents settings for baud rate, stop hits, flow control, and so on. Table 9.2 on page 200
describes the supported connection types for each debugger protocol.

Table 9.2 Supported Connection Types

Debugger Protocol Supported Connection Types

CCS 56800 Protocol Plugin CCS Remote Connection on page 201, USBTAP on
page 203

56800 Simulator on page 205Simulator on page 205

To configure aremote connection to correspond to your particular setup, you must edit the
connection settings. Y ou access the settings with the Edit Connection dialog box. You
can view this dialog box in one of these ways:

« Inthe Remote Connections IDE preference panel, select a connection from the list,
and click Edit. The Edit Connection dialog box appears.

200

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Using Remote Connections

« Inthe Remote Connections | DE preference panel, click Add to create anew remote
connection. The New Connection dialog box appears.

< Inthe Remote Debugging target settings panel, select a connection from the
Connection list box, then click the Edit Connection button. The Edit Connection

dialog box appears.
This section describes the settings for each connection type:
¢ CCS Remote Connection on page 201
* USBTAP on page 203
« Simulator on page 205

CCS Remote Connection

Use this connection type to configure how the IDE uses the Command Converter Server
(CCY9) protocol to connect with the target system. This connection type is available only
when the CCS 56800 Pr otocol Plugin debugger protocol is selected.

Figure 9.3 on page 202 shows the settings that are available to you when you select CCS
Remote Connection from the Connection Typelist box in the Edit Connection dialog
box.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 201

4
A

Debugging for DSP56800
Using Remote Connections

Figure 9.3 CCS Remote Connection Settings

56800 Local Hardware Connection i ﬂ

M ame: IEEBEIEI Local Hardware Connection

DebuElger:|EES BR300 Protocal Plugin j [Show in processes list
— Connection T_l,lpe:IEES Femote Connection j
—[I " Use Remoate CCS Port f:
Server |P Address: |1 27.0.01 ’7 |4'| 475
—[Specify CCS Executable
| Chooze... |
—[Multi-Core D'ebugaing
JTAG Configuration File:
I Ehoose... |
—CCS Timeout
IED zeconds
Factony Sethings I Revert Panel Cancel Ok

Table 9.3 on page 202 describes the options in this dialog box.

Table 9.3 CCS Remote Connection Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800 Protocol Plugin.
Connection Type Select CCS Remote Connection.
Use Remote CCS Check to debug code on a target system when the system

already has CCS running and connected.

202 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Using Remote Connections

Table 9.3 CCS Remote Connection Options (continued)

Option

Description

Server IP Address

Enter the Internet Protocol (IP) address assigned to the
target system.

Port #

Enter the port number on the target system to which the IDE
should connect for CCS operations. The default port number
for CCS hardware connections is 41475. Enter 41476 for the
CCS Simulator.

Specify CCS Executable

Check to use another CCS executable file rather than the
default CCS executable file:
CwInstall\ccs\bin\ccs.exe

Multi-Core Debugging

Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

CCS Timeout Enter the duration (in seconds) after which the CCS should
attempt to reconnect to the target system if a connection
attempt fails.

Use this connection type to configure how the IDE uses CodeWarrior USB TAP deviceto
connect with the target system. This connection typeis available only when the CCS
56800 Protocol Plugin debugger protocoal is selected.

Figure 9.4 on page 204 shows the settings that are available to you when you select
USBTAP from the Connection Type list box in the Edit Connection dialog box.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 203

4
A

Debugging for DSP56800
Using Remote Connections

Figure 9.4 USBTAP Connection Settings

56800 Local USBTAP Connection _ ﬂ

M ame: IEEBEIEI Local USBTAP Connection

DebuElger:|EES BE200 Protocaol Plugin j [Show in processes list

— Connection T_l,lpe:ILISE TAP Connection j

CCS Timeaut: IEEI

[~ Muli-Core Debugging
JTAG Configuration File:

I Choose. |

v Reset Target On Launch

Factory Settings Fevert Fanel Cancel Ok

Table 9.4 on page 204 describes the options in this dialog box.

Table 9.4 UBTAP Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800 Protocol Plugin.
Connection Type Select USBTAP Connection.
CCS Timeout Enter the maximum number of seconds the debugger should

wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.

204 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Using Remote Connections

Table 9.4 UBTAP Options (continued)

Option Description

Multi-Core Debugging Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

Reset Target on Launch | Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.

Simulator

Use this connection type to configure the behavior of the simulator. This connection type
isavailable only when the 56800 Simulator Protocol Plugin debugger protocol is
selected.

Figure 9.5 on page 206 shows the setting that are available to you when you select
Simulator from the Connection Type list box in the Edit Connection dialog box.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 205

y
A

Debugging for DSP56800
Using Remote Connections

Figure 9.5 Simulator Connection Settings

56800 Simulator _ x|

M arne: IEEBEIEI Simulator

DEbuggEFZISim 56300 Protocol Plugin j [Show in processes list
— Connection T_l,lpe:lSimuIath vI
Simulation Bandwidth IMedium vI
Details
Medium B andwidth: Fecommended for most systems. Simulatar runzs many cycles
while GUI iz idle.
Factony Sethings Fevert Fanel Cancel Ok

Table 9.5 on page 206 describes the options in this dialog box.

Table 9.5 Simulator Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select SIM 56800 Protocol Plugin.
Connection Type Select Simulator.
Simulation Bandwidth Select the simulator bandwidth (low, medium, or high).

206 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Target Settings for Debugging

Target Settings for Debugging

This section explains how to control the debugger by modifying the appropriate settings
panels.

To properly debug DSP56800 software, you must set certain preferencesin the Target
Settings window. The M56800 Target pandl is specific to DSP56800 devel opment.
The remaining settings panels are generic to al build targets.

Other settings panels can affect debugging. Table 9.6 on page 207 lists these panels.

Table 9.6 Setting Panels that Affect Debugging

This panel... Affects... Refer to...

M56800 Linker symbolics, linker “M56800 Linker”
warnings

M56800 Processor optimizations “Optimizing Code”

Debugger Settings Debugging options

Remote Debugging Debugging “Remote Debugging”
communication
protocol
Remote Debug Debugging options “Remote Debug Options”
Options

TheM56800 Target panel isunique to DSP56800 debugging. The available optionsin
this panel depend on the DSP56800 hardware you are using and are described in detail in
the section on “Remote Debug Options”.

Command Converter Server

The command converter server (CCS) handles communication between the CodeWarrior
debugger and the target board. An icon in the status bar indicates the CCSisrunning. The
CCSisautomatically launched by your project when you start a CCS debug session if you
are debugging atarget board using alocal machine. However, when debugging a target
board connected to a remote machine, see “ Setting Up a Remote Connection”.

NOTE Projects are set to debug locally by default. The protocol the debugger uses to
communicate with the target board, for example, PCl, is determined by how
you installed the CodeWarrior software. To modify the protocol, make changes

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 207

V¥ ¢
i

Debugging for DSP56800
Command Converter Server

in the Freescale Command Converter Server window (Figure 9.8 on
page 209).

Essential Target Settings for Command
Converter Server

Before you can download programs to a target board for debugging, you must specify the
target settings for the command converter server:

¢ Local Settings

If you specify that the CodeWarrior IDE start the command converter server localy,
the command converter server uses the connection port (for example, LPT1) that you
specified when you installed CodeWarrior Development Studio for Freescal e 56800.

« Remote Settings

If you specify that the CodeWarrior IDE start the command converter server on a
remote machine, specify the | P address of the remote machine on your network (as
described in * Setting Up a Remote Connection”.)

¢ Default Settings

By default, the command converter server listens on port 41475. Y ou can specify a
different port number for the debugger to connect to if needed (as described in
“Setting Up a Remote Connection”.) Thisis necessary if the CCSisconfigured to a
port other than 41475.

After you have specified the correct settings for the command converter server (or verified
that the default settings are correct), you can download programs to a target board for
debugging.

The CodeWarrior |DE starts the command converter server at the appropriate time if you
are debugging on alocal target.

Before debugging on a board connected to a remote machine, ensure the following:
¢ The command converter server isrunning on the remote host machine.
« Nobody is debugging the board connected to the remote host machine.

Changing the Command Converter Server
Protocol to Parallel Port

If you specified the wrong parallel port for the command converter server when you
installed CodeWarrior Development Studio for Freescale 56800, you can change the port.

Change the parallel port:

208

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Debugging for DSP56800
Command Converter Server

1. Click the command converter server icon.

While the command converter server isrunning, locate the command converter server
icon on the status bar. Right-click on the command converter server icon (Figure

9.6 on page 209):

Figure 9.6 Command Converter Server Icon

L&

A menu appears (Figure 9.7 on page 209):

Figure 9.7 Command Converter Server Menu
Show console

Hide console
Ahout CCS

ik CCS
2. Select Show console from the menu.
TheFreescale Command Converter Server window appears (Figure 9.8 on
page 209).
Figure 9.8 Freescale Command Converter Server Window

Metrowerks Command Converter Server 0] x|

File Edit 3Show History Debug Help

i

Metrowerks Command Conwerter Server console display active

0: Parallel Port (LPT:1) CC software wer. {3.0}

Server listening on port: 41475

Server listening on port: 41475

Clients accepted from all hosts

Connection #1 accepted from PETERAHN.mtwk.sps.mot.com at Wed Feb 04 12:34:34 200
4

Comnection #1 from PETERAHN.mtwk.sSps.mot.con closed at Wed Feb 04 12:35:25 Z004
{hin) 1 %

[+

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 209

3
4

y
A

Debugging for DSP56800
Command Converter Server

3. On the console command line, type the following command:

delete all

4. PressEnter.

5. Type the following command, substituting the number of the parallel port to use (for

example, 1 for LPT1):

config cc parallel:1

6. PressEnter.

7. Typethe following command to save the configuration:

config save

Press Enter.

Changing the Command Converter Server
Protocol to HTI

To change the command converter server to an HTI Connection:

1

While the command converter server is running, right-click on the command converter
server icon shown in Figure 9.6 on page 209 or double click oniit.

2. From the menu shown in Figure 9.7 on page 209, select Show Console.

3. At the console command linein the Freescale Command Converter Server

window shown in Figure 9.8 on page 209, type the following command:
delete all

4. Press Enter.

5. Type the following command:

config cc: address

(substituting for address the name of the | P address of your CodeWarrior HTI)

NOTE If the software regjects this command, your CodeWarrior HTI may be an earlier

version. Try instead the command: config cc nhti:address, or the
command: config cc Panther:address, substituting for address
the | P address of the HTI.

6. PressEnter.

7. Type the following command to save the configuration:

config save

Press Enter.

210

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Command Converter Server

Changing the Command Converter Server
Protocol to PCI

To change the command converter server to a PCl Connection:

1. While the command converter server isrunning, right-click on the command converter
server icon shown in Figure 9.6 on page 209 or double click onit.

2. From the menu shown in Figure 9.7 on page 209, select Show Console.

3. At the console command linein the Freescale Command Converter Server
window shown in Figure 9.8 on page 209, type the following command:

delete all

4. PressEnter.

5. Type the following command:
config cc pci

6. PressEnter.

7. Typethe following command to save the configuration:
config save

8. Press Enter.

Setting Up a Remote Connection

A remote connection is atype of connection to use for debugging aong with any
preferences that connection may need. To change the preferences for aremote connection
or to create a new remote connection:

1. Onthe main menu, select Edit > Preferences.
The IDE Preferences Window appears.
2. Click Remote Connectionsin the left column.
The Remote Connections panel shown in Figure 9.9 on page 212 appears.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 211

4
A

Debugging for DSP56800
Command Converter Server

Figure 9.9 Remote Connections Panel

: @ IDE Preferences

|E IDE Preference Panels

|E Remate Connections

& General -
- Build Settings
- |DE Extras
- Plugin Settings
- Shieided Folders
- Source Trees
= Editar
- Code Completion
- Code Formatting
- Editor Settings
- Font & Tabs
- Text Colors
= Debugger
- Digplay Settings
- wiindow Settings

= _F!AD Toolz LI

IEName

| Tupe

56800 Local Hardware Connection
5E800 Simulatar

56800E Local Hardware Cornection
SEB00E Sirmulatar

CCS Remate Connection
Simulatar
CCS Remote Connection
Simulatar

|

Add... Eharge.. |

Femove I

Factan Settings Resert |

Impoart Panel... | Export Panel... I

oK I Cancel |

Appl I

To Add a New Remote Connection

To add a new remote connection:

1. Click the Add button.

The New Connection window appears as shown in Figure 9.10 on page 213.

212 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Debugging for DSP56800
Command Converter Server

Figure 9.10 New Connection Window

5I

Mame: ||

Debugger:IEES BEE00 Pratacal Plugin j [Show in processes list

— Connection T_l,lpe:ll:CS Remote Connection ﬂ

—I¥ Use Remate CCS Port #:
Server |P Addiess: [127.0.0.1 (41475

—I Specity CCS Executable

I Choose... |

—I Multi-Care Debugging
JTAG Configuration File:

I Choose.., |

— CCS Timeout

IEEI zeconds

Factory Settings I Riewert Panel Cancel ok

In the Name edit box, type in the connection name.
3. Check Use Remote CCS checkbox.

Select this checkbox to specify that the CodeWarrior IDE is connected to aremote
command converter server. Otherwise, the IDE starts the command converter server
locally

4, Enter the Server |P address or host machine name.

Use thistext box to specify the | P address where the command converter server resides
when running the command converter server from alocation on the network.

5. Enter the Port # to which the command converter server listens or use the default port,
which is 41475.

6. Click the OK button.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 213

3
4

'
A

Debugging for DSP56800
Launching and Operating the Debugger

To Change an Existing Remote Connection

To change an existing remote connection:

Double click on the connection name that you want to change, or click once on the
connection name and click the Change button (shown in Figure 9.9 on page 212 in
grey).

To Remove an Existing Remote Connection

To remove an existing remote connection:

Click once on the connection name and click the Remove button (shown in Figure
9.9 on page 212 in grey).

Debugging a Remote Target Board

For debugging atarget board connected to a remote machine with Code Warrior IDE
installed, perform the following steps:

1. Connect the target board to the remote machine.

2. Launch the command converter server (CCS) on the remote machine with the local
settings configuration using instructions described in the section “ Essential Target
Settings for Command Converter Server”.

3. Inthe Target Settings>Remote Debugging panel for your project, make sure the proper
remote connection is selected.

4. Launch the debugger.

Launching and Operating the Debugger

NOTE CodeWarrior IDE automatically enables the debugger and sets debugger-
related settings within the project.

1. Set debugger preferences.

Select Edit >external memory Settings from the menu bar of the Freescale
CodeWarrior window.

The IDE displaysthe Remote Debugging window.

214

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.11 Remote Debugging Panel
[aentemalmemorySettings

gl |

IE Target Settings Panel:

I IE Femate Debugging

Custom Keywords

= :Debugger

D ebugger Settings

Remate Debugging
MBES00 Target

Femote Debug Dpt._.?

= Language Settings LI = tion Setting
i CAC++ Language
C/C++ Preprocessor Connection:IEBBDD Local Hardware Connection L! MI
- C/C+ Warmings Remote download path
i MBEB00 Azsembler ’7 I
[= Code Generation
- ELF Disassembler —I™ Launch remate host application
MBEE00 Processar
o [Global O ptimizations I
B ;lf.'.nﬁésggg Liriker I™ Multi-Core Debugging——— - JTAG Clock Speed
= Edior ’7 Corelnde: [0 = [[20c0

Factom Settings Resert

Impoart Panel... | Export Panel... I

Ok

I Cancel |

Appl I

2. Select the Connection.

For example, select 56800 Local Hardware Connection (CCS).

3. Click OK button.
4. Debug the project.
Use either of the following options:
 From the Freescale CodeWarrior window, select Project > Debug.

* Click the Debug button in the project window.

This command resets the board (if Always reset on download ischecked in the
Debugger’ sM56800 Target panel shown in Figure 5.13 on page 95) and the download
process begins.

When the download to the board is complete, the IDE displays the Program window
(sim.elf in sample) shown in Figure 9.12 on page 216.

NOTE

Source code is shown only for files that are in the project folder or that have
been added to the project in the project manager, and for which the IDE has
created debug information. Y ou must navigate the file system in order to locate
sources that are outside the project folder and not in the project manager, such
as library sourcefiles.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

215

4
A

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.12 Program Window
Step Out

Step Into Breakpoint
Ki”Step Qver Expressions
Break Symbolics

Run

R E x Gh O/ OEE

=o)X

] Line 27 Coll | Souce 4] |

IEStac:k =i @ Vaniables: Al | Value | Location B

init_MEE200_ “1 | |&- ar 0x3221 0x3221 -
mair i 0 MR

i 0 $MRE
= e

-

Source: Civmy_projects foldersnew projectimain.c %
/7 prototypes e
vold swap (int *a, int =b):
wvoid print_arravi{int arr[]. int length):
int mainivoid) J

int arr[SIZE] = {4, 6.7.1.2,3.4,12 4 .5};

int 1.73:

printi i SninSnssssssssosssssssssassssssssssasassssssin)
printf(" Are you ready to be a DSP Warrior?®™n"):
printf("s=====================================\nn");

5. Navigate through your code.
The Program window has three panes:
e Stack pane
The Stack pane shows the function calling stack.
« Variables pane
The Variables pane displays local variables.
e Source pane

The Sour ce pane displays source or assembly code.

The toolbar at the top of the window has buttons that allows you accessto the

execution commands in the Debug menu.

216 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Launching and Operating the Debugger

Setting Breakpoints

1. Locate the codeline.

Scroll through the code in the Sour ce pane of the Program window until you come
acrossthemain () function.

2. Select the codeline.

Click the gray dash in the far left-hand column of the window, next to the first line of
codeinthemain () function. A red dot appears (Figure 9.13 on page 217),
confirming you have set your breakpoint.

Figure 9.13 Breakpoint in the Program Window

Fasmear _iolx]

E x 0ih G| OEE

Symbolics .

Stack (=4] ables: All | Walue | Location =]
init_kBES00_ = - arr 03221 0x3221 ;I
: 0 A3

i o $MRE
-
[REI Source: C:hmy_projects_foldersnew_projectsmain [z}

int main{wvoid)

~ L
= int arr[SIZE] = {4.6.7.1.2.3.4,12.4,.5%:
int i.3:
printf (" RmNRNRS=============--—-————----—----—----o-ohp 'Y
printf{" Are wvou ready to be a DSF Warrior?-n"):
printf("=s=s====================================n"n"):
print_array{arr,SILE):;
for (i=0;i<SIZE-1;i++)
for {(j=i: j<SIZE: j++)
if {arr[ilrarr[jl)
Breakpoint swapl(éarr[i]. darr[j]);
i print_arrav{arr. SIZE):

Setting —pp

printf{"“n“n... program done. “-n"):;

=
‘ .;I_I
] Line 27 Coll | Source ARA| | é

NOTE Toremove the breakpoint, click the red dot. The red dot disappears.

Setting Watchpoints

For details on how to set and use watchpoints, see the “OnCE Debugger Features’ ..

NOTE For the DSP56800 only one watchpoint is available. Thiswatchpoint isonly
available on hardware targets.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 217

A
4

4
A

Debugging for DSP56800
Launching and Operating the Debugger

Viewing and Editing Register Values
Registers are platform-specific. Different chip architectures have different registers.
1. Access the Register s window.

From the menu bar of the Freescale CodeWarrior window, select View >
Registers.

Expand the General Purpose Register s tree control to view the registersasin Figure
9.14 on page 218, or double-click on General Purpose Registersto view the registers
asin Figure 9.15 on page 219.

Figure 9.14 General Purpose Registers for DSP56800

§E§REgisters B.. ;Iglll
E Reqister | W alue |
[= 56800 Local Hardware Connection : ;I
&~ external _memory.elT
&
- General Furpose Registers

S Ox04000B0000

= Al Q0000

<Al O=00DE

A2 =04

it = Ox0FBAAADO00

- BO Q0000

- B1 O B AUt

- B2 o= 0F

- X0 Q0000

A Ox02570000 LI

- M N 4

218 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.15 General Purpose Registers Window

! mGeneral Purpose Registers Window =10 x|
external_memony. el []
A O=04000B0000 OMR. Ox0103 :I
A0 0000 HWS Ox0040
AL Ox000E L 000l
A2 Q=04 LA O=01eD
E O=OFBAAAOD0D PCRO Ox00FF
EO 0000 FCR1 Ox00FF
E1l D B MRO OxDD43
B2 0= 0F MR1 O=&lD7
w0 Q0000 MR.2 O3 288
b 002570000 MR.23 O=<E&02
0 0oao MR.4 O=371e
1 O=035 7 MRS O=<0EBGE
F.O Q0000 MR& O=EOFOD
F.1 Ox221B MRy O=DMACC
R.2 200z MRS O=0AOE
R.32 Q2002 MR2 O=SAD4
M 0=BO3 & MR10 Ox3EFZ
MOl O=FFFF MR.11 Ox10EZ
SP 03 21E MR.1z2 OxECC2
PC Q=000 MR13 Ox4130
IFR. <0000 MR.14 Ox4ADS
BCR. OxO00FF MR.1E Ox321E
SR 00114
B

]

2. Edit register values.

To edit values in the register window, double-click aregister value. Change the value
asyou wish.

3. Exit the window.
The modified register values are saved.

NOTE Toview peripheral registers, select the appropriate processor form the
processor list box in the M56800 Target Settings Panel.

Viewing X: Memory
Y ou can view X memory space val ues as hexadecimal values with ASCI| equivalents.
Y ou can edit these values at debug time.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 219

3
4

y
A

Debugging for DSP56800
Launching and Operating the Debugger

NOTE Ontargetsthat have Flash ROM, you cannot edit those values in the memory
window that reside in Flash memory.

1. Locate a particular address in program memory.

From the menu bar of the Freescale CodeWarrior window, select Data > View
Memory.

NOTE The Source panein the Program window needs to be the active one in order
for the Data > View Memory to be activated.

The Memory window appears (Figure 9.16 on page 220).

Figure 9.16 View X:Memory Window

i menternal_memory.elf Memory 1 b = | Ellﬂ

Dizplay: lDH2E|3|:| View:lHaw data Ll
Iﬁ.ﬁ.ddress N Hex: 00001 C34:00002C34 lﬁﬁscii
0oooz030 0030 0030 0030 0030 0020 0030 = = = = = = i
ooooz202e 000~ 0000 0020 0020 0041 00F2 A -
0oooz203C O0&E 0020 0073 00&F 0OOFE Q020] ¥ooou i
00002042 | (0072 0085 0061 0064 0079 0020 roe ady
00002043 0074 00&F 0020 00&2 0065 0020 t o bh e
0000204E 006l 0020 0044 0052 0050 0020 a S P
oooozos54 OOEF 0O0&1 0072 00F2 0069 00GF i rion
oooozosa | (o072 [EEL 0004 0000 0030 0030 r

0o0oz0&0 0030 0030 0030 0030 0020 0030 =
00002066 0030 0030 0020 0030 0020 0020
0000206 0020 0020 0020 0020 0020 002D
oooozorz 0030 0030 0030 0020 0020 0020
0000207 E 0030 0030 0030 0030 0020 003D
0000207E 0030 0030 0020 0030 0020 0020 =
oooozo0E4 O00A 0004~ 0000 0004 000A OOZE R R]

Word Size:l‘l g vl Fage: |>< Merman vl “

2. Select type of memory.

Locate the Page list box at the bottom of the View Memory window. Select X
Memory for X Memory.

I O T | ||ﬂ [

| | = 3O
Il
I

220 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Launching and Operating the Debugger

3. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter ahexadecimal address, use standard C hex notation, for example, 0xO.
Y ou also can enter the symbolic name whose value you want to view by typing its
name in the Display field of the M emory window.

NOTE Theother view options (Disassembly, Source and Mixed) do not apply when
viewing X memory.

Viewing P: Memory

Y ou can view P memory space and edit the opcode hexadecimal values at debug time.

NOTE Ontargetsthat have Flash ROM, you cannot edit those values in the memory
window that reside in Flash memory.

1. Locate aparticular address in program memory.

To view program memory, from the menu bar of the Freescale CodeWarrior
window, select Data > View Memory.

The Memory window appears (Figure 9.16 on page 220).

2. Select type of memory.

Locate the Page list box at the bottom of the View Memory window. Select P
Memory for P Memory.

3. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter ahexadecimal address, use standard C hex notation, for example: 0x82.
4. Select how you want to view P memory.

Using the View list box, you have the option to view P Memory in four different
ways.
» Raw Data (Figure 9.17 on page 222).

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 221

y
A

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.17 View P:Memory (Raw Data) Window

i mexternal_memory.elf Memory 1 B = |EI|5I

Diizplay: Imain

f Address f Hex: 00000008: 00001 003 B &sci
aooooosn 3EED OBDE 1FDD 22EB0 OBODE 1FOD L

ooooooss 0AZC OFDE OFES 400DE FFFF DLET
ooooooac 0320 0ACL O1F0 0ODO 1364 FCAG = - -0 d
ooooooaz DoEy 0Dz 0 OBEDE 1FDS CSES O&0E
aoooooss 1BEDE DOSF 3520 OBDE 1FDS CEES
oooooosE 0&0E 1BDE DOSY SEZ0 OBDE 1FDE
ooooooA4 | |CSES O60E 1EDE OFSA 42DE FPFF
Q00000AA 0ACL CSES EFO0 BESAF 0000 26A3
aooooaen F9B0 3590 1FAS OF33 400E FFFF
oooo0oES 23B0 40E0Q 44F1 OFSS 40DE FFFF
ooooooeC 35B0 40E0Q 44F0 437C 10AF 32B0

ooooooCz 0356 005D OF S5 40EQ O4DE 108A W

000000 s 38B0 0956 0080 OFSS 40E0 040E ()

ooooooCE 108E CSES 2201 BE44 2E5E0 OALE I =
ooooooD4 SEAL B24A 30B0 035E SFAS OFSA LR

‘wiord Sizes |1 & vI Fage: IF' Mernary 'I &

 Disassembly (Figure 9.18 on page 223).

222 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.18 View P:Memory (Disassembly) Window

{ gexternal_memory.elf Memory 1 . = | I:Ilil

Dlizplay: Imain

E_E Source: C:ADocuments and SetiingshsopellabDesktopiNew Projectsiha.. Smain.c
- P:00000070: E98410B1 qJmp 0=z0010b1 =
- P:00000072: E98410B1 dJmp 0z0010b1
- P:00000074: E98410B1 Jmp 0=z0010b1 _J
- P:.00000076: E98410B1 Jmp N=z0010b1
- P:00000078: E98410B1 dJmp 0z0010bl
- P:00000074: E98410B1 Jmp 0=z0010b1
F:000000%C: E98410B1 Jmp 0=z0010bl
P:0000007E: E98410B1 Jmp 0z0010b1
- P 00000080: BD38 MOVES X:0=0038.H
- P:00000021: DEOE lea [SPi+
- P:00000082: DD1F nove H.X: (5P}
- PB:00000023: BD39 noves K:0=x0039.H
- P:00000024: DEOE lea (SP+
- F:00000085: DDAF Mowe H.X: (5P}
FP:00000086: CCOA movel #10.H
1] Line 1 Coll 4] | 3

* Source (Figure 9.19 on page 224).

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 223

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.19 View P:Memory (Source) Window

i mexternal_memory.elf Memory 1

* Mixed (Figure 9.20 on page 225).

224 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Load/Save Memory

Figure 9.20 View P:Memory (Mixed) Window

i genternal_memory.elf Memory 1 - = I Ellil

Dmphy:lmam

H_ﬂ Source: C:ADocuments and SettingshsopellatDeskiopMew Projectsiha.. \main.c
#

{ k=
- P 00000020 : BD3a NoOveES ¥:.0=x00383 H
- P:00000081: DEOE lea {SP)+ _J
- PB:0000008Z2: DD1F nove H.X:(5F)
- PB.000000232: BD39 noves ¥:0x0039 H
- P:o00000084: DEOE lea (SP+

F:00000085: DDI1F nove H.X: {5F)

P 00000086 : CCOA novel #10.H
- P:00000087: DEOF lea (SP)+H

dirt arr[SIZE] = dd.fo el g de g d Bl

- P:00000088: B880F nove SP. RO
- P:0000008S: DE40FFF? lea (RO+-=9)
- P.000000BE: 87D12003 movel #8195, F1
- P:0000008D: C10A novel #£10.%0

P:.0000008BE: FOO1 nove L. (El)+. XD
i Line 29 Coll 4] | b

Load/Save Memory

From the menu bar of the Freescale CodeWarrior window, select Debug > 56800 >
Load/Save Memory to display the Load/Save Memory dialog box (Figure

9.21 on page 226).

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 225

4
A

Debugging for DSP56800
Load/Save Memory

Figure 9.21 Load/Save Memory Dialog Box

2
Hiztory | j

— Parameters

"DpEIatian

% Load Memory " Save Memary

S|
Cancel |

Memaory Type: I P: Memony

Address [hex]: l|

[ffzet (hesdnteger]: I

Size [hexdinteger): I

File name: I Erowsze |

™| Evensrite Existing

File: farmat; IEina[_l,.l Raw LI

— Progress

Use this dialog box to load and save memory at a specified location and size with a user-
specified file. Y ou can associate a key binding with this dialog box for quick access. Press
the T ab key to cycle through the dialog box displays, which lets you quickly make
changes without using the mouse.

History Combo Box

The History combo box displays alist of recent loads and saves. If thisis the first time
you load or save, the History combo box isempty. If you load/save more than once, the
combo box fillswith the memory address of the start of the load or save and the size of the
fill, to a maximum of ten sessions.

If you enter information for an item that already existsin the history list, that item moves
up to the top of thelist. If you perform another operation, that item appears first.

NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.

226

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Load/Save Memory

Radio Buttons

The Load/Save Memory diaog box hastwo radio buttons:
¢ Load Memory
¢ Save Memory

The defaultisLoad Memory.

Memory Type Combo Box

The memory types that appear in the Memory Type Combo box are:
¢ P: Memory (Program Memory)
¢ X: Memory (Data Memary)

Address Text Field

Specify the address where you want to write the memory. If you want your entry to be
interpreted as hex, prefix it with 0x; otherwise, it isinterpreted as decimal.

Size Text Field

Specify the number of wordsto write to the target. If you want your entry to beinterpreted
as hex, prefix it with 0x; otherwiseg, it isinterpreted as decimal.

Dialog Box Controls

Cancel, Esc, and OK

In Load and Save operations, all controls are disabled except Cancel for the duration of
the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the ESc key is same as clicking
the Cancel button.

With the Load Memory radio button selected, clicking OK |oads the memory from the
specified file and writes it to memory until the end of the file or the size specified is
reached. If the file does not exist, an error message appears.

With the Save Memory radio button selected, clicking OK reads the memory from the
target piece by piece and writes it to the specified file. The status field is updated with the
current progress of the operation.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 227

4
A

Debugging for DSP56800
Fill Memory

Browse Button

Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,

depending on whether you selected the Load Memory or Save Memory radio
button.

Fill Memory

From the menu bar of the Freescale CodeWarrior window, select Debug > 56800>
Fill memory todisplay the Fill Memory dialog box (Figure 9.22 on page 228).

Figure 9.22 Fill Memory Dialog Box

x
Higtary : I j
— Parameters
Memom Type : IF': temary ;I Ok

Address [hex) : I Cancel |

Size [hexdinteger): I

Eill Expr. [hexdinteger): I
— Progress

Usethisdialog box to fill memory at a specified location and size with user- specified raw
memory data. Y ou can associate akey binding with this dialog box for quick access. Press

the Tab key to cycle through the dialog box display, which lets you quickly make
changes without using the mouse.

228 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Fill Memory

History Combo Box

The History combo box displays alist of recent fill operations. If thisisthe first time
you perform afill operation, the History combo box is empty. If you do more than one
fill, then the combo box populates with the memory address of that fill, to a maximum of
ten sessions.

If you enter information for an item that already existsin the history list, that item moves
up to the top of thelist. If you do another fill, then thisitem is the first one that appears.

NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.

Memory Type Combo Box

The memory types that can appear in the Memory Type Combo box are:
¢ P:Memory (Program Memory)
¢ X:Memory (Data Memory)

Address Text Field

Specify the address where you want to write the memory. If you want it to be interpreted
as hex, prefix it with 0x; otherwise, it isinterpreted as decimal.

Size Text Field

Specify the number of words to write to the target. If you want it to be interpreted as hex,
prefix your entry with 0x; otherwise, it isinterpreted as decimal.

Fill Expression Text Field

Fill writes a set of charactersto alocation specified by the address field on the target,
repeatedly copying the characters until the user-supplied fill size has been reached. Size
isthe total words written, not the number of times to write the string.

Interpretation of the Fill Expression

Thefill string is interpreted differently depending on how it is entered in the Fill String
field. Any words prefixed with 0x isinterpreted as hex bytes. Thus, 0xBE 0xEF would
actually write 0xBEEF on the target. Optionally, the string could have been set to
0xBEEF and this would do the same thing. Integers are interpreted so that the equivalent
signed integer iswritten to the target.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 229

3
4

y
A

Debugging for DSP56800
Save/Restore Registers

ASCII Strings

ASCII strings can be quoted to have literal interpretation of spaces inside the quotes.
Otherwise, spaces in the string are ignored. Note that if the ASCII strings are not quoted
and they are numbers, it is possible to createillegal numbers. If the number isillegal, an
error message is displayed.

Dialog Box Controls

OK, Cancel, and Esc

Clicking OK writes the memory piece by piece until the target memory isfilledin. The
Status field is updated with the current progress of the operation. When thisisin
progress, the entire dialog box grays out except the Cancel button, so the user cannot
change any information. Clicking the Cancel button halts the fill operation, and re-
enables the controls on the dialog box. Clicking the Cancel button again closes the
dialog box. Pressing the ESc key is same as pressing the Cancel button.

Save/Restore Registers

From the menu bar of the Freescale CodeWarrior window, select Debug > 56800 >
Save/Restore Registers to display the Save/Restore Registers diaog box
(Figure 9.23 on page 231).

230

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Debugging for DSP56800
Save/Restore Registers

Figure 9.23 Save/Restore Registers Dialog Box

Save/Restore Registers i[
Histary : I j

— Parameters
— Operation

{* SaveFegisterz { Festore Registers

General Purpose Registers o

Cancel

i

Eilename : Broveze

i

[Owerwrite Existing

— Progress

Use this dialog box to save and restore register groups to and from a user-specified file.

History Combo Box

TheHistory combo box displaysalist of recent saves and restores. If thisisthefirst time
you have saved or restored, the History combo box is empty. If you saved or restored
before, the combo box remembers your last ten sessions. The most recent session will
appear a the top of thelist.

Radio Buttons

The Save/Restore Registers dialog box has two radio buttons:
* Save Registers
* Restore Registers

The default is Save Registers.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 231

3
4

'
A

Debugging for DSP56800
OnCE Debugger Features

Register Group List

Thislist isonly available when you have selected Save Registers. If you have
selected Restore Registers, theitemsin thelist are greyed out. Select the register
group that you wish to save.

Dialog Box Controls

Cancel, Esc, and OK

In Save and Restore operations, all controls are disabled except Cancel for the duration
of the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the ESc key is same as clicking
the Cancel button.

With the Restore Registers radio button selected, clicking OK restores the registers
from the specified file and writes it to the registers until the end of the file or the size
specified is reached. If the file does not exist, an error message appears.

With the Save Register radio button selected, clicking OK reads the registers from
the target piece by piece and writes it to the specified file. The status field is updated with
the current progress of the operation.

Browse Button

Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,
depending on whether you selected the Restore Registers or Save Registers
radio button.

OnCE Debugger Features

The following OnCE Debugger features are discussed in this section:
¢ Watchpoints and Breakpoints on page 232

* Trace Buffer on page 239

Watchpoints and Breakpoints

The CodeWarrior DSP56800 debugger allows you to monitor the status of a watchpoint.
Since the ONCE™ port only supports either a hardware breakpoint or a watchpoint, you
cannot have both active at the same time.

Watchpoints are useful for monitoring memory and processes where software breakpoints
cannot be set, such asin Flash ROM, or adata or address bus. If the watchpoint statusis

232

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
OnCE Debugger Features

used as a trace counter, it can also be helpful to debug sections of code that do not have a
normal flow or are hung up in infinite loops.

Watchpoints are available regardless of whether you have checked “Use Hardware
Breakpoints.” The watchpoint status window does not report the status of hardware
breakpoints. ONCE™ hardware only supports one hardware breakpoint or watchpoint at a
time. If awatchpoint isin place, you cannot use a breakpoint and vice versa.

The CodeWarrior watchpoint debugger can monitor:
« Program memory addresses
« Data memory addresses
¢ Thevalue on the Core Global Data Bus
¢ Thevaue on the Program Address Bus
» Specified number of occurrences

NOTE If you are debugging Flash ROM, enable the Use Hardware breakpoints option
in the M56800 Target Settings panel. However, you can use the Watchpoint
status window debugging RAM aswell.

Opening the Watchpoint Status Window

To select anew watchpoint status:
1. Start adebugging session.

2. From the menu bar of the Freescale CodeWarrior window, select DSP56800 >
Watchpoint status.

The Watchpoint Status window appears (Figure 9.24 on page 234).

NOTE TheWatchpoint Status menu item is disabled when you use the Simulator
or during a system-level connect.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 233

4
A

Debugging for DSP56800
OnCE Debugger Features

Figure 9.24 Watchpoint Status Window

DSP568 Watchpoink x|
— Breakpaint Lnit 1 — Breakpaint Lnit 2

[Reserve Ereakpoint Unit 2 for debugger

Bus: IEREcuted program fetch j Bus: ID:ure Global D ata Bus j
W alue: IDHD \alue: IEI:-tEI
Mode: |Fead | Mask: |DsFFFF

Oecurrence Counter: I1
— Sequence

{* Breakpoint 1 occurs COUNTER times
" Breakpaint 1 or Breakpoint 2 occurs COUNTER times
" Breakpoint 1 and Ereakpoint 2 simulaneously occur COUNTER times

™ Breakpaint 2 occurs ance, then Breakpoint 1 oceurs COUMTER times
" Breakpaint 2 occurs COUNTER times, then Breakpoint 1 accurs once

— Status

‘watchpaint iz available.

Set W’atchpointl [E2ar W atehpeiit |
Close |

NOTE When you clear a custom watchpoint, the settings you last used are now
selected instead of the previous default values. These settings do not carry over
from previous debugging sessions.

Breakpoint Unit 1

Breakpoint unit 1 (BPU1) of the watchpoint status window allows you to monitor address
values and access type for any X or P memory location.

Options for setting BPU1 are in the Breakpoint Unit 1 group box shown in Figure 9.25 on
page 235 and listed in Table 9.7 on page 235.

234 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
OnCE Debugger Features

Figure 9.25 Breakpoint Unit 1 Options

— Breakpoint nit 1

Bus: IE:-:E::uteu:I program fetch j
Yalue: IUHD
Mode: IHead j

Table 9.7 Options for Breakpoint Unit 1

Setting Value Comment

Bus Execute program fetch When a P memory instruction is executed.
Mode defaults to Read. Useful when only
interest is opcode instructions.

Any P memory access Any time a P memory address is accessed,
depending on the value of Mode. Useful
when writing or reading data from P memory.

X Address Bus 1 Access for all X address values through
XABL1 (internal or external memory)
depending on the Mode you select.

Value C hexadecimal or Range: 0x0 to OXFFFF
decimal notation
Mode Read
Write
Read and Write
NOTE If Breakpoint Unit 2 isdisabled (in use by the debugger), then the occurrence

counter is set to 1 as the default.

Breakpoint Unit 2

Breakpoint unit 2 (BPU2) of the watchpoint status window allows you to monitor values
(and their masks) in either the Core Global Data Bus (CGDB) or Program Address Bus
(PAB). When you use BPU2 in conjunction with BPU1 and the occurrence counter, you

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

235

y
A

Debugging for DSP56800
OnCE Debugger Features

can monitor the status of awatchpoint to aresolution asfine as 1 bit at single memory

location.

Options for setting BPU2 are in the Breakpoint Unit 2 group box arein Figure 9.26 on
page 236 and listed in Table 9.8 on page 236.

Figure 9.26 Breakpoint Unit 2 Options

— Breakpaoint Lnit 2

[T Reserve Breakpoint Unit 2 for debugger

Bus: IEn:-re Global Data Bus j

Yalue: IU:'!':I

b ask: IEIHFFFF

NOTE If you are using Breakpoint Unit 2, ensure that one of the radio buttonsis set to
use Breakpoint 2 in the Sequence group box.

Table 9.8 Options for Breakpoint Unit 2

Setting Value Comment
Reserve Enabled Breakpoint unit 2 cannot be user defined
Breakpoint Unit 2 and the occurrence counter defaults to 1
for Debugger for BPUL.

Disabled Breakpoint unit 2 is user-defined and

occurrence counter is available for both
BPU1 and BPU2. Single stepping,
stepping over, and stepping out of
functions cannot be done when
hardware breakpoints are enabled.

Bus

Core Global Data
Bus (CGDB)

Data transfer between the data ALU and
X data memory for one memory access.

Program Address
Bus (PAB)

19-bit program memory address bus.

236 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
OnCE Debugger Features

Table 9.8 Options for Breakpoint Unit 2 (continued)

Setting Value Comment

Value The hexadecimal To read full value, set Mask to 0xFFFF.
value read from the
specified Bus.

Mask Mask value in C hex Specify a value of 0xFFFF for full value
notation from 0x0 to specified by Value. Specify other hex
O0xFFFF. value to exclude bits. For example, if you

wanted to stop at any value where bit 15
is set, you would specify 0x8000 in both
the Mask and Value fields

Occurrence Counter and Sequence Options

This section explains how the debugger uses the Occurrence Counter (hardware
breakpoint counter) and Sequence Options when halting the debugger.

Occurrence Counter

The Occurrence Counter usesthe OnCE breakpoint counter (OCNTR) for stopping
on the nth iteration of a program loop or when the nth occurrence of a datamemory access
occurs. When you specify avalue from 1to 256 inthe Occurrence Counter text
box, it sets ONCTR to that value minus 1. Refer to OnCE Breakpoint Counter (OCNTR)
in the DSP56800 Family Manual for more information.

NOTE Oncethe Occurrence Counter isdecremented and a breakpoint is reached,
the counter is not reset. Hence, the Occur rence Counter remains at one and
stops at every specified breakpoint.

Sequence Options

To define the criteriafor how often the debugger stops on awatchpoint, use the
Sequence group box (Figure 9.27 on page 238). The value you set in the
Occurrence Counter text box determines the value of COUNTER.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 237

'
A

Debugging for DSP56800
OnCE Debugger Features

Figure 9.27 Sequence Counter Options in the Watchpoint Status Window

— Sequence

{* Breakpoint 1 occurs COUNTER times

" Breakpoint 1 or Breakpoint 2 occurs COUMTER times

" Breakpoint 1 and Breakpoint 2 simultaneously occur COUMTER times
" Breakpoint 2 occurs once, then Breakpoint 1 occurs COUNTER times

" Breakpoint 2 occurs COUMTER times, then Breakpoint 1 ocours once

Table 9.9 on page 238 explains the options available in the Sequence group box

Table 9.9 Options for the Occurrence Counter

Option

Comment

Breakpoint 1 occurs
COUNTER times

If Reserve Breakpoint Unit 2 for Debugger is enabled,
this is the default option and COUNTER is 1.

Breakpoint 1 or Breakpoint 2
occurs COUNTER times

BPU1 and BPU2 work independently. If you are only
interested in using BPU2, set BPUL1 to a value you know
will not be reached during program execution.

Breakpoint 1 and Breakpoint
2 simultaneously occur
COUNTER times

BPU1 and BPU2 work together. This is useful for
monitoring bit status with a defined mask.

Breakpoint 2 occurs once,
then Breakpoint 1 occurs
COUNTER times

Useful for monitoring the status of recursive or nested
algorithms.

Breakpoint 2 occurs
COUNTER times, then
Breakpoint 1 occurs once

Useful for monitoring the status of recursive or nested
algorithms

Setting and Clearing Watchpoint Status

Y ou can set and clear awatchpoint only through the Watchpoint Status window.
Use the following commands:
¢ Set Watchpoint

Enables a watchpoint for the values specified by BPU1 and BPU2. Hardware
breakpoints are not available when awatchpoint is set.

¢ Clear Watchpoint

Disablesthe current watchpoint and returns all valuesinthe Watchpoint Status
window to their default values.

238 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
OnCE Debugger Features

Trace Buffer

From the menu bar of the Freescale CodeWarrior window, select DSP56800 > Dump
Trace Buffer to see the most recent changesin the program flow and a reconstructed
program trace (Figure 9.28 on page 239).

Use this feature to query the Trace Buffer, located in the On-Chip Emulation module of a
hardware target. This buffer storesthe eight most recent changesin the program flow. The
debugger retrieves these addresses and attempts to reconstruct atrace of the program flow.
This occurs both when the window is opened and whenever debugging stops while the
window is open.

The Trace Buffer menuitem is enabled when the IDE is debugging a hardware target
and debugging has stopped.

Figure 9.28 Trace Buffer Window
181 x]
|? |Trace Buffer ilzl

t PrOx00000145
5 init.c line &9 m
[address: P:oxoo000145
DSPSEFS05_init.c line 69

f e o e DT S A T) e
< | _>J_|

b~ 4} - M- [- o' - Path | C\Documerts and Settings.. \DSPSEFS05_inite <>

/7 or we reach ti U
decw =0 s+ decrement our 4|
tstw =0 S0 test for zero

T beg pll timeout S 1f timed-out,
o brclr #foll=sr init = FPIISE pll test lock |
pll_ timeout :
< pll locked
T nove #pllcr proceed,®x:PLICE 77 ==t lock detec
— MoweE x FLLSE ., =0 < oclear pending
nowe =0, 5 FLLSE
< Zetup exception handler and interrupt levels
-
Line 700 Call | 4] | v[

The trace buffer lets you view the target addresses of change-of-flow instructions that the
program executes.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 239

y
A

Debugging for DSP56800
Using the 56800 Simulator

To view the contents of the trace buffer (Figure 9.29 on page 240):
1. From the IDE menu bar, select DSP56800 > Dump Trace Buffer.

Figure 9.29 Contents of Trace Buffer

=T
|2 |Trace Bufter ilzl

@ address: P:0x00000000
wector.c line 42

[address: P:ox00000000

wector.c line 42

e

b-{}-n- -~ o' =~ Path |C:\SDKdepEE838evm_\nns\cunfig\vector.c: £

finclude "configdefines h" %
#fundef CFG_SECTIOH _ISE DECLARATION
=

- ¥ isr archStart /% {P . 0=00, 37 EECET®A
- j=r SDE_Interruptl s P 0=x02,3} COP Heset
- j=r SDE_illegal <% JP:0=04, 3} Illegal In
- j=r SDE_Interrupt3 s P 0=x06,3} Software I
- j=r SDE_HWSOwerf low <% JP:0=08, 3} Hardware S
Line 43 Coll |4] | vl.g

Using the 56800 Simulator

The CodeWarrior Development Studio for Freescal e 56800 includes the Freescal e 56800
Simulator. This software lets you run and debug code on a simulated 56800 architecture
without installing any additional hardware.

The simulator simulates the 56800 processor, not the peripherals. In order to use the

simulator, you must select a connection that uses the simulator as your debugging protocol
from the Remote Debugging panel.

NOTE Thesimulator also enables the 56800 menu for retrieving the machine cycle
count and machine instruction count when debugging.

240 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Using the 56800 Simulator

Cycle/lnstruction Count

From the menu bar of the Freescale CodeWarrior window, select 56800 > Display
Cyclel/lnstruction count. Thefollowing window appears (Figure 9.30 on

page 241):
Figure 9.30 Simulator Cycle/lnstruction Count

i @DSP568 Simulator Cycle/Instruc x|

Machine cycles simulated: 92

Machine instructions simulated; 24
Reset |

NOTE Cyclecounting isnot accurate while single stepping through source code in the
debugger. It isonly accurate while running. Thus, the cycle counter is more of

aprofiling tool than an interactive tool.

Press the Reset button to zero out the current machine-cycle and machine-instruction
readings.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 241

A 4
4\

Debugging for DSP56800
Register Details Window

Memory Map
Figure 9.31 Simulator Memory Map
$FFFF $FFFF
Reserved
$FFCO
X Data
Program Memory
Memory Space
Space
$2000
Reserved
$1300
$7F
Interrupt
Vectors
$0 $0
P: X:
NOTE

Figure 9.31 on page 242 is the memory map configuration for the simulator.
Therefore, the simulator does not simulate each DSP568xx device' s specific
memory map, but assumes the memory map of the DSP56824.

Register Details Window

From the menu bar of the Freescale CodeWarrior window, select View > Register Details
or in the Registers window (Figure 9.14 on page 218) double-click on the register. The
Register Details window appears (Figure 9.32 on page 243).

242 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Loading a .elf File without a Project

Figure 9.32 Register Details Window

: mRegister Details il
Description File: | Browsze... |

Register Mame: Format:IDefauIt j

e EEEE EE EEREEE R G EEREEEEEEREERE

| ==

Type the name of a register or a full path to a description file in the ;I
'Description File:' field.

]
Revert I Fead I ifrite I He&et\faluel Text\a’iew:l.&uto vl
pa

Inthe Register Details window, type the name of the register (e.g., OMR, SR, IPR,
etc.) inthe Description File field. The applicable register and its val ues appears.

By default, the CodeWarrior IDE looks in the following path when searching for register
description files.

\CodeWarrior\bin\Plugins\support\Registers\M56800\GPR

Register description files must end with the . xm1 extension. Alternatively, you can use
the Browse button to locate the register description files.

Using the Format list box in the Register Details window, you can change the format in
which the CodeWarrior IDE displaysthe registers.

Using the Text View list box in the Register Details window, you can change the text
information the CodeWarrior IDE displays.

Loading a .elf File without a Project

You can load and debug a . e1 £ file without an associated project. Toload a . e1£ filefor
debugging without an associated project:
1. Launch the CodeWarrior IDE.
2. Choose File > Open and specify thefile to load in the standard dialog box that
appears.
Alternatively, you can drag and drop a . e1 £ file onto the IDE.

3. You may have to add additional access paths in the Access Path preference panel in
order to see all of the source code.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 243

3
4

'
A

Debugging for DSP56800
Using the Command Window

Using

4. Choose Project > Debug to begin debugging the application.

NOTE Whenyoudebug a .elf filewithout a project, the IDE sets the Build before
running setting on the Build Settings panel of the IDE Preference panelsto
Never. Consequently, if you open another project to debug after debugging a
.elf file, you must change the Build befor e running setting before you can
build the project.

The project that the CodeWarrior tools uses to create a new project for the given .e1f£ file
iS56800_Default Project.xml and islocated in the path:

CodeWarrior\bin\plugins\support directory

Y ou can create your own version of thisfile to use as a default setting when opening a
.elf file

1. Create anew project with the default setting you want.
2. Export the project to xml format.

3. Renamethe xml format of the project to 56800 Default_Project.xml and placeitinthe
support directory.

NOTE Back up or rename the origina version of the default xml project before
overwriting it with your own customized version.

the Command Window

In addition to using the regular CodeWarrior IDE debugger windows, you also can debug
using Tcl scripts or the Command Window.

For more information on Tcl scripts and the Command Window, please see the
CodeWarrior Development Sudio IDE 5.6 Windows® Automation Guide.

System-Level Connect

The CodeWarrior DSP56800 debugger |ets you connect to aloaded target board and view
system registers and memory. A system-level connect does not let you view symbolic
information during a connection.

NOTE Thefollowing procedure explains how to connect in the context of developing
and debugging code on atarget board. However, you can select the Debug >
Connect command anytime you have a project window open, even if you
have not yet downloaded afile to your target board.

244

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Debugging on a Complex Scan Chain

To perform a system-level connect:

1
2.

Select the Project window for the program you downloaded.
From the menu bar, select Debug > Connect.

The debugger connects to the board. Y ou can now examine registers and the contents
of memory on the board.

Debugging on a Complex Scan Chain

This section describes the procedure for debugging a chip connected on a complex JTAG

chain.

Setting Up

The generd steps for debugging a DSP56800 chip connected on a complex scan chain are:
1. Set up and connect your JTAG chain of target boards.

2. WriteaJTAG initialization file that describes the items on the JTAG chain.

3. Open aproject to debug.

4. Inthe project you are debugging, open the Remote Debugging preference panel

(Eigure 9.33 on page 246).

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 245

4
A

Debugging for DSP56800
Debugging on a Complex Scan Chain

Figure 9.33 Remote Debugging Preference Panel

E Target Settings Panels | E Fiemate Debugging
i Source Trees LI ~Co Yion Setti
. M5E300 Target) - : :
- Languags Settings Connectlon:lEBBDD Local Hardware Connection j Edit Conrection. .. |
i C/C++ Language Remote download path
- C/C++ Preprocessor I
- C/C++Warnings

- MBEE00 Aszembler I™ Launch remate host application
= _Code Generation

i ELF Disassembler ’7I

E"Eii?g;ﬁ:;f;;s [~ Multi-Core Debugging——— ~JTAG Clock Spesd ———————————
[Linker ’7 Core lndex: [0 g IVISUUU

e MBEE00 Linker

= Editor

o Cushom Keywords
[= Debugger

i Debugger Settings

Remate Debugging R

Factar Settings Fesvert Import Panel... | Export Panel... I

Ok I Cancel | Al I

5. Click the Edit Connection button and enable the M ulti-Cor e Debugging checkbox
(Figure 9.34 on page 247).

246 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Debugging for DSP56800
Debugging on a Complex Scan Chain

Figure 9.34 56800 Local Hardware Connection with Multi-Core Debugging Enabled

56800 Local Hardware Connection) |

M arne: |58800 Local Hardware Connection

Debugger:IEES BEE00 Protocal Plugin j [Show in processes list

— Connection T_l,lpe:lCl:S Femote Connection ﬂ

—I Use Remaote CCS Port #:
Server IP Address: [127.001 [41475

—[Specify CCS Executable

I Lhoaze. . |

l Chooze. . |
—CCS Timeout

IED seconds

Factom Settingz I Rewert Fanel I Cancel I] I

6. Specify the name and path of the JTAG initidization filein the JTAG Configuration
File text field.

7. Click OK to close the connection panel.

8. Inthe Remote Debugging panel, specify the index of the core to debug by enabling
the M ulti-Cor e Debugging checkbox and changing the Cor e Index selection.

9. Select Project > Run.
The IDE downloads the program to the specified core. Y ou can begin debugging.

JTAG Initialization File

Although you may debug only one single chip at atime, you must create a JTAG
initialization file that specifies the type and order of all the chipsin the chain.

To specify DSP56800 chips, you must specify DSP56800 as the name of a the chip you
are debugging. For example, Listing 9.1 on page 248 shows a JTAG initialization file for
three 56800 chips, an SC140 and an MCore210 in a JTAG chain.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 247

y
A

Debugging for DSP56800
Debugging on a Complex Scan Chain

NOTE Device 0isthe device closest to the TDO signa on the Command Converter
Server.

Listing 9.1 Example JTAG Initialization File for DSP56800, SC140 and MCore210 Boards

JTAG Initialization File

Has an
DSP56800
Has an
DSP56800
Has an
DSP56800
Has an
SC140

Has an
MCore210

index value of 0 in the JTAG chain

index value of 1 in the JTAG chain

index value of 2 in the JTAG chain

index value of 3 in the JTAG chain

index value of 4 in the JTAG chain

NOTE Seethesampleinitidization fileinthe DSP56800x_EABI Tools/JTAG
folder.

In addition, you can specify other chipsto debug on the JTAG chain. To do so, you usethe
following syntax to specify the chip as ageneric device:

Generic instruct reg length data reg bypass length
JTAG_bypass_instruction

on page 249Table 9.10 on page 248 shows the definitions of the variables that you must
specify for ageneric device.

Table 9.10 Syntax Variables to Specify a Generic Device on a JTAG Chain

Variable Description

instruct_reg length Length in bits of the JTAG instruction register.

data_reg_bypass length Length in bits of the JTAG bypass register.

JTAG bypass_instruct Hexadecimal value that specifies the JTAG bypass
instruction.

Listing 9.2 on page 249 shows a JTAG initialization file that includes a DSP56800 chip
and a generic devicein aJTAG chain.

248

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Debugging in the Flash Memory

Listing 9.2 Example JTAG Initialization File with a Generic Device

JTAG Initialization File

Has an index value of 0 in the JTAG chain
DSP56800

Has an index value of 1 in the JTAG chain
Generic 4 1 Oxf

Debugging in the Flash Memory

The debugger is capable of programming flash memory. The programming occurs at
launch, during download. The flash programming option is turned on and the parameters
aresetintheinitiaization file. Thisfileis specified in the Debugger >M 56800 T ar get
preference panel. A list of flash memory commandsis given in the next section.

The stationery provides an example of how to specify adefault initialization file, how to
write alinker command file for flash memory, and how to copy initialized datafrom ROM
to RAM using provided library functions.

Flash Memory Commands

Thefollowingisalist of flash memory commands that can be included in your
initidization file.

set_hfmclkd <value>

This command writes the value which represents the clock divider for the flash memory
to the hfmclkd register.

Thevaluefor the set_hfmclkd command depends on the frequency of the clock. If
you are using asupported EVM, this value should not be changed from the value provided
in the default initialization file. However, if you are using an unsupported board and the
clock frequency is different from that of the supported EVM, a new value must be
calculated as described in the user’s manual of the particular processor that you are using.

NOTE The set_hfmclkd, set_hfm base, and at least one add_hfm unit
command must exist to enable flash programming. All other flash
memory commands are optional.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 249

A 4
4\

Debugging for DSP56800
Debugging in the Flash Memory

set_hfm_base <address>

This command sets the address of hfm_base, which is where the flash control registers
are mapped in X: memory.

NOTE The set_hfm baseand add_hfm unit commands should not be

changed for a particular processor. Their values will always be the
same.

set_hfm_config_base <address>

This command sets the address of hfm config base, which iswhere the flash
security values are written in program flash memory. If this command is present, the
debugger used the address to mimic part of the hardware reset behavior by copying the
protection values from the configuration field to the appropriate flash control registers.

add_hfm_unit <startAddr> <endAddr> <bank> <numSectors>
<pageSize> <progMem> <boot> <interleaved>

This command adds a flash unit to the list and sets its parameters.

NOTE The set_hfm baseand add_hfm unit commands should not be

changed for a particular processor. Their values will always be the
same.

set_hfm_erase_mode units | pages | all

This command setsthe erase mode asunits, pages or all. If you set thistounits,
the unitsthat are programmed are mass erased. If set thisto pages, the pages that are
programmed are erased. If you set thisto al1, al units are mass erased including those

that have not been programmed. If you omit this command, the erase mode defaults to the
unit mode.

250 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Debugging for DSP56800
Setting up the Debugger for Flash Programming

set_hfm_verify_erase 1|0

If you set thisto 1, the debugger verifies that the flash memory has been erased, and dlerts
you if the erase failed. If this command is omitted, the flash eraseis not verified.

set_hfm_verify_program 1|0

If you set thisto 1, the debugger verifies that the flash has been programmed correctly,

and aertsyou if the programming failed. If you omit this command, flash programming is
not verified.

Setting up the Debugger for Flash
Programming

In order for the debugger to download into Flash, the Use Flash Config File optionis
required in the M56800 Target panel and must be enabled.

Figure 9.35 on page 252 shows the M56800 Target panel when you use minimum
requirements for Flash programming.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 251

4
A

Debugging for DSP56800
Setting up the Debugger for Flash Programming

Figure 9.35 M56800 Target Panel for Programming Flash

i minternal memory with xR 0OM-to-xRAM copy Settings e
H Target Settings Panels |IE 5800 T arget Settings
=+ Language Settings :I

Lo CAC++ Language .. Iv Always reset on download

- CAC++ Preprocessar
 C/C++ Wamings [V Use Flash Corfig Fils IEEBUE_fIash.cfg Choose. . I
o MSBE00 Assembler
- Code Generation Ereakpaint mode: |ﬂut0matic vi
i ELF Dizazzembler
s~ M5E800 Processor [Auto-clear previous hardware breakpoint
i Global Optimizations
= Linker ¥ Initialize OMR for programm memon

‘- MBES00 Linker
B EEditor Frogram mermory mode: Ilnternal vl

i Custom Keywords
= Debugger
i Debugger 5 ettings
- Remate Debugging
; 00 Target Set..
‘o Remate Debug Opt.. »

i

Frocessar: |D SPSEF305 - I

Factom Settingsl Frevert | Irpart Parel... | Export Panel... I

Ok Cancel | it 1] I

Use Flash Config File

Whenthe Use Flash Config File optionisenabled, you can specify the use of aflash
configuration file (Listing 5.3 on page 98) in the text box. If thefull path and file name are
not specified, the default location is the same as the project file.

You can click the Choose button to specify the file. The Choose File dialog box
appears (Figure 9.36 on page 253).

252 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

b -

Debugging for DSP56800
Notes for Debugging on Hardware

Figure 9.36 Choose File Dialog Box

21x|
Lok in: Ia sample j 4= £k E5-

lcf

oukput

sample_Data

startup
MSEE00_main.c
MS&800_main_hostio.c
sample. mcp

File: name: || j Open I

Files of type: | j Cancel |
Fa

A

For more information on the Flash Configuration File Line Format, see “M56800 Target
(Debugging)”.

Notes for Debugging on Hardware

Below are some tips and somethings to be aware of when debugging on a hardware target:
¢ Ensureyour Flash data size fitsinto Flash memory.

The linker command file specifies where data is written to. There is no bounds
checking for Flash programming.

¢ Thestandard library 1/O function such asprint £ useslarge amount of memory
and may not fit into flash targets.

¢ Usethe Flash stationery when creating a new project intended for ROM.
The default stationery contains the Flash configuration file and debugger settings
required to use the Flash programmer.

¢ Thereisonly one hardware breakpoint available, whichis shared by IDE breakpoints
(when the Breakpoint Mode is set to hardware in the M56800 Target panel),
watchpoints, and OnCE triggers. Only one of these may be set at atime.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 253

A 4
4\

Debugging for DSP56800
Flash Programming the Reset and Interrupt Vectors

Flash Programming the Reset and Interrupt
Vectors

Thefirst four P: (program) memory locationsin Flash ROM are actually "mirrored” from
the first four memory locations of Boot Flash. Therefore, when Flash programming the
reset vectors, write the reset vectors to the beginning of Boot Flash. The interrupt vectors
are located in Program Flash. Write the interrupt vectors normally, starting at P:0x0004.

The Flash targets in the stationery demonstrate how the source, linker command file, and
flash configuration file look.

NOTE Itisimportant that you use the flash configuration file provided in the

stationery. Using aflash configuration file with extra sections can lead to
multiple erases of the same flash unit resulting in Flash programming errors.

254 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

10

Data Visualization

Data visualization lets you graph variables, registers, and regions of memory as they
change over time.

The Data Visualization tools can plot memory data, register data, and global variable data.
« Starting Data Visualization on page 255

« DataTarget Dialog Boxes on page 256
¢ Graph Window Properties on page 259

Starting Data Visualization

To start the Data Visualization tool:
1. Start adebug session
2. Select Data Visualization > Configurator.

The Data Types window (Figure 10.1 on page 255) appears. Select a data target type
and click the Next button.

Figure 10.1 Data Types Window

Data Types

Select a target data tppe for which the data iz to be wizsualized.

£
] Registers
abe ‘/ariables

S H55T

¢ Back I Memt = I Cancel Help

3. Configure the data target dialog box and filter dialog box.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 255

4
A

Data Visualization
Data Target Dialog Boxes

4. Run your program to display the data (Figure 10.2 on page 256).

Figure 10.2 Graph Window

{ @short DataDut[10] =] B
X

8948

5948

4948 \

2948 \ /

945 \
-1052 \ /
3052 \
5052 \ \ ’/
-70a2 /

YWalue

0os 1 18 2 25 3 35 4 45 &5 BA B BR 7 ¥5 8 B5 4
Time

Data Target Dialog Boxes

There are four possible data targets. Each target has its own configuration dialog.

* Memory on page 256
* Reqgisters on page 258

« Variables on page 258

Memory

The Target Memory dialog box lets you graph memory contentsin real-time.

256 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Data Visualization
Data Target Dialog Boxes

Figure 10.3 Target Memory Dialog Box

Target Memory Data E

Select the way the memorny iz bo be vizualized.

Data Type: I unsigned 32-b "’I D ata Units: I'I 0

— Memony Wizsualization

{* Single location changing owver time

Address: Ox |IZIIZIDIZIEF3IZI

" Mermom Begion chaning over time

¥ itz O I

¥ rtwiss 2 I

¢ Back I Mext » I Cancel Help

Data Type

The Data Type list box lets you select the type of datato be plotted.

Data Unit

The Data Unitstext field lets you enter avalue for number of data unitsto be plotted. This
option is only available when you select Memory Region Changing Over Time.

Single Location Changing Over Time

The Single Location Changing Over Time option lets you graph the value of asingle
memory address. Enter this memory address in the Address text field.

Memory Region Changing Over Time

The Memory Region Changing Over Time options lets you graph the val ues of a memory
region. Enter the memory addresses for the region in the X-Axis and Y-Axis text fields.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 257

y
A

Data Visualization
Data Target Dialog Boxes

Registers
The Target Registers dialog box lets you graph the vaue of registersin real-time.

Figure 10.4 Target Registers Dialog Box
TorgetRegsters [

Select regizters for which the data iz to be vizualized.

E----H General Purpogze Hegisﬂ EI----H General Purpose Registers
..... = Do é.....'rE= [yl

----- e DOL ;
----- t= DOH _”I
----- = DOE

- <.
..... TE= L0 _|
""" E: D1L £
----- Te= DTH —I

..... Fr= N1F hd

1 I ;IJ 1 |

¢ Back I Meut = I Cancel | Help |

Select registers from the left column, and click the -> button to add them to the list of
registersto be plotted.

Variables

The Target Globals dialog box lets you graph the value of global variablesin real-time.
(See Figure 10.5 on page 259.)

258 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Data Visualization
Graph Window Properties

Figure 10.5 Target Globals Dialog Box

Target Globals x|

Select globals which are to be visualized.

----- B long __ mem_limit

----- E long __ receive —

----- H long __ send _>|
----- H long __ sendmreceive L|

----- H long __ size

----- B long _ stack_safety e |

----- E lang zyzcall
----- B lonn alreadn renichers
1| | B

¢ Back I Mest » I Cancel Help

Select global variables from the left column, and click the -> button to add them to the list
of variablesto be plotted.

Graph Window Properties

P
To change the look of the graph window, click the graph properties button to open
the Format Axis dialog box.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 259

y
A

Data Visualization
Graph Window Properties

Figure 10.6 Format Axis Dialog Box

Format Axis |

—#-butis Scale [auto when checked)

Iv Minimum; I I tdaijor unit;
v b aximum: I ¥ | tinar unit

[T Logarithmic scale

— 1Az Scale [auto when checked]

I—
I—

v Mimimum: I v ajor unit; I

v Ma:-cimum:l ¥ | bdirar rit: I

[~ Loganthmic scale

— Dizplay

[hits: I vI [T Showe dizplay units o label
Ma af Paintz: I‘I o

ak. I Cancel

Scaling

The default scaling settings of the data visualization tools automatically scale the graph
window to fit the existing data points.

To override the automatic scaling, uncheck a scaling checkbox to enable the text field and
enter your own value.

To scale either axis logarithmically, enable the Logarithmic Scale option of the
corresponding axis.
Display

The Display settings let you change the maximum number of data points that are plotted
on the graph.

260

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

11

Profiler

The profiler is arun-time feature that collects information about your program. It records
the minimum, maximum, and total number of clock cycles spent in each function. The
profiler alows you to evaluate your code and determine which functions require
optimization.

When profiling is enabled, the compiler adds codeto call the entry functionsin the profiler
library. These profiler library functions do all of the data collection. The profiler library,
with the help of the debugger create abinary output file, which is opened and displayed by
the CodeWarrior IDE.

NOTE For moreinformation on the profiler library and its usage, see the CodeWarrior
Development Sudio IDE 5.5 User’s Guide Profiler Supplement.

To enable your project for profiling:

1. Add thefollowing path to your list of user paths in the Access Paths settings panel:
{Compiler}M56800x Support\profiler

2. Add thefollowing line to the file that contains the function main():
#include "Profiler.h"

3. Addthe profiler library fileto your project. Select the library that matches your target
from this path:

{CodeWarrior path}M56800x Support\profiler\lib
4. Add thefollowing function callsto main():

ProfilerInit ()

ProfilerClear ()

ProfilerSetStatus()

ProfilerDump ()

ProfilerTerm()

For more details of these functions, see the CodeWarrior Development Sudio IDE 5.5
User’s Guide Profiler Supplement.

5. It may be necessary to increase the heap size to accommodate the profiler data
collection. This can be set in the linker command file by changing the value of

__heap _size.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 261

Profiler

6. Enable profiling by setting the Gener ate code for profiling option in the M 56800
Processor settings panel or by using the profile on | off pragmato select individual
functions to profile.

NOTE For aprofiler example, see the profiler examplein this path:
{CodeWarrior path} (CodeWarrior Examples)\
SimpleProfiler

262 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

12
ELF Linker

The CodeWarrior™ Executable and Linking Format (ELF) Linker makes a program file
out of the object files of your project. The linker also allows you to manipulate codein
different ways. Y ou can define variables during linking, control the link order to the
granularity of asingle function, change the alignment, and even compress code and data
segments so that they occupy less space in the output file.

All of these functions are accessed through commands in the linker command file (LCF).
The linker command file has its own language complete with keywords, directives, and
expressions, that are used to create the specifications for your output code. The syntax and
structure of the linker command fileis similar to that of a programming language.

This chapter contains the following sections:

« Structure of Linker Command Files on page 263
¢ Linker Command File Syntax on page 266

¢ Linker Command File Keyword Listing on page 273
¢ _0on page 283Sample M 56800 L inker Command File on page 283

Structure of Linker Command Files

Linker command files contain three main segments:
* Memory Segment
¢ Closure Blocks
¢ Sections Segment

A command file must contain a memory segment and a sections segment. Closure
segments are optional.

Memory Segment

In the memory segment, available memory is divided into segments. Listing 12.1 on
page 263 shows a sample memory-segment format.

Listing 12.1 Sample MEMORY Segment

MEMORY {

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 263

A 4
4\

ELF Linker
Structure of Linker Command Files

segment 1 (RWX): ORIGIN = 0x1000, LENGTH = 0x1000
segment 2 (RWX): ORIGIN = AFTER (segment 1), LENGTH = 0
) =

data (RW) : ORIGIN = 0x2000, LENGTH 0x0000
#segment name (RW) : ORIGIN = memory address, LENGTH = segment
#length

#and so on...

The (RWX) portion consists of ELF access permission flags, read, write, and execute
where:

¢ ORIGIN represents the start address of the memory segment.
¢ LENGTH represents the maximum size alowed for the memory segment.

Memory segments with RWX attributes are placed into P memory while RW attributes are
placed into X memory.

Memory segments with R attributes denote X ROM memory, and memory segments with
RX attributes denote P ROM memory.

Y ou can put a segment immediately after the previous one using the AFTER command.

If you cannot predict how much space a segment will occupy, you can use the command
LENGTH = 0 (unlimited length) and let the linker figure out the size of the segment.

Closure Blocks

Thelinker is very good at deadstripping unused code and data. Sometimes, however,
symbols need to be kept in the output file even if they are never directly referenced.
Interrupt handlers, for example, are usually linked at special addresses, without any
explicit jJumps to transfer control to these places.

Closure blocks provide away to make symbolsimmune from deadstripping. The closure
istransitive, meaning that symbols referenced by the symbol being closed are also forced
into closure, as are any symbols referenced by those symbols, and so on.

NOTE The closure blocks need to be in place before the SECTIONS definition in the
linker command file.

The two types of closure blocks available are:
e Symbol-level

Use FORCE_ACTIVE toinclude asymbol into the link that would not be otherwise
included. An exampleisin Listing 12.2 on page 265.

264 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Structure of Linker Command Files

Listing 12.2 Sample Symbol-level Closure Block

FORCE ACTIVE {break handler, interrupt handler, my function}

¢ Section-level

Use KEEP_SECTION when you want to keep a section (usually a user-defined
section) in the link. Listing 12.3 on page 265 is an example.

Listing 12.3 Sample Section-level Closure Block

KEEP SECTION {.interruptl, .interrupt2}

A variant iISREF _INCLUDE. It keeps a section in the link, but only if the file where
it iscoming from isreferenced. Thisisvery useful to include version numbers.

Listing 12.4 on page 265 is an example.

Listing 12.4 Sample Section-level Closure Block With File Dependency

REF_INCLUDE {.version}

Sections Segment

In the Sections segment, you define the contents of memory segments and any global
symbols to be used in the output file.

The format of atypical sectionsblock isin Listing 12.5 on page 265.

Listing 12.5 Sample SECTIONS Segment

SECTIONS ({

.section_name : #the section name is for your reference

{ #the section name must begin with a '.'
filename.c (.text) #put the .text section from filename.c
filename2.c (.text) #then the .text section from filename2.c
filename.c (.data)
filename2.c (.data)
filename.c (.bss)
filename2.c (.bss)

= ALIGN (0x10); #align next section on 16-byte boundary.
} > segment 1 #this means "map these contents to segment 1"

.next_section_name:

more content descriptions
} > segment x # end of .next section name definition

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 265

y
A

ELF Linker
Linker Command File Syntax

} # end of the sections block

Linker Command File Syntax

This section explains some practical ways in which to use the commands of the linker
command file to perform common tasks.

Alignment

To align data on a specific word-boundary, you use the ALIGN and ALIGNALL
commands to bump the location counter to the preferred boundary. For example, the
following fragment uses ALIGN to bump the location counter to the next 16-byte (word)
boundary. A sampleisin Listing 12.6 on page 266.

Listing 12.6 Sample ALIGN Command Usage

file.c (.text)
= ALIGN (0x10) ;
file.c (.data) # aligned on a 16-byte (word) boundary.

Y ou can also align data on a specific word-boundary with ALIGNALL as shown in
(Listing 12.7 on page 266).

Listing 12.7 Sample ALIGNALL Command Usage

file.c (.text)

ALIGNALL (0x10); #everything past this point aligned on 16 bytes
(word)

file.c (.data)

Arithmetic Operations

Standard C arithmetic and logical operations may be used to define and use symbolsin the
linker command file. Table 12.1 on page 267 shows the order of precedence for each
operator. All operators are | eft-associative.

266 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Linker Command File Syntax

Table 12.1 Arithmetic Operators

Precedence Operators

1 (highest) - T

2 /%

3 . -

4 >> <<

5 == = > < <= >=
6 &

7

8 &&

9 Il

NOTE The shift operator shifts two-bits for each shift operation. The divide operator
performs division and rounding.

Comments

Add comments by using the pound character (#) or C++ styledouble-dlashes(/ /). C-style
comments are not accepted by the LCF parser. Listing 12.8 on page 267 shows examples
of valid comments.

Listing 12.8 Example Comments

This is a one-line comment
* (.text) // This is a partial-line comment

Deadstrip Prevention

The M56800 linker removes unused code and data from the output file. This processis
called deadstripping. To prevent the linker from deadstripping unreferenced code and
data, usethe FORCE_ACTIVE, KEEP_SECTION, and REF_INCLUDE directivesto
preserve them in the output file.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 267

A 4
4\

ELF Linker
Linker Command File Syntax

Variables, Expressions and Integral Types

This section explains variables, expressions, and integral types.

Variables and Symbols

All symbol names within a Linker Command File (LCF) start with the underscore
character (), followed by letters, digits, or underscore characters. Listing 12.9 on
page 268 shows examples of valid lines for acommand file:

Listing 12.9 Valid Command File Lines

_dec_num = 99999999;
hex num = 0x9011276;

Variables that are defined within a SECTIONS section can only be used within a
SECTIONS section in alinker command file.

Global Variables

Global variables are accessed in alinker command file with an ‘F prepended to the
symbol name. Thisis because the compiler addsan ‘F' prefix to externally defined
symbols.

Listing 12.10 on page 268 shows an example of using aglobal variable in alinker
command file. This example sets the global variable foot, declared in C with the
extern keyword, to the location of the address location current counter.

Listing 12.10 Using a Global Variable in the LCF

F foot = .;

If you use aglobal symbol inan LCF, asin Listing 12.10 on page 268, it can be accessed
from C program sources as shown in Listing 12.11 on page 268.

Listing 12.11 Accessing a Global Symbol From C Program Sources

extern unsigned long foot;
void main(void) {
unsigned long 1i;
/] ...
i = foot; // _foot value determined in LCF

//

268 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Linker Command File Syntax

Expressions and Assignments

Y ou can create symbols and assign addresses to those symbols by using the standard
assignment operator. An assignment may only be used at the start of an expression, and a
semicolon isrequired at the end of an assignment statement. An example of standard
assignment operator usage is shown in Listing 12.12 on page 269.

Listing 12.12 Standard Assignment Operator Usage

_symbolicname
_syml + _sym2

some_expression; # Legal
sym3; # ILLEGAL!

When an expression is evaluated and assigned to avariable, it is given either an absolute
or arelocatable type. An absolute expression type is one in which the symbol containsthe
valuethat it will havein the output file. A relocatable expression is one in which the value
is expressed as a fixed offset from the base of a section.

Integral Types

The syntax for linker command file expressionsis very similar to the syntax of the C
programming language. All integer types are long of unsigned long.

Octdl integers (commonly know as base eight integers) are specified with aleading zero,
followed by numeral in the range of zero through seven. Listing 12.13 on page 269 shows
valid octal patternsyou could put into your linker command file.

Listing 12.13 Sample Octal Patterns

_octal number
_octal number2

012;
03245;

Decimal integers are specified as a non-zero numeral, followed by numeralsin the range
of zero through nine. To create a negative integer, use the minus sign (-) in front of the
number. Listing 12.14 on page 269 shows examples of valid decimal integers that you
could write into your linker command file.

Listing 12.14 Sample Decimal Integers

_dec_num

9999;

_decimalNumber = -1234;

Hexadecimal (base sixteen) integers are specified as 0x or 0X (azero with an X),
followed by numerals in the range of zero through nine, and/or characters A through F.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 269

y
A

ELF Linker
Linker Command File Syntax

Examples of valid hexadecimal integers you could put in your linker command file appear
in Listing 12.15 on page 270.

Listing 12.15 Example Hexadecimal Integers

__somenumber = 0xO0F21;
_fudgefactorspace = 0XFO00D;
__hexonyou = Oxcafe;

File Selection

When defining the contents of a SECTION block, specify the source filesthat are
contributing to their sections. The standard method of doing thisisto list thefiles.

In alarge project, the list can grow to become very long. For this reason, use the asterix
(*) keyword. The asterix (*) keyword represents the filenames of every filein your
project. Note, that since you have aready added the . text sections from the files
main.c,file2.c,andfile3.c, the'*' keyword doesnot includethe . text
sections from those files again.

Function Selection

The OBJECT keyword allows precise control over how functions are placed within a
section. For example, if the functionspad and foot areto be placed before anything else
in asection, use code like the example in Listing 12.16 on page 270.

Listing 12.16 Sample Function Selection Using the Object Keyword

SECTIONS ({
.program_section :

OBJECT (Fpad, main.c)
OBJECT (Ffoot, main.c)
* (.text)

} > ROOT

NOTE If an object iswritten once using the Object function selection keyword, you
can prevent the same object from being written again using the '** file selection
keyword.

270 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Linker Command File Syntax

ROM to RAM Copying

In embedded programming, it is common to copy a portion of a program resident in ROM
into RAM at runtime. For example, program variables cannot be accessed until they are
copied to RAM.

Toindicate data or code that is meant to be copied from ROM to RAM, the dataor codeis
given two addresses. One addressis its resident location in ROM (defined by the linker
command file). The other isitsintended location in RAM (defined in C code where you do
the actual copying).

To create a section with the resident location in ROM and an intended location in RAM,
you define the two addresses in the linker command file. Use the MEMORY segment to
specify the intended RAM location, and the AT (address) parameter to specify the
resident ROM address.

NOTE Thismethod only works for copying from data ROM to data RAM.

For example, you have a program and you want to copy all your initialized datainto RAM
at runtime. Listing 12.17 on page 271shows you the L CF used to set up for writing
initialized datato ROM.

NOTE If you want to write initialized data to program ROM, usethe WRITE
commandsin the LCF. Also, write your own P to X memory copy routinein
assembly to copy data from program ROM to data RAM at runtime.

Listing 12.17 LCF File to Prepare Data Copy From ROM to RAM

MEMORY {

.text (RWX) : ORIGIN = 0x8000, LENGTH = 0x0 # code (P)

.data (RW) : ORIGIN = 0x3000, LENGTH = 0x0 # data (X)-> RAM
SECTIONS({

F__ ROM_Address = 0x1000; # ROM Starting Address

.main application :

.text sections

.text)
.rtlib.text)
.fp_engine.txt)
user.text)
.text

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 271

y
A

ELF Linker
Linker Command File Syntax

.data : AT(F_ ROM Address) # Start data at 0x1000 -> ROM
{
.data sections
F Begin Data = .; # Get start location for RAM
* (.data) # Write data to the section (ROM)
*(fp_state.data);
*(rtlib.data) ;
F_End Data = .; # Get end location for RAM

.bss sections
* (rtlib.bss.lo)
* (.bss)

} > .data

}

To make the runtime copy the section from ROM to RAM, you need to know where the
data start in ROM (__ROM_Address) and the size of the block in ROM you want to
copy to RAM. In Listing 12.18 on page 272, all variables in the data section from ROM to
RAM in C code are copied.

Listing 12.18 ROM to RAM Copy From C After Data-Flash Write

#include <stdio.h>
#include <string.h>

int GlobalFlash = 6;

// From linker command file
extern _ Begin Data, _ ROMAddress, _ End Data;

void main(void)

{

unsigned short a = 0, b = 0, ¢ = 0;
unsigned long datalen = 0x0;
unsigned short _ myArray[] = { Oxdead, Oxbeef, Oxcafe };

// Calculate the data length of the X memory written to Flash
dataLen = (unsigned long)& End Data -
(unsigned long) & Begin Data;

// Block move from ROM to RAM

memcpy ((unsigned long *)& Begin Data,
(const unsigned long *)& ROMAddress,
datalLen) ;

272 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker

Linker Command File Keyword Listing

a = GlobalFlash;

return;

}

NOTE For this example to work, you must be writing to Flash with the CodeWarrior

debugger and have your board jumpered to mode O.

Stack and Heap

To reserve space for the stack and heap, arithmetic operations are performed to set the

values of the symbols used by the runtime.

The Linker Command File (LCF) performs all the necessary stack and heap initialization.
When Stationery is used to create a new project, the appropriate L CFs are added to the

new project.

See any Stationery-generated L CFsfor examples of how stack and heap are initiaized.

Writing Data Directly to Memory

Y ou can write directly to memory using the WRITEx command in the linker command
file. The WRITEB command writes abyte, the WRITEH command writes two bytes, and
the WRITEW command writes four bytes. Y ou insert the data at the section’s current

address.

Listing 12.19 Embedding Data Directly Into the Output

.example data section :
WRITEB 0x48; // 'H'
WRITEB 0x69; // 'i!'
WRITEB 0x21; // 'I!'

Linker Command File Keyword Listing

This sections explains the keywords available for use when creating CodeWarrior
Development Studio for Freescal e 56800 applications with the linker command file, Valid
linker command file functions, keywords, directives, and commands are described:

« . (location counter) on page 274

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

273

3
4

y
A

ELF Linker

Linker Command File Keyword Listing

* ADDR on page 275

e ALIGN on page 276
« ALIGNALL on page 276

e FORCE_ACTIVE on page 277
e INCLUDE on page 277

e INCLUDE on page 277

o KEEP SECTION on page 277
« MEMORY on page 277

* OBJECT on page 279

« REF_INCLUDE on page 279

o SECTIONS on page 280

* SIZEOF on page 281

o SIZEOFW on page 281

« WRITEB on page 282
« WRITEH on page 282

WRITES on page 282
WRITEW on page 283

. (location counter)

The period character (.) always maintains the current position of the output location.
Since the period always refersto alocation in a SECTIONS block, it can not be used
outside a section definition.

A period may appear anywhere a symbol is allowed. Assigning avalue to period that is
greater than its current val ue causes the location counter to move, but the location counter
can never be decremented.

This effect can be used to create empty space in an output section. In the example below,
the location counter is moved to a position that is 0x1000 words past the symbol
FSTART .

274

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Linker Command File Keyword Listing

Example
.data
{
* (.data)
*(.bss)
FSTART = .;
= FSTART + 0x1000;
_end = .;

} > DATA

ADDR

The ADDR function returns the address of the named section or memory segment.

Prototype
ADDR (sectionName | segmentName)

In the example below, ADDR is used to assign the address of ROOT to the symbol
___rootbasecode.

Example
MEMORY {
ROOT (RWX) : ORIGIN = 0x8000, LENGTH = 0

SECTIONS {
.code
___rootbasecode = ADDR (ROOT) ;
*(.text);
} > ROOT

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

275

y
A

ELF Linker
Linker Command File Keyword Listing

ALIGN

The AL.IGN function returns the value of the location counter aligned on a boundary
specified by the value of alignvalue. Thealignvalue must be a power of two.

Prototype
ALIGN (alignValue)

Please note that AL TGN does not update the |ocation counter; it only performs arithmetic.
To update the location counter, use an assignment such as the following:

Example

= ALIGN (0x10) ; #update location counter to 16

#byte alignment

ALIGNALL

ALIGNALL isthe command version of the ALIGN function. It forces the minimum
alignment for all the objects in the current segment to the value of alignvalue. The

alignValue must be a power of two.

Prototype

ALIGNALL (alignValue) ;

Unlikeits counterpart ALIGN, ALIGNALL isan actual command. It updates the
location counter as each object is written to the output.

Example

.code

{

ALIGNALL(16); // Align code on 16 byte boundary
* (.init)

* (.text)

ALIGNALL(16); //align data on 16 byte boundary
* (.rodata)

} > .text

276

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Linker Command File Keyword Listing

FORCE_ACTIVE

The FORCE_ACTIVE directive allows you to specify symbols that you do not want the

linker to deadstrip. Y ou must specify the symbol(s) you want to keep before you use the
SECTIONS keyword.

Prototype
FORCE_ACTIVE{ symbol[, symbol] }

INCLUDE

The INCLUDE command allows you to include a binary file in the output file.

Prototype
INCLUDE filename

KEEP_SECTION

The KEEP_SECTION directive alows you to specify sections that you do not want the

linker to deadstrip. Y ou must specify the section(s) you want to keep before you use the
SECTION keyword.

Prototype

KEEP_ SECTION{ sectionTypel, sectionType] }

MEMORY

The MEMORY directive allows you to describe the location and size of memory segment

blocks in the target. This directive specifies the linker the memory areasto avoid, and the
memory areas into which it links the code and date.

The linker command file may only contain one MEMORY directive. However, within the

confines of the MEMORY directive, you may define as many memory segments as you
wish.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 277

3
4

y
A

ELF Linker

Linker Command File Keyword Listing

Prototype
MEMORY { memory spec }

Thememory specis:

segmentName (accessFlags) : ORIGIN = address, LENGTH = length
[, COMPRESS] [> fileName]

segmentName can include a phanumeric characters and underscore' ' characters.

accessFlags are passed into the output ELF file (Phdr.p_flags). The
accessFlags canbe

¢ R-read
e W-write
« X-executable (for P memory placement)
address originisoneof thefollowing:
¢ Memory address
Specify ahex address, such as 0x8000.
¢ AFTER command

Usethe AFTER (name [, name]) command to instruct the linker to place the
memory segment after the specified segment. In the example below, overlayl and
overlay? are placed after the code segment. When multiple memory segments are
specified as parameters for AFTER, the highest memory addressis used.

Example
MEMORY {
code (RWX) : ORIGIN = 0x8000, LENGTH = 0
overlayl (RWX) : ORIGIN = AFTER(code), LENGTH = 0
overlay2 (RWX) : ORIGIN = AFTER(code), LENGTH = 0
data (RW) : ORIGIN = 0x1000, LENGTH = 0

}

ORIGIN isthe assigned address.
LENGTH isany of thefollowing:
« A value greater than zero.

If you try to put more code and data into a memory segment greater than your
specified length allows, the linker stops with an error.

¢ Autolength by specifying zero.

278

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Linker Command File Keyword Listing

When the length is 0, the linker lets you put as much code and data into a memory
segment as you want.

NOTE Thereisno overflow checking with autolength. The linker can produce an
unexpected result if you use the autolength feature without leaving enough free
memory space to contain the memory segment. Using the AFTER keyword to
specify origin addresses prevents this.

> fileName isan option to write the segment to a binary file on disk instead of an ELF
program header. The binary fileis put in the same folder asthe ELF output file. This
option has two variants:

e > fileName
Writes the segment to anew file.
e >> fileName

Appends the segment to an existing file.

OBJECT

The 0BJECT keyword allows control over the order in which functions are placed in the
output file.

Prototype
OBJECT (function, sourcefile.c)

Itisimportant to note that if an object iswritten to the outfile using the OBJECT keyword,
the IDE does not allow the same object to be written again by using the ** wildcard
selector.

REF_INCLUDE

TheREF _INCLUDE directive allows you to specify sections that you do not want the
linker to deadstrip, but only if they satisfy a certain condition: the file that contains the
section must be referenced. Thisis useful if you want to include version information from
your source file components. Y ou must specify the section(s) you want to keep before you
use the SECTIONS keyword.

Prototype
REF_INCLUDE{ sectionType [, sectionType]}

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 279

y
A

ELF Linker
Linker Command File Keyword Listing

SECTIONS
A basic SECTIONS directive has the following form:

Prototype
SECTIONS { <section specs> }

section_spec isone of the following:

sectionName : [AT (loadAddress)] {contents} >
segmentName

sectionName : [AT (loadAddress]] {contents} >>
segmentName

Table 12.2 Sections Directive

sectionName The section name for the output section. It must start
with a period character. For example, .mysection.

AT (loadAddress) An optional parameter that specifies the address of
the section. The default (if not specified) is to make
the load address the same as the relocation address.

contents Made up of statements.

These statements can:
¢ assign avalueto asymbol.

« describe the placement of an output section, including which input sections are
placed into it.

segmentName is the predefined memory segment into which you want to put the
contents of the section. The two variants are:

Table 12.3 segmentName Variants

> segmentName Places the section contents at the beginning of the
memory segment segmentName.

>> segmentName Appends the section contents to the memory
segment segmentName.

Hereis an example section definition:

280 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

ELF Linker
Linker Command File Keyword Listing

Example
SECTIONS ({
.text :
F_textSegmentStart = .;
footpad.c (.text)
= ALIGN (0x10) ;
padfoot.c (.text)
F _textSegmentEnd = .;
}
.data : { *(.data) }
.bss : { *(.bss)
* (COMMON)

SIZEOF
The s1ZEOF function returns the size of the given segment or section. Thereturn valueis
the sizein bytes.
Prototype
SIZEOF (segmentName | sectionName)
SIZEOFW

The STZEOFW function returns the size of the given segment or section. The return value
isthe sizein words.

Prototype

SIZEOFW (segmentName | sectionName)

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 281

y
A

ELF Linker

Linker Command File Keyword Listing

WRITEB

The WRITEB command insertsabyte of data at the current address of a section.

Prototype
WRITEB (expression) ;
expression isany expression that returnsavaue 0x00 to 0xFF.

WRITEH

The WRITEH command insertstwo bytes of data at the current address of a section.

Prototype
WRITEH (expression) ;
expression isany expression that returnsavalue 0x0000 to OXFFFF.

WRITES

The WRITES command isastring of variables with maximum length of 255 characters.
You can use DATE and TIME in conjunction with the WRITES command.

DATE returns the current date as a C string (must be within parentheses).

TIME returns the current time as a C string (must be within parentheses).

Prototype
WRITES (string) ;
string isany string within parentheses.

Examples

WRITES ("Hello World").
WRITES ("Today is" DATE) .
WRITES ("The time is " TIME).

282

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Sample M56800 Linker Command File

WRITEW

The WRITEW command inserts4 bytesof data at the current address of a section.

Prototype
WRITEW (expression) ;
expression isany expression that returnsavalue 0x00000000 t0 OXFFFFFFFF.

Sample M56800 Linker Command File

A sample M56800 linker command fileisin Listing 12.20 on page 283. Thisisthetypica
linker command file.

Listing 12.20 Sample Linker Command File (DSP56805EVM)

H H H H H H H ++

H H

+H

H H H H

Metrowerks, a company of Freescale
sample code

linker command file for DSP56805EVM
using
external pRAM
external xRAM
internal xXRAM (0x30-40 for compiler regs)
mode 3
EXT O

revision history
011020 R4.1 a.h. first version
030220 R5.1 a.h. improved comments

see end of file for additional notes
additional reference: Freescale docs

for this LCF:

interrupt vectors --> external pRAM starting at zero
program code --> external pRAM
constants --> external xRAM

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 283

y
A

ELF Linker
Sample M56800 Linker Command File

dynamic data --> external xRAM

stack size is set to 0x1000 for external RAM LCF

requirements: Mode 3 and EX=0

note -- there is a mode OB but any Reset or COP Reset
resets the memory map back to Mode O0A.

DSP56805EVM eval board settings:

OFF --> jumper JG7 (mode 0 upon exit from reset)

ON --> jumper JG8 (enable external board SRAM)

CodeWarrior debugger Target option settings

OFF --> "Use Hardware Breakpoints"

ON --> "Debugger sets OMR at Launch" option

note: with above option on, CW debugger sets OMR as

OMR:

0 --> EX bit (stay in Debug processing state)

1 --> MA bit

1 --> MB bit

56805

mode 3 (development)

EX = 0

MEMORY

{
.p_interrupts RAM (RWX) : ORIGIN = 0x0000, LENGTH = 0x0080
.p_external RAM (RWX) : ORIGIN = 0x0080, LENGTH = 0x0000
.x_compiler regs iRAM (RW) : ORIGIN = 0x0030, LENGTH = 0x0010
.x_internal RAM (RW) : ORIGIN = 0x0040, LENGTH = 0x07CO
.X_reserved (R) : ORIGIN = 0x0800, LENGTH = 0x0400
.X_peripherals (RW) : ORIGIN = 0x0C00, LENGTH = 0x0400
.x_flash ROM (R) : ORIGIN = 0x1000, LENGTH = 0x1000
.xX_external RAM (RW) : ORIGIN = 0x2000, LENGTH = 0xDF80
.X_core_regs (RW) : ORIGIN = OxFF80, LENGTH = 0x0080

}

we ensure the interrupt vector section is not deadstripped here

284 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

ELF Linker
Sample M56800 Linker Command File

KEEP SECTION{ interrupt vectors.text }

place all executing code & data in external memory
SECTIONS ({
interrupt vectors for p ram :{ # from 56805_vector.asm
*

(interrupt vectors.text)

} > .p_interrupts RAM

.executing code
.text sections

(.text)
(rtlib.text)
(fp_engine.text)
(user.text)

> .p_external RAM

Al I

.data

{

.data sections

(.const.data)
(fp_state.data)
(rtlib.data)
(.data)

* ok ok

.bss sections
* (rtlib.bss.lo)
__bss _start = .;

* (.bss)

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 285

A 4
4\

ELF Linker
Sample M56800 Linker Command File

_ bss_end = .
__bss size = _Dbss end - _ bss_start;

setup the heap address

__heap addr = .;
__heap size = 0x1000; # larger heap for hostIO
__heap end = heap addr + _ heap size;

= heap_end;

setup the stack address

~min stack size = 0x0200;
__stack addr = _ heap end;
__stack_end = _ stack addr + _min stack_size;

= _ stack_end;
set global vars

MSL uses these globals:

F heap addr = _ heap addr;
F _heap end = heap end;
F_stack addr = _ stack addr;

stationery init code globals

F bss size = bss size;

F bss addr = bss start;

next not used in this LCF

we define anyway so init code will link

these can be removed with removal of rom-to-ram

copy code in init file

F data size = 0x0000;

F _data RAM addr = 0x0000;

F _data ROM addr = 0x0000;

F_rom to ram = 0x0000; # zero is no rom-to-ram copy

286 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

ELF Linker
Sample M56800 Linker Command File

+H H H H H +H

H H

H H H H

H H

+H

} > .x_external RAM

additional notes:

about the reserved sections
for this external RAM only LCF:

p_interrupts RAM -- reserved in external pRAM
memory space reserved for interrupt vectors
interrupt vectors must start at address zero
interrupt vector space size is 0x80

X compiler regs iRAM -- reserved in internal xXRAM
The compiler uses page 0 address locations 0x30-0x40
as register variables. See the Target manual for more info.

notes:

program memory (p memory)

(RWX) read/write/execute for pRAM

(RX) read/execute for flashed pROM

data memory (X memory)

(RW) read/write for xRAM

(R) read for data flashed xROM

LENGTH = next start address - previous

LENGTH = 0x0000 means use all remaining memory

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 287

wr
4\

ELF Linker
Sample M56800 Linker Command File

288 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

13

Command-Line Tools

This chapter contains the following sections:
. e on page 289

¢ Response File on page 290

¢ Sample Build Script on page 291
¢ Arguments on page 291

Usage

To call the command-line tools, use the following format:

Table 13.1 Format

Tools File Names Format

Compiler mwcc56800.exe compiler-options [linker-options] file-list
Linker mwld56800.exe linker-options file-list

Assemble mwasm56800.exe assembler-options file-list

r

The compiler automatically callsthe linker by default and any options from the linker is
passed on by the compiler to the assembler. However, you may choose to only compile
with the - c flag. In this case, the assembler will only assemble and will not call the linker.

Also, available are environment variables. These are used to provide path information for
includes or libraries, and to specify which libraries are to be included. Y ou can specify the
variableslisted in Table 13.2 on page 290.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 289

y
A

Command-Line Tools
Response File

Table 13.2 Environment Variables

Tool Library Description

Compiler MWCM56800Includes Similar to Access Paths panel; separate
paths with *;" and prefix a path with '+’ to
specify a recursive path

Linker MW56800Libraries Similar to MWC56800Includes

List of library names to link with project;

MW56800LibraryFiles separate with

Assembler MWAsm56800Includes (similar to MWC56800Includes)

These are the target-specific variables, and will only work with the DSP56800 tools. The
generic variablesMWClncludes, MWLibraries, MWLibraryFiles, and

MW Asmlncludes apply to al target tools on your system (such as Windows). If you only
have the DSP56800 toolsinstalled, then you may use the generic variables if you prefer.

Response File

In addition to specifying commands in the argument list, you may also specify a“response
file". A responsefile’ sfilename beginswithan ‘@’ (for example, @file), and the contents
of the response file are commands to be inserted into the argument list. The response file
supports standard UNIX-style comments. For example, the response file @file, contain
the following:

Response file efile
-o out.elf # change output file name to ‘out.elf’
-g # generate debugging symbols

The above response file can used in acommand such as:
mwcc56800 @file main.c

It would be the same as using the following command:
mwcc56800 —o out.elf —g main.c

290 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools
Sample Build Script

Sample Build Script

Thisfollowing is a sample of a DOS batch (BAT) file. The sample demonstrates:
¢ Setting of the environmental variables.
¢ Using the compiler to compile and link a set of files.

REM *** get GUI compiler path ***
set COMPILER={path to compiler)}

REM *** get includes path **x*

set MWCIncludes=+%COMPILER%\M56800 Support

set MWLibraries=+%COMPILER%\M56800 Support

set MWLibraryFiles=MSL C 56800.1ib;FP56800.1ib

REM *** add CLT directory to PATH ***

set
PATH=%PATHS% ; $¥COMPILER%\DSP56800 EABI_ Tools\Command Line Tools\

REM *** compile options and files ***
set COPTIONS=-03

set CFILELIST=filel.c file2.c

set LOPTIONS=-m FSTART -o output.elf -g
set LCF=linker.cmd

REM *** compile, assemble and link ***
mwcc56800 %$COPTIONS% %CFILELISTS
mwasm56800 %AFILELISTS

mwld56800 %$LOPTIONS% S%LFILELISTS %LCF%

Arguments

General Command-Line Options

General Command-Line Options
All the options are passed to the linker unless otherwise noted.

Please see '-help usage' for details about the meaning of this help.

-help [keyword[,...]] # global; for this tool;
display help

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 291

A 4
4\

Command-Line Tools

Arguments

usage # show usage information

[no] spaces # insert blank lines between options in
printout

all # show all standard options

[nolnormal # show only standard options

[no] obsolete # show obsolete options

[no] ignored # show ignored options

[no]l deprecated # show deprecated options

[nolmeaningless # show options meaningless for this
target

[no] compatible # show compatibility options

opt [ion] =name

search=keyword

group=keyword

tool=keywordl[, ...

all
this

other | skipped
both

-version
-timing
-progress

-v [erbosel]

-search

- [no]wraplines
-maxerrors max

- maxwarnings max

HHEFHHFHFHFHFEHHFFHHFEFHHFHHFHFHHFHHFHFHFHFHFHE

show help for a given option; for
'nmame',
maximum length 63 chars

show help for an option whose name
or help
contains 'keyword' (case-sensitive);
for ‘'keyword', maximum length 63 chars
show help for groups whose names contain
'keyword' (case-sensitive); for 'keyword'
maximum length 63 chars
categorize groups of options by tool;
default
show all options available in this tool
show options executed by this tool
default
show options passed to another tool
show options used in all tools

global; for this tool;

show version, configuration,and build date
global; collect timing statistics

global; show progress and version

global; verbose information; cumulative;
implies -progress

global; search access paths for source
files

specified on the command line; may specify
object code and libraries as well; this
option provides the IDE's 'access paths'
functionality

global; word wrap messages; default
specify maximum number of errors to

print, zero

means no maximum; default is 0

specify maximum number of warnings to

292

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools
Arguments

-cwd keyword

HHFHFHFHFHFHFHFH

print, zero means no maximum; default is 0
-msgstyle keyword # global; set error/warning message style
mpw # use MPW message style
std # wuse standard message style; default
gcc # use GCC-like message style
IDE # use CW IDE-like message style
parseable # use context-free machine-parseable message
style
#
- [no] stderr # global; use separate stderr and
stdout streams;
1if using -nostderr, stderr goes
to stdout Compiler
Preprocessing, Precompiling, and Input File Control Options
-c global; compile only, do not link
- [no] codegen global; generate object code
- [no] convertpaths global; interpret #include filepaths
specified for a foreign operating system;
i.e., <sys/stat.h> or <:sys:stat.h>; when
enabled,
'/' and ':' will separate directories and

cannot be used in filenames (note: this is
not a problem on Win32, since these
characters are already disallowed in
filenames; it is safe to leave the option
'on'); default
specify #include searching semantics:

before
searching any access paths, the path
specified by this option will be searched
proj # Dbegin search in current working directory;
default
source # Dbegin search in directory of source file
explicit # no implicit directory; only search '-I' or
'-ir' paths
include # Dbegin search in directory of referencing
file
#
-D+ | -d[efine # cased; define symbol 'name' to 'value' if
name [=value] # specified, else '1'
- [no]ldefaults # global; passed to linker;
same as '-[nolstdinc'; default
-dis[assemble] # global; passed to all tools;
disassemble files to stdout
-E # global; cased; preprocess source files
-EP # global; cased; preprocess and strip out

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

293

3
4

y
A

Command-Line Tools
Arguments

14

-enc [oding]

nolascii
nolautodetect |
nolmultibyte
olmb

olascii

nol system

no] UTF [8 | -8]
nol SJIs |

no] Shift-JIs |
nol ShiftJIs
no] EUC[JP| -JP]
nol IS0 [2022JP|
-2022-JP]

-ext extension

[js]

-gccinc [ludes]

-I+ | -ip

current

-include file

-ir path

- [no] keepobj [ects]

#
#

keyword#

HFHHFHHFEHFEHFHFHHHFEHFEHFHF

H H H H

+H

H H HHHH HH R

#
#
#
#
#
#

line

directives

specify default source encoding; compiler
will automatically detect UTF-8 header or
UCS-2/UCS-4 encodings regardless of setting
ASCII; default

scan file for multibyte encoding (slower)
ASCII;

use system locale

UTF-8

shift-JIS

EUC-JP

IS0-2022-JP
global; specify extension for generated
object

files; with a leading period ('.'), appends
extension; without, replaces source file's
extension; for 'extension', maximum length
chars; default is none
global;adopt GCC #include semantics:add '-
I’ paths to system list if '-I-' is not

specified, and search directory of
referencing file first for #includes (same
as'-cwd include')

global; change target for '-I'

access paths to

the system list; implies '-cwd explicit';
while compiling, user paths then system
paths

are searched when using

'#include "..."; only

system paths are searched with '#include

< >t

global; cased; append access path to

include list(see '-gccincludes' and '-I-'
prefix text file or precompiled header onto
all source files

global; append a recursive access path to
current #include list

global; keep object files generated after

294

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools
Arguments

after
-M
-MM
-MD
-MMD
-make
and

code -nofail
files
-nolink
-noprecompile

-nosyspath

-o file|dir

-P

invoking linker; if disabled, intermediate
object files are temporary and deleted

H*

link stage; objects are always kept when
compiling
global; cased; scan source files for
dependencies and emit Makefile, do not
generate object code
global; cased; like -M, but do not list
system
include files
global; cased; like -M, but write dependency
map to a file and generate object code
global;cased; like -MD, but do not list
system include files
global;scan source files for dependencies

HoH H

emit Makefile, do not generate object
#continue working after errors in earlier

global; compile only, do not link

do not precompile any files based on the

filename extension

global; treat #include <...> like #include

#"..."; always search both user and system
path lists

specify output filename or directory for
object

file(s) or text output, or output filename

for linker if called

global; cased; preprocess and send output to
file; do not generate code

-precompile file|di#generate precompiled header from source;

to

is

-preprocess
-ppopt keywordl[, ...

[no]lbreak

write
header to 'file' if specified, or put header
in 'dir'; if argument is "", write header

source-specified location; if neither is
defined, header filename is derived from
source filename; note: the driver can tell
whether to precompile a file based on its
extension; '-precompile file source' then

H H H HH

the same as '-c -o file source'

global; preprocess source files

specify options affecting the preprocessed
output
emit file/line breaks; default

HH—HH

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 295

A 4
4\

Command-Line Tools

Arguments
[no] line # emit #line directives, else comments
[no] full [pathl] # emit full path of file, else base filename
[no] pragma # keep #pragma directives, else strip them;
default
[no comment] # keep comments, else strip them
[no] space # keep whitespace, else strip it
#
-prefix file # prefix text file or precompiled header
onto all
source files
-S # global; cased; passed to all tools;
disassemble and send output to file
- [no] stdinc # global; use standard system include paths
(specified by the environment variable
S$MWCIncludes%); added after all system '-
I 1
paths; default
-U+ | -u[ndefine] name # cased; undefine symbol 'name'

-ansi keyword # specify ANSI conformance options,
overriding the given settings
off # same as '-stdkeywords off', '-enum min',
and '-strict off'; default
on|re1axed # same as '-stdkeywords on', '-enum min',
and '-strict on'
strict # same as '-stdkeywords on', '-enum int',
and '-strict on'
#
-ARM on|off # check code for ARM (Annotated C++
Reference
Manual) conformance; default is off
-bool on|off # enable C++ 'bool' type, 'true' and 'false'
constants; default is off
-char keyword # set sign of 'char'
signed # chars are signed; default
unsigned # chars are unsigned
#
-Cpp_exceptions on|off # passed to linker;
enable or disable C++ exceptions; default
is
on
-dialect | -lang keyword # passed to linker;
specify source language
c # treat source as C always
C++ # treat source as C++ always

296 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools
Arguments

ec++

c99
-enum keyword
min

int

-for_scoping on|off

loop
-fllag] pragma

‘#pragma

-inline keywordl[, ...]
on|smart

none |of £
auto

noauto
all

deferred
in

level=n
on';

[no] bottomup

-iso templates on|off
this

#
#
#
#
#
#
#
#
#
#
#

generate warnings for use of C++ features
outside Embedded C++ subset (implies
'dialect cplus')

‘dialect cplus’)

compile with c99 extensions

specify word size for enumeration types
use minimum sized enums; default
use int-sized enums

control legacy (non-standard) for-scoping
behavior; when enabled, varaibles
declared in ‘for’ loops are visible
to the enclosing scope; when disabled,
such variables are scoped to the
only; default is off

specify an ‘on/off’ compiler #pragma;
‘-flag foo’ is the same as ‘#pragma
foo on’
‘-flag no-foo’ is the same as
foo off’; use ‘-pragma’ option
for other cases
specify inline options

turn on inlining for 'inline'

functions;

default

turn off inlining

auto-inline small functions (without
‘'inline' explicitly specified)

do not auto-inline; default

turn on aggressive inlining: same as
'-inline on, auto'

defer inlining until end of compilation
#unit; this allows inlining of functions

Dboth directions
cased; inline functions up to 'n' levels
#deep; level 0 is the same as '-inline

for 'n', range 0 - 8

inline bootom-up, starting from

leaves of the call graph rather

than the top-level funcion; default
#

#enable ISO C++ template parser (note:

requires a different MSL C++ library);

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 297

y
A

Command-Line Tools

Arguments
default is off
- [no]l mapcr # reverse mapping of '\n' and '\r' so that
'\n'==13 and '\r'==10 (for Macintosh
MPW
compatability)
-msext keyword # [dis]allow Microsoft VC++ extensions
on # enable extensions: redefining macros,
allowing XXX::yyy syntax when declaring
method yyy of class XXX,
allowing extra commas,
ignoring casts to the same type,
treating function types with equivalent
parameter lists but different return
types
as equal,
allowing pointer-to-integer
conversions,
and various syntactical differences
off disable extensions; default on non-x86

- [nolmultibyte [aware]

for

-once
more

-pragma

-r [equireprotos]

-relax_pointers

-RTTI on|off
C++) ;

-som
implementation

-som_env_check
new

-stdkeywords on|off

off

-str[ings] keywordl[, ..

[no] reuse
the

[no] pool
object
[no] readonly

targets

enable multi-byte character encodings

+H

source text, comments, and strings
prevent header files from being processed

than once
define a pragma for the compiler such as
"#pragma ..."
require prototypes
relax pointer type-checking rules
select run-time typing information (for

default is on
enable Apple's Direct-to-SOM

enables automatic SOM environment and

allocation checking; implies -som
allow only standard keywords; default is

.1 # specify string constant options

reuse strings; equivalent strings are
same object; default
pool strings into a single data
make all string constants read-only

298 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools

Arguments
#
-strict on|off # specify ANSI strictness checking; default
is
off
-trigraphs on|off # enable recognition of trigraphs; default is
off
-wchar t on|off # enable wchar t as a built-in C++ type;
default
is on
Optimizer Options
Note that all options besides '-opt
off|on|all|space|speed|level=...' are
for backwards compatibility; other optimization options may be
superceded
by use of '-opt level=xxx'.
-0 # same as '-02'
-O+keywordl[, ...] # cased; control optimization; you may
combine
options as in '-04,p'
0 # same as '-opt off!
1 # same as '-opt level=1"
2 # same as '-opt level=2"
3 # same as '-opt level=3"
4 # same as '-opt level=4'
P # same as '-opt speed'
s # same as '-opt space'
#
-opt keywordl[, ...] # specify optimization options
of f |none # suppress all optimizations; default
on # same as '-opt level=2'
all|full # same as '-opt speed, level=4'
[no] space # optimize for space
[no] speed # optimize for speed
1[evel] =num # set optimization level:
level 0: no optimizations
#
level 1: global register

allocation,
peephole, dead code elimination

level 2: adds common subexpression
elimination and copy propagation

H H HH HH

level 3: adds loop transformations,

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 299

3
4

y
A

Command-Line Tools

Arguments
strength reduction, loop-invariant code
motion
#
level 4: adds repeated common
subexpression elimination and
loop-invariant code motion
; for 'mum', range 0 - 4; default is 0
[nol cse # common subexpression elimination
[no] commonsubs #
[no] deadcode # removal of dead code
[no]ldeadstore # removal of dead assignments
[nollifetimes # computation of variable lifetimes
[no] loop [invariantsg] # removal of loop invariants
[

nol prop [agation] # propagation of constant and copy

assignments

[no] strength #
multiplication

[no] dead

display | dump

strength reduction; reducing

H H H HHH

by an index variable into addition
same as '-opt [no]deadcode' and '-opt
[no] deadstore’
display complete list of active
optimizations

[no]l segchardata
[no] asmout

[no] peep
[no]NDelay

[no] sched

[no] REP

[no] cmp32

[no]l rodata

section;

for this tool;
specify hardware DO loops
for this tool;
segregate character data
for this tool;
assembly file output
for this tool;
active peepholer;
for this tool;
adjust for delayed load of N register;
for this tool;
activate scheduler
for this tool;
specify REP instruction
for this tool;
emit 32-bit compare;
for this tool;
write constant data to .rodata

300 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools
Arguments

Debugging Control Options

-g # global;

information;

-sym keyword[, ...]
off
information;

on
full [path]

cased; generate debugging

same as '-sym full'

global; specify debugging options

do not generate debugging

default
turn on debugging information
store full paths to source files

global; for this tool;

-wl[arn[ings]]
keywordl[, ...]
off

on
[no] ecmdline

[nolerr [or] |
[no] iserr [or]
all
prototypes
[no]l pragmas |
[nolillpragmas
[no] empty [decl]
[no]l possible
[no]unwanted
[no]unusedarg
[no]unusedvar
[no]unused
[no]lunusedarg, [no] unusedvar
[no] extracomma |
[no] comma
[nolpedantic |
[no] extended
[nolhidevirtual |
[nolhidden[virtuall
[no] implicit [conv]

[no]limpl_int2float

[no]impl float2int

FHoHHHHHHFHF H oHF o H

HH o HHE

H H H =

warning options
passed to all tools;
turn off all warnings
passed to all tools;
turn on most warnings
passed to all tools;
command-line driver/parser warnings
passed to all tools;
treat warnings as errors

turn on all warnings, require

illegal #pragmas

empty declarations
possible unwanted effects

unused arguments
unused variables
same as -w

extra commas
pedantic error checking
hidden virtual functions

implicit arithmetic conversions
‘warn impl float2int,
impl signedunsigned’
implicit integral to floating
conversions
implicit floating to integral

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 301

4
A

Command-Line Tools
Arguments

conversions
[no] impl signed unsigned # implicit signed/unsigned conversions
#
[nolnotinlined # 'inline' functions not inlined
[no]l largeargs # passing large arguments to
unprototyped
functions
[no]l structclass #inconsistent use of 'class' and
'struct’
[no] padding # padding added between struct members
[nolnotused #result of non-void-returning
function # not used
[no]lmissingreturn # return without a value in a
non-void-returning function

[no] unusedexpr

[nol ptrintconv

#use of expressions as statements
#without side effects
lossy conversions from pointers to
#integers, and

vice versa
[no] anyptrintconv #any conversions from pointers to integers
[no]undef [macro] #use of undefined macros in #if/#elif
#conditionals
[nol filecaps #incorrect capitalization used in
#include“...”
[no]l sysfilecaps #incorrect capitalization used in
#include<...>
[no] tokenpasting #token not formed by ## operator
display|dump # display list of active warnings
#

Linker

Command-Line Linker Options

-dis[assemble]

-L+ | -1 path

-1lr path

global; disassemble object code and do not

link; implies '-nostdlib'

global; cased; add library search path; default
is to search current working directory and
then system directories (see '-defaults');
search paths have global scope over the
command line and are searched in the order
given

global; like '-1', but add recursive library

302 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools
Arguments

-1l+file

is
- [no]defaults
-nofail

- [no]l stdlib

H H H*

HFHHHHFHHFHFHEHFHE

search path
cased; add a library by searching access paths
for file named lib<file>.<ext> where <exts>

a typical library extension; added before
system libraries (see '-defaults')

global; same as -[no]lstdlib; default

continue importing or disassembling after
errors in earlier files

global; use system library access paths
(specified by $MWLibraries%) and add system
libraries (specified by $MWLibraryFiles%) ;
default

global; cased; disassemble and send output to
file; do not link; implies '-nostdlib'

- [noldead[strip]
-force active
useful

symboll[,...]
-keep[local] on|off
link;
-m[ain] symbol
shared
chars;
-map [keywordl[,...]]
closure

unused

-sortbyaddr
-srec

-sreceol keyword
mac
dos

unix

-sreclength length

H HF H HF

+H H

H*

FHHHHHH R

enable dead-stripping of unused code; default
specify a list of symbols as undefined;

to force linking of static libraries

keep local symbols (such as relocations and
output segment names) generated during

default is on
set main entry point for application or

library; use '-main ""' to specify no entry
point; for 'symbol', maximum length 63

default is '"FSTART '

generate link map file
calculate symbol closures

list unused symbols

sort S-records by address; implies '-srec'
generate an S-record file; ignored when
generating static libraries
set end-of-line separator for S-record file;
implies '-srec'
Macintosh ('\r')
DOS ('\r\n'); default
Unix ('\n')

specify length of S-records (should be a

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 303

4
A

Command-Line Tools

Arguments
multiple of 4); implies '-srec'; for
'length', range 8 - 252; default is 64
-usebyteaddr # use byte address in S-record file; implies
'-srec'
-o file # specify output filename

-application # global; generate an application; default
-library # global; generate a static library

-Cpp_exceptions on|off # enable or disable C++ exceptions;
default is on
-dialect | -lang keyword # specify source language
c # treat source as C++ unless its
extension is
'.c', '".h', or '.pch'; default
C++ # treat source as C++ always
#

-g # global; cased; generate debugging
information;
same as '-sym full'
-sym keyword[,...] # global; specify debugging options
off # do not generate debugging
information;
default
on # turn on debugging information
full [path] # store full paths to source files
#

304 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Command-Line Tools
Arguments

Warning Options
-w[arn[ings]] #
keyword[, ...] #
off # turn off all warnings
on # turn on all warnings
[no] cmdline # command-line parser warnings
[nolerr [or] | # treat warnings as errors
[no] iserr [or] #
#
#

display|dump display list of active warnings

-show keywordl[, ...] # specify disassembly options
only|none # as in '-show none' or, e.g.,
'-show only, code,data’
all # show everything; default
[no] code | [noltext # show disassembly of code sections;
default
[no] comments # show comment field in code; implies '-
show
code'; default
[no] extended # show extended mnemonics; implies '-
show
code'; default
[no]data # show data; with '-show verbose', show
hex
dumps of sections; default
[noldebug | [nolsym # show symbolics information; default
[no] exceptions # show exception tables; implies '-show
data';
default
[no] headers # show ELF headers; default
[no]l hex # show addresses and opcodes in code
disassembly; implies '-show code';
default
[no] names # show symbol table; default
[no]lrelocs # show resolved relocations in code and
relocation tables; default
[no]l source # show source in disassembly; implies '-
show
code'; with '-show verbose', displays
entire source file in output, else
shows
only four lines around each function;

default

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 305

4
A

Command-Line Tools

Arguments
[no]l xtables # show exception tables; default
[no] verbose # show verbose information, including hex
dump
of program segments in
applications;
default
#
Assembler
Assembler Control Options
- [no] case # identifiers are case-sensitive; default
- [no] debug # generate debug information
- [nolmacro_expand # expand macro in listin output
- [nolassert nop # add nop to resolve pipeline dependency;
default
- [nolwarn nop # emit warning when there is a pipeline
dependency
- [no]warn stall # emit warning when there is a hardware stall
- [no] legacy # allow legacy DSP56800 instructions (imply
data/prog 16)
- [no] debug workaround # Pad nop workaround debuggin issue in
some
implementation; default
-data keyword # data memory compatibility
16 # 16 bit; default
24 # 24 bit
#
-prog keyword # program memory compatibility
16 # 16 bit; default
19 # 19 bit
21 # 21 bit
#

306 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

14

Libraries and Runtime Code

You can use avariety of libraries with the CodeWarrior™ IDE. The libraries include
ANSI-standard libraries for C, runtime libraries, and other code. This chapter explains
how to use these libraries for DSP56800 development.

With respect to the Metrowerks Standard Library (MSL) for C, this chapter is an extension
of the MSL C Reference. Consult that manual for general details on the standard libraries
and their functions.

This chapter contains the following sections:
« MSL for DSP56800 on page 307

¢ Runtime Initialization on page 311

MSL for DSP56800

This section explains the Metrowerks Standard Library (MSL) modified for use with
DSP56800. CodeWarrior IDE for DSP56800 includes the source and project files for
MSL so that you can modify the library if necessary.

Using MSL for DSP56800

CodeWarrior IDE for DSP56800 includes a version of the Metrowerks Standard Library
(MSL). TheMSL isaC library you can usein your embedded projects. All of the sources
necessary to build MSL areincluded in CodeWarrior IDE for DSP56800, along with the
project file and targets for different MSL configurations. If you already have aversion of
CodeWarrior IDE installed on your computer, the CodeWarrior installer adds the new
files needed for building versions of MSL for DSP56800.

Do not modify any of the source files that support MSL.

Console and File I/O

DSP56800 Support provides standard C callsfor 1/O functionality with full ANSI/ISO
standard 1/0O support with host machine console and file I/O for debugging sessions (Host
1/0) through the JTAG port in addition to such standard C calls such as memory functions
malloc() and free().

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 307

3
4

y
A

Libraries and Runtime Code
MSL for DSP56800

A minimal "thin" printf via"console_write" and "fflush_console" is provided in addition
to standard 1/O.

See the MSL C Reference manual (Metrowerks Standard Library).

MSL Configurations for DSP56800

There are two DSP56800 MSL libraries available. Both support standard C calls with
optional 1/0 functionality. Onelibrary hasaminimal print £ function providing console
output using debugger. The other library has full ANSI/ISO standard /O support,
including host machine console and file 1/0 for debugging sessions. The memory
functionsmalloc () and free () areaso supported for both libraries.

The two provided DPS56800 MSL libraries are:

MSL C 56800.lib

Thislibrary provides standard C library support without standard I/0. A minimal "thin"
printf isprovided but other stdio isstripped out in order to maximize performance.
Theprintf sends charactersto the CodeWarrior console window viathe debugger. Use
this library when you need minimal printf support for debugging and saving space.

MSL C 56800 host I/O.lib

This library adds ANSI/ISO standard 1/0 support through the debugger. The standard C
library 1/O is supported, including stdio.h, sdderr.h, and stdin.h. Usethis
library when you want to perform stdio calls, including CodeWarrior console stdout/
stdin, and host machine file 1/O, for debugging.

Host File Location
Files are created with £open on the host machine as shown in Table 14.1 on page 308.

Table 14.1 Host File Creation Location

fopen filename parameter host creation location
filename with no path target project file folder
full path location of full path

Binary and Text Files

stdio call fopen can open filesastext or binary, depending on the open mode. For
DSP56800 host 1/0 file operations, subsegquent stdio callstreat the file astext or binary
depending on how the file was originally opened with fopen.

308

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800

NOTE You must decide whether to open the file astext or binary.

Binary and text files are handled differently because DSP56800 char (character) is 16-bits
and x86 host char is 8-bits.

¢ Text file /O operations are 1-to-2 mapping.
« Binary file I/O operations are 1-to-1 mapping.
Files are created with fopen on the host machine as shown in Table 14.2 on page 309.

Table 14.2 Host File Creation Location

file opened as host elements target elements
text 8-bit 16-bit
binary 16-bit 16-bit

Text File I/O

DSP56800 host 1/0 does 16-hit to 8-bit mapping for host text files. The host text fileis
handled as 8-bit elements with conversion to 16-bit elements on the target side.

For example, if you open the host file with the fopen mode "w", the file opens as new
text file or atruncated existing text file of the file name. When fwrite iscalled, the host
file writes the DSP56800 buffer of 16-elements of the host file as 8-bit elements.

Binary File I/O

DSP56800 host 1/0 does 16-bit to 16-bit mapping for binary files. The host binary fileis
handled as 16-bit elements.

Allocating Stacks and Heaps for the
DSP56800

Stationery linker command files (LCF) define heap, stack, and BSS locations. LCFs are
specific to each target board. When you use M56800 stationery to create a new project,
CodeWarrior automatically adds the L CF to the new project.

See“ELF Linker” on page 263 for general L CF information. See each specific target LCF
in Stationery for specific LCF information.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 309

3
4

'
A

Libraries and Runtime Code
MSL for DSP56800

Definitions

Stack

The stack is alast-in-first-out (L1FO) data structure. Items are pushed on the stack and
popped off the stack. The most recently added item is on top of the stack. Previously
added items are under the top, the oldest item at the bottom. The "top" of the stack may be
in low memory or high memory, depending on stack design and use. M56800 uses a 16-
bit-wide stack.

Heap

Heap is an area of memory reserved for temporary dynamic memory allocation and
access. MSL uses this space to provide heap operations such asmalloc. M56800 does
not have an operating system (OS), but MSL effectively synthesizes some OS services
such as heap operations.

BSS

BSS is memory space reserved for uninitialized data. The compiler will put al
uninitialized data here. The stationery init code zeroes this area at startup. See the
56824 _init . c (startup) code example codein this chapter for general information and
the stationery init code filesfor specific target implementation details.

NOTE Instead of accessing the origina Stationery files themselves (in the Stationery
folder), create anew project using Stationery (see “Creating a Project”) which
will make copies of the specific target board files such asthe LCF.

Variables defined by Stationery Linker
Command Files

Each Stationery L CF defines variables which are used by runtime codeand MSL. Y ou can
see how the values for these variables are calculated by examining any of the Stationery
LCFs.

See Table 14.3 on page 310 for the variables defined in each Stationery LCF.

Table 14.3 LCF Variables and Address

Variables Address
_stack_addr The start address of the stack
_heap_size The size of the heap

310

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Libraries and Runtime Code
Runtime Initialization

Table 14.3 LCF Variables and Address (continued)

Variables Address

_heap_addr The start address of the heap

_heap_end The end address of the heap

_bss_start Start address of memory reserved for uninitialized variables
_bss_end End address of BSS

Additional Information and Specific Target
Implementation Details

See each Stationery specific target board L CF for additional comments and
implementation details. Perform a search for the variable name for quick access.

Depending on the target, implementation will be different between LCFs. For example,
for targets using Host /0O, considerably more heap sizeis dlocated in the LCF.

Runtime Initialization

The default init function isthe bootstrap or glue code that sets up the DSP56800
environment before your code executes. Thisfunctionisinthe init filefor each board-
specific stationery project. Theroutinesdefined inthe init file performs other tasks such
as clearing the hardware stack, creating an interrupt table, and retrieving the stack start and
exception handler addresses.

The default codein the init function also sets the addressing mode in the modifier
register (M01) to OXFFFF.

Thefinal task performed by the init functionisto call themain () function.

The starting point for aprogram is set in the Entry Point field in the M56800
Linker on page 88 Settings panel.

When creating a project from R5.1 stationery, the init codeis specific to the DSP56800
board. See the startup folder in the new project folder for the init code.

Listing 14.1 Sample Initialization File (DSP56803EVM)

/*
56803 _init.c

Metrowerks, a Freescale Company

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 311

4
A

Libraries and Runtime Code

Runtime Initialization

sample code

*/

#include "DSP56F803 init.h"

extern _rom to_ram;
extern data size;
extern data RAM addr;
extern _data ROM addr;
extern bss size;
extern bss addr;

asm void init M56803 ()

{

bfset #_32bit_compares, omr

//
move #-1,x0
move x0,m01

move hws, 1la
move hws, la

// init registers

move #0,rl
move rl,x:IPR
move rl,x:COPCTL

//

//

// initialize compiler environment

CALLMAIN:

// setup stack
move #_stack_addr, r0
nop

set the m reg to linear addressing

// clear the hardware stack

// get stack start address

312 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Libraries and Runtime Code
Runtime Initialization

move r0,x:<mrl5 // set frame pointer to main stack top
move r0, sp // set stack pointer too

move #0,rl

move rl,x: (r0)

// setup the PLL (phase locked loop)

move #pllcr init,x:PLLCR // set lock detector on and choose
core
//clock
move #plldb init,x:PLLDB // set to max freq
move #wait lock,x0 // set x0 with timeout value
// timeout handles simulator case
pll test lock: // loop until PLL is locked
// or we reach timeout limit
decw x0 // decrement our timeout value
tstw x0 // test for zero
beq pll timeout // 1if timed-out, proceed anyway
brclr

#pllsr_init,x:PLLSR,pll_test_lock
pll timeout:
// pll locked

move #pllcr proceed,x:PLLCR // set lock detector on, choose
// PLL clock
move x:PLLSR, x0 // clear pending clkgen
interrupts
move x0,x:PLLSR

// setup exception handler and interrupt levels

move M56803_int Addr,rl // address

push rl // establish exception handler
bfset #$0100, sr // enable all levels of interrupts
bfclr #$0200, st // allow IPL O interrupts

// xrom-to-xram option

move -#_rom_to_ram,r0 // check for option

tstw r0

beg end_rom2ram

move #_data_size,r2 // set data size

move #_data_ROM_addr,r3 // src address -- xROM data start

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 313

y
A

Libraries and Runtime Code
Runtime Initialization

move # data RAM addr,rl // dest address -- xRAM data
// start

do r2,end_rom2ram // copy for r2 times

move x:(r3)+,x0 // fetch value at address r3

move x0,x:(rl)+ // stash value at address rl

end rom2ram:

// clear bss always

move #0,x0 // set x0 to zero

move # bss size,r2 // set bss size

move # bss_addr,rl // dest address -- bss data start
do r2,end bss clear // do for r2 times

move x0,x: (rl)+ // stash zero at address

nop

end bss clear:

// call main ()

move #M56803_argc,y0 // pass parameters to main()
move #M56803_argv, r2
move #M56803 arge, r3
jsr main // call the users program
jsr fflush
debug
rts
}
The startup folder includes the following:
e Stack setup
e PLL setup

« Exception handler and interrupt setup
* BSSzeroing
o Static initialization
¢ Jump to main
NOTE Theoriginal general-purpose runtime init code (FSTART) remainsin the

M56800 support library to provide compatibility for older projects. The MSL
runtime project is: CodeWarrior\56800

314 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Libraries and Runtime Code
Runtime Initialization

Support\ms1l\MSL C\DSP_56800\Project\
MSL C 56800.mcp Seeproject group runtime: init, file FSTART.c.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 315

wr
4\

Libraries and Runtime Code
Runtime Initialization

316 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

15

Troubleshooting

This chapter explains common problems encountered when using the CodeWarrior™ IDE
for DSP56800, and their possible solutions.

Troubleshooting Tips

This chapter contains the following sections:

The Debugger Crashes or Freezes When Stepping Through a REP Statement on
page 318

"Can't Locate Program Entry On Start" or "Fstart.c Undefined" on page 318

When Opening a Recent Project, the CodeWarrior IDE Asks If My Target Needs To
Be Rebuilt on page 318

"Timing values not found in FLASH configuration file. Please upgrade your
configuration file. On-chip timing values will be used which may result in
programming errors’

IDE Closes Immediately After Opening on page 319

Errors When Assigning Physical Addresses With The Org Directive on page 319
on page 319The Debugger Reports a Plug-in Error on page 319

Windows Reports a Failed Service Startup on page 320

No Communication With The Target Board on page 320

Downloading Code to DSP Hardware Fails on page 321

The CodeWarrior IDE Crashes When Running My Code on page 321

The Debugger Acts Strangely on page 321

Problems With Notebook Computers on page 322

If you are having trouble with CodeWarrior Devel opment Studio for Freescale 56800 and
this section does not help you, e-mail technical support at: support@Freescale.com

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 317

|
y

'
A

Troubleshooting
Troubleshooting Tips

The Debugger Crashes or Freezes When
Stepping Through a REP Statement

Due to the nature of DSP56800 instruction pipeline, do not set a breakpoint on a REP
statement in the debugger. Doing so may cause the REP instruction to enter an infinite
loop and freeze or crash the IDE.

"Can’t Locate Program Entry On Start" or
"Fstart.c Undefined"

By default, the CodeWarrior stationery defines the entry point of program execution as
FSTART . Theentry point is edited in the project target settings by selecting Edit >

M 56800 Settings from the menu bar of the Freescale CodeWarrior window and then
M56800 Linker from the Target Settings panel. If the entry point is changed and not
updated in the sources, linker errors are generated for undefined sources.

The FSTART.c program is defined in the MSL and may also generate errorsif the
CodeWarrior IDE cannot find the MSL path due to access path errors within a DSP56800
project.

When Opening a Recent Project, the
CodeWarrior IDE Asks If My Target Needs
To Be Rebuilt

If you open arecent project file and then select Project > Debug from the menu bar of
the Freescale CodeWarrior window, the dialog box shown in Figure 15.1 on page 318

appears.

Figure 15.1 Rebuild Alert

Metrowerks CodeW arrior |

Target "M56800" may need to be rebuili.

Q Codetarrior cannot determine it target "MSES00" needs
o ke rebuit. Befare running this target, do you want to
check to zee if it needs to be rebuilt and to build # if it

does?
Don't Build | Cancel |

318

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Troubleshooting
Troubleshooting Tips

This dialog box informs you that the software determines if your object code needs to be
rebuilt. If you have made no changes since the last build, the CodeWarrior IDE does not
change your object file when you select the Build option.

"Timing values not found in FLASH
configuration file. Please upgrade your
configuration file. On-chip timing values
will be used which may result in
programming errors”

Thisindicates you have an old flash configuration file that does not include timing
information. If you continue to use thisfile, it could result in programming errors and a
shorter life for the flash memory.

To upgrade your flash configuration file, replace the existing flash configuration file with
the flash configuration file from the M56800 Support.

The flash configuration file is located in the following directory:
CodeWarrior\M56800 Support\initialization

IDE Closes Immediately After Opening

There may be a conflict with another version of the CodeWarrior IDE on your system.
Runningthe regservers.bat fileinthe Freescale/Bin directory usualy resolves
this problem when there are different versions of the CodeWarrior IDE installed on the
same compulter.

Errors When Assigning Physical
Addresses With The org Directive

Y ou cannot use the ORG directive with the CodeWarrior IDE DSP56800 assembler to
specify physical addresses for program (P:) and data (X:) memory.

The Debugger Reports a Plug-in Error

When the CodeWarrior IDE debugger reports a plug-in error, adialog box appears that
reads “ Embedded DSP Plug-in Error. Can’t connect to board.” If you see this dialog box,
check the following:

« Verify that the hardware cards are installed and seated properly.
« Verify that all of the cables are connected properly.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 319

'
A

Troubleshooting
Troubleshooting Tips

« Verify that power is being supplied to the DSP hardware.

Windows Reports a Failed Service Startup

When the Windows Service Control Manager reports afailed service startup, the message
box shown in Figure 15.2 on page 320 appears:

Figure 15.2 Service Control Manager Message Box

i Service Control Manager

& At least one zervice or diver falled during spstem startup. Usze Event Miewer to examine the event log for details.

If you see the above message box, check the following:

« Ensure that you have not selected a conflicting address for use with the DSP
hardware. The Resources Manager can help you determine whether or not thereisa
conflict.

« Check input/output addresses according to the operating system you are using:
Windows 98

1. To access the Resources Manager, open the Control Panel and click the Device
Manager tab.

2. Click Properties to display the Computer Properties window.

3. Click the View Resources tabinthe Computer Properties window.

4. Click the Input/Output radio button to view all active input/output addresses.
Windows NT

1. To access the Resources Manager, select Start > Programs >
Administrative Tools > Windows NT Diagnostics.

2. Click the Resources tabin the Windows NT Diagnostics window.

Click I/O Port at the bottom of the tab to view all currently active input/output
addresses.

No Communication With The Target Board

If you are unable to establish communication with the target DSP hardware, check the
following:

« Verify that the hardware boards are properly connected to the computer. Follow the
installation instructions in “Getting Started” on page 19.

320

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Troubleshooting
Troubleshooting Tips

« If you are using the Freescale ADS hardware with the | SA bus interface, ensure that
you select the correct 1/O address for the ISA card. If you have another device
attempting to use this address, you must reconfigure that device to use another
address or disable that device.

« Verify that all the hardware boards have power:
— A green LED lights up on both the ADS and EVM boards.

— A red LED and ayellow LED illuminate on the Domain Technologies SB-56K
Emulator.

« Verify that all target settings are correct.

Downloading Code to DSP Hardware Fails

If you are unable to download code to the target DSP hardware, verify that the
communications to the target hardware are working correctly.

The CodeWarrior IDE Crashes When
Running My Code

Use one of the sampl es provided with CodeWarrior IDE for DSP56800 to verify that your
system isworking correctly.

The Debugger Acts Strangely

Sometimes DSP hardware can become corrupted and unusable, even after a soft reset. If
the debugger has problems executing code, you might have to perform a hard reset of the
DSP hardware.

To reset the EVM board, follow these steps:
1. Disconnect the power cable from the board.
2. Wait at least 5 seconds.

3. Reconnect the power supply to the EVM board. This reconnection step resets the
board and clearsits RAM.

To reset the ADS board, follow these steps:
1. Disconnect the power cable from the ADS board.
2. Wait at least 5 seconds.

3. Reconnect the power supply to the ADS board. This reconnection step resets the board
and clearsits RAM.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 321

V¥ ¢
i

Troubleshooting
Troubleshooting Tips

Problems With Notebook Computers

If you experience any problems downloading using the parallel port interface while using
anotebook computer, ensure that the parallel port is set in bidirectional mode.

On Ddll Latitudes, the ECP setting in CMOS has not emitted enough voltage through the
parallel port. Increasing the ECP value may solve this problem.

How to make Parallel Port Command
Converter work on Windows® 2000
Machines

If you encounter problems connecting to your Windows® 2000 machine using the parallel
port command converter, check the following settings:

1. Verify LPT Port number matches the parallel port:
a LaunchCCs.
b. Select File > Configure.
¢. Ensurethat the LPT port is set to parallel port and correct LPT number.
d. Click Save.
2. Veify “Enablelegacy Plug and Play” is enabled for the parallel port:
a. Accessthe Device Manager.
b. Accessthe LPT port settings window.
c. Click theProperties button.
d. IntheProperties window, click the Enable Legacy Plug and Play box.
3. Veify the parallel port is set for “fast bi-directional transfer”:
a. Accessthe BIOS settings.

b. Set the parallel port for fast bi-directional transfers (EEP or ECP) instead of just bi-
directiona.

322 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

A

Porting Issues

This appendix explains issues relating to successfully porting code to the most current
version of the CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers. This appendix lists issues related to successfully porting sources from the
Suite56™ toolset and differences that occur between the CodeWarrior IDE and the
Suiteb6 tools.

This appendix contains the following sections:

Converting the DSP56800 Projects from Previous Versions on page 323
Removing “illegal object _c on pragma directive” Warning on page 324
Setting-up Debugging Connections on page 324

Using XDEF and XREF Directives

Using the ORG Directive

Converting the DSP56800 Projects from
Previous Versions

When you open older projects in the CodeWarrior IDE, the IDE automatically prompts
you to convert your existing project (Figure A.1 on page 323). Y our old project will be
backed up if you need to access that project file at alater time. The CodeWarrior IDE
cannot open older projectsif you do not convert them.

Figure A.1 Project Conversion Dialog

Convert Project |

Project "'zample.mep!’ needs to be converted. Some target zettings need
to be updated ko the cument version,

Some preference panel: have changed and the target zettings need ta
be updated to the new format. The project will be backed up az
"zample.old.mcp". Do you want to convert the project?

™ Use For &)l Femaining Projects

0k, I Cancel

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 323

y
A

Porting Issues
Removing “illegal object_c on pragma directive” Warning

Removing “illegal object _c on pragma
directive” Warning

If after porting a project to DSP56800 7.x, you get awarning that saysillegal
object_c¢ on pragma directive,you needtoremoveit. Toremove thiswarning:

1. Open the project preference and go to the C/C++ Preprocessor.

2. Removetheline #pragma objective_ con from the prefix text field.

Setting-up Debugging Connections

Using

Using

In the DSP56800 7.x, debugging connections to the hardware or ssimulator are made using
the Remote Debugging panel.

Older versions of the DSP56800 connected using other settings.

If you open a project created using a previous version of the CodeWarrior IDE, you must
now set up the debugging connections using the new settings.

For more information on the Remote Debugging panel, see “ Remote Debugging” on
page 92.

XDEF and XREF Directives

The XDEF and XREF directives are not used with the CodeWarrior assembler. Use the
GLOBAL directive to make symbols visible outside of a section.

the ORG Directive

Memory space and location counters cannot be updated with the ORG directive. Y ou must
use the linker command file to specify exact memory addresses rather than in the
assembler. For example, if you declare:

ORG P:$0020
SECTION myISR 20

rti
ENDSEC

SECTION myISR 30

jsr foot
rti
ENDSEC

324

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

Porting Issues
Using the ORG Directive

Y ou would need to change your ORG directive to:
ORG P:
and your linker command file would be changed as follows:

MEMORY
.text (RWX) : ORIGIN = 0x1000, LENGTH = 0x0
.data (RW) : ORIGIN = 0x2000, LENGTH = 0x0
.text2 (RWX) : ORIGIN = 0x20, LENGTH = 0x0
SECTIONS ({

.location_specific_code
{
= 0x20;
* (myISR _20.text)
= 0x30;
* (myISR_30.text)
} > .text2

.main application

* (.text)
*(.rtlib.text)
* (fp _engine.text)
* (user.text)

} > .text

.main application data

* (.data)

* (fp _state.data)
*(rtlib.data)
*(rtlib.bss.lo)
*(.bss)

} > .data

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 325

wr
4\

Porting Issues
Using the ORG Directive

326 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

DSP56800x New Project

Wizard

This appendix explains the high-level design of the new project wizard.

Overview

The DSP56800x New Project Wizard supports the DSP56800x processors listed in Table
B.1 on page 327.

Table B.1 Supported DSP56800x Processors for the New Project Wizard

DSP56800 DSP56800E
DSP56F801 (60 MHz) DSP56852
DSP56F801 (80 MHz) DSP56853
DSP56F802 DSP56854
DSP56F803 DSP56855
DSP56F805 DSP56857
DSP56F807 DSP56858
DSP56F826 MC56F8013
DSP56F827 MC56F8014
MC56F8023
MC56F8025
MC56F8036
MC56F8037
MC56F8122
MC56F8123

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

327

'
A

DSP56800x New Project Wizard
Overview

Table B.1 Supported DSP56800x Processors for the New Project Wizard (continued)

DSP56800 DSP56800E

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F8322

MC56F8323

MC56F8335

MC56F8345

MC56F8346

MC56F8356

MC568357

MC568365

MC568366

MC568367

Wizard rules for the DSP56800x New Project Wizard are described in these sub-sections:
» Page Rules on page 329

* Resulting Target Rules on page 330

« _on page 331Rule Notes on page 331
Click onthe following link for details about the DSP56800x New Project Wizard:
* DSP56800x New Project Wizard Graphical User Interface on page 332

328 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

DSP56800x New Project Wizard
Overview

Page Rules

The page rules governing the wizard page flow for the simulator and the different
processors are shown in the Table B.2 on page 329, Table B.3 on page 329, Table B.4 on
page 330, and Table B.5 on page 330.

Table B.2 Page Rules for the Simulator, DSP56F801 (60 and 80 MHz), DSP56F802,
MC56F801x, MC56F802x, MC56F803x, MC56F812x, and MC56F832x

Target Selection Page | Next Page Next Page

any simulator Program Choice Page Finish Page

DSP56F801 60 MHz

DSP56F801 80 MHz

DSP56F802

MC56F801x

MC56F802x

MC56F803x

MC56F812x

MC56F832x

Table B.3 Page Rules for the DSP56F803, DSP56F805, DSP56F807, DSP56F826, and
DSP56F827

Target Selection Next Page Next Page Next Page
Page

DSP56F803 Program External/Internal Finish Page
Choice Page Memory Page

DSP56F805

DSP56807

DSP56F826

DSP56F827

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 329

'
A

DSP56800x New Project Wizard
Overview

Table B.4 Page Rules for the DSP56852, DSP56853, DSP56854, DSP56855, DSP56857,
and DSP56858

Target Selection Page Next Page Next Page

DSP56852 Program Choice Finish Page
Page

DSP56853

DSP56854

DSP56855

DSP56857

DSP56858

Table B.5 Page Rules for the MC56F814x, MC56F815x, MC56F816x, MC56F833x,
MC56F834x, MC56F835x, and MC56F836x

Target Next Page Next Page Next Page if Next Page
Selection Processor

Page Expert Not

Selected
MC56F814x | Program Data Memory | External/lnternal Finish Page
Choice Page Model Page Memory Page

MC56F815x

MC56F816x

MC56F833x

MC56F834x

MC56F835x

MC56F836x

Resulting Target Rules

The rules governing possible final project configurations are shown in Table B.6 on
page 331.

330 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

DSP56800x New Project Wizard

Overview
Table B.6 Resulting Target Rules

Target Possible Targets

56800 Simulator Target with Non-HostlO Library and Target with Host 10
Library

56800E Simulator Small Data Model and Large Data Model

DSP5680x External Memory and/or Internal Memory with pROM-to-
XRAM Copy

DSP5682x External Memory and/or Internal Memory with pROM-to-
XRAM Copy

DSP5685x (Small Data Model and Small Data Model with HSST) or
(Large Data Model and Large Data Model with HSST)

MC56F801x Small Data Model Internal Memory with pROM-to-xRAM

MC56F802x copy

MC56F803x

MC56F812x Small Data Model or Large Data Model Internal Memory

MC56E832x with pPROM-to XRAM Copy

MC56F814x (Small Data Memory External and/or Small Data Memory

MC56FB15 Momory Extemal andlor Large Data Memary Itermal it

MC56F816x pROM-to-xRAM Copy)

MC56F833x

MC56F834x

MC56F835x

MC56F836x

Rule Notes

Additional notes for the DSP56800x New Project Wizard rules are:

« The DSP56800x New Project Wizard uses the DSP56800x EABI Stationery for all
projects. Anything that is in the DSP56800x EABI
Stationery will be in the wizard-created projects depending on the wizard choices.

¢ The DSP56800x EABI Stationery has all possible targets, streamlined and tuned
with the DSP56800x New Project Wizard in mind.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 331

y
A

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

* The DSP56800x New Project Wizard creates the entire simulator project with all the
available targets in context of “ Stationery as documentation and example.”

DSP56800x New Project Wizard Graphical
User Interface

This section describe the DSP56800x New Project Wizard graphical user interface.
The subsections in this section are:

« Invoking the New Project Wizard on page 332

* New Project Dialog Box on page 333

» Target Pages on page 334

« Program Choice Page on page 343

« DataMemory Model Page on page 344
¢ External/Internal Memory Page on page 345

« Finish Page on page 346

Invoking the New Project Wizard

To invoke the New Project dialog box, from the Freescale CodeWarrior menu bar, select
File>New (Figure B.1 on page 333).

332 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.1 Invoking the DSP56800x New Project Wizard

File Edit View Search Project Debug Data Vis

Open... Ctrl+0
Find and Open File... Ctrl+D
Close Ctrl+w

o

y 01

o

Nl
m m m
I

Save A Copy As...

Open Workspace

IS VLD R dallis

Save Workspace
Save Workspace As...

New Project Dialog Box

After selecting File>New from the Freescale CodeWarrior menu bar, the New project

Diaog Box (Figure B.2 on page 334) appears. Inthelist of stationeries, you can select
either the “DSP56800x New Project Wizard” or any of the other regular stationery.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 333

4
A

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.2 New Project Dialog Box
New

Project | Fie | Object |

8 DSP5RE00: EABI Stationery Project name:
@ DSP5620E: EVM Examples Stationeny ithEJ:nroject
o DSP56800x New Project Wizard
@ Empty Project Location:
5 Makefile Importer Wizard m——r -
% Processaor Iijq:uert Examples Stationeny 1(:' my_prejects'the_project “Si‘]
@ Processor Expert Stationeny 1~ Add Targets to Project:
Project:

0K | Cancel

Target Pages

When invoked, the New Project Wizard first shows adynamically created list of
supported target families or simulators and processors. Each DSP56800x family is
associated with a subset of supported processors (Figure B.3 on page 335, Figure B.4 on
page 336, Figure B.5 on page 337, Figure B.6 on page 338, Figure B.7 on page 339,
Figure B.8 on page 340, Figure B.9 on page 341, Figure B.10 on page 342, and Figure
B.11 on page 343).

334 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

h

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.3 DSP56800x New Project Wizard Target Dialog Box (DSP56F80x)

D5P56800x New Project Wizard - Target

Select family and then processor for this project...

DSP56300¢ Famity | Processor
DSP5EFE0: DSPSEF201_G0MHz
DSP5EFE2e DSPEEFE01_S0MHz
DSP5625: DSP5EF202
MC56F201x DSPSEF203
MC5EF202¢ DSPEEFR05
MC56F20% DSPREFS07
MC56FS Tax
MC56F8 e
Simulators

< Back Mext = Cancel

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

335

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.4 DSP56800x New Project Wizard Target Dialog Box (DSP56F82x)

DSP56800x New Project Wizard - Target
Select family and then processor for this project...
DSP56800« Family | Processor
DSPBEFEM DSPhEFB26
DSPhGFE2c DSPhEFBZT
DSPEEEm
MCEEFE0Tx
MCEEFE02x
MCBEFE0G
MCHEFE 1o
MCHEF8 3o
Simulators
< Back MNext = Cancel

336 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

h
L |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.5 DSP56800x New Project Wizard Target Dialog Box (DSP5685x)

D5P56800x New Project Wizard - Target

Select family and then processor for this project...

DSP56300¢ Famity | Processor
DSP56Fa: DSP5GA52
DSP5EFE2: DSPEEa53
DSP5685x DSP56asd
MC56F201x DSP56255
MC5EF202¢ DSPEEA5T
MC56F20% DSPEEasE
MC56FS Tax

MC56F8 e

Simulators

< Back Mext = Cancel

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

337

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.6 DSP56800x New Project Wizard Target Dialog Box (MC56F801x)

DSP56800x New Project Wizard - Target
Select family and then processor for this project...
DSP56800« Family | Processor
DSPEEFEH MCH&FB011
DSPHEFE2 MCH&FB013
DSPHEEm MCH&FB014
MC56FE01x
MCEEFE02x
MCBEFE0G
MCHEFE 1o
MCHEF8 3o
Simulators
< Back MNext = Cancel

338 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

h

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.7 DSP56800x New Project Wizard Target Dialog Box (MC56F802x)

DSP36800x Mew Project Wizard - Target

Select family and then processor for this project ...

DSPEE800k: Famiby

Processor

DSP56FaMH
DSP5EFE2:
DSP5685

MC56F801x
MCS6F302x
MC56F803x
MC56FE T
MCBEFE 3
Simulators

MC56F3023
MC56F2025

< Back

Nexd =

Cancel

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

339

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.8 DSP56800x New Project Wizard Target Dialog Box (MC56F803x)

DSP56800x New Project Wizard - Target
Select family and then processor for this project...
D5P56800x Family | Processor
DSPEEFS MCE&FB036
DSPREFE2 MCREFBO3T
DSP56EEMm
MCHEFE01x
MCHEFE02x
MC56FB03x
MCHEFE T
MCHEFE 3o
Simulators
< Back Mext = Cancel

340 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

h
L |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.9 DSP56800x New Project Wizard Target Dialog Box (MC56F81xx)

D5P56800x New Project Wizard - Target

Select family and then processor for this project ...

DSP56300: Family | Processor
DSPREFED MCEEF8122
DSPREFE MCEEFE123
DSP563%x MCEEF8135
MCEEFB01x MCEEF8145
MCEEFB02¢ MCHEF8146
MC5EFB0% MC5EFB147
MCH6FS e MCREFE155
MCE6F8 %o MCEEF8156
Simulators MCEEF8157
MCHEFB165
MC5EFB166
MCEEFB167
< Back Mext =

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

341

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.10 DSP56800x New Project Wizard Target Dialog Box (MC56F83xx)

D5P56800x New Project Wizard - Target
Select family and then processor for this project...
D5P56800x Family | Processor
DSPEEFEx MCE6F8322
DSPREFE2: MC56F8323
DSP5ESE MCE6FE335
MCEEFE01x MCE6FE345
MCEEF 802 MCE6FE346
MCSEF803x MCSEFE347
MC56FS Tox MC56F8355
MCHEFE 3o MCE6FE356
Simulators MCE6FE357
MC56FE365
MC56F8366
MC56F8367
< Back Mext = Cancel

342 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.11 DSP56800x New Project Wizard Target Dialog Box (Simulators)

DSP56800x New Project Wizard - Target

Select family and then processor for this project...

DSP56B00: Famiby Processar
DSPEEFEx DSP56200_simulatar
DSPREFE2: DSP56800E_simulator

DSP5E55m

MCH6FS01x
MCS6F802
MC56F803
MC56FS Tx
MCH6FS 3o
Simulators

Mest = Cancel

One target family and one target processor must be selected before continuing to the next
wizard page.

NOTE Depending on which processor you select, different screens will appear
according to the “Page Rules’ on page 329.

If you choose the simulator, then the DSP56800x New Project Wizard - Program Choice
page appears.

Program Choice Page

If you chose either of the simulators, then Figure B.12 on page 344 appears and you can
now choose what sort of main() program to include in the project.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 343

4
A

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.12 DSP56800x New Project Wizard - Target Choice

DSP56800x New Project Wizard - Program Choice

Select the starter main() program faor this project ...

Program

{* Simple C

(" Simple Mixed Assembly and C
" Simple Assembly

" Blank C

< Back Mest = Cancel

When you click Next, the Wizard jumps to the appropriate page determined by the “Page
Rules’ on page 329.

Data Memory Model Page

If you select a DSP56800E processor (56F83xx or 5685x family), then the Data Memory

Model page appears (Figure B.13 on page 345) and you must select either the Small Data
Model (SDM) or Large Data Model (LDM).

344 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.13 DSP56800x New Project Wizard - 56800E Data Memory Model Page

DSP56800x New Project Wizard - 56800E Data Memory Model

Select the data memory model for this 56800E project ..
Memony

{+ Small Data Model (SOM)
(" Large Data Model (LOM)

< Back Mest = Cancel

When you click Next, the Wizard jumps to the appropriate page determined by the “ Page
Rules’ on page 329.

External/Internal Memory Page

Depending on the processor that you select, the External/Internal Memory page may
appear (Figure B.14 on page 346) and you must select either external or internal memory.

NOTE Multiple memory targets can be checked.

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 345

4
A

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.14 DSP56800x New Project Wizard - External/Internal Memory Page

DSP56800x New Project Wizard - External/Internal Memory

Select one or more memony configurations for this project...

[+ Extemal Memory

v Intemal Memory with ROM4o-BAM copy

< Back Mest = Cancel

When you click Next, the Wizard jumps to the appropriate page determined by the “ Page
Rules’ on page 329.

Finish Page

When you click the Finish button on the Finish Page (Figure B.15 on page 347), the
project creation process start.

NOTE All target choices end on this page.

346 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

h o
g |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.15 DSP56800x New Project Wizard - Finish Page

DSP56800x Mew Project Wizard - Finish

Click Finish to create the project ...

< Back I Finish I

Cancel

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

347

A 4
4\

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

348 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

Index

Symbols
df file, loading 243

Numerics
56800 simulator 240

A

__abs 166

Access Paths panel 68

access permission flags 264, 278

__add 167

Add Files command 52

add_hfm_unit flash debugger command 250

adding assembly language 157

addr 275

after 278

aign 276

aignall 276

alignment 266

Allocating Memory and Heaps for
DSP56800 309

Allow DO Instructions option 87

Allow Rep Instructions checkbox 87

Application option, of Project Type pop-up
menu 71

asm keyword 156

assembly language 155

create output option 87
statements, adding 157

AT keyword for ROM location 271

Auto-clear previous breakpoint on hew
breakpoint release 94, 99

B

back-end compiler See compiler

bean inspector window 105, 110, 112
bean selector window 104, 109-110
bool size 138

bootstrap code 311

breakpoints 56, 217

Bring Up To Date command 34

Build Extras panel 68
Build System 35
build targets

setting in project 47

C

C/C++ warnings panel 77-81
calling assembly functions from C code 159
calling conventions for DSP 143
Case Insensitive |dentifiers checkbox 83
changing 154
Changing Target Settings 65
char size 138
code
compiling 51
deadstripping unused 154
editing 52
navigation 55
code and data storage for DSP 149-150
CodeWarrior
compiler architecture 35
components 36
debugging for DSP 197
getting started 19
introduction 13
tools, listed 36
troubleshooting 317
tutoria 37, 37-61
using the debugger 52
using the IDE 37
CodeWarrior IDE 14
installing 24
installing and registering 20
introduction 13
CodeWarrior IDE Target Settings Panels 67
command converter server 207, 214
commands
Add Files 52
Bring Up To Date 34
Compile 34
Enable Debugger 36
M56800 Settings 52

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 349

Make 36
Preprocess 36
comments for linker command file 267
communications with target board, problems 320
Compile command 34
compiler
architecture 35
back-end for DSP 137
intermediate representation (IR) 35
plug-in modules, explained 35
support for inline assembly 155
See also C Compilers Reference
compiling 34
code 51
See also IDE User Guide
compress 279
connection type 200
Console 307
Console and File I/O 307
converting CodeWarrior projects 323
coretools, tutorial 37-61
CPU types overview window 119
Create Assembly Output checkbox 87
creating labels for DSP56800 Assembly 158
Custom Keywords settings panel 68
Cycle/Instruction Count 241

D
Data Visualization 255
data, deadstripping unused 154
deadstripping
prevention 264, 267
deadstripping unused code and data 154
debug information, generating 50
debugger
command converter server 207, 214
fill memory 228, 230
Kill command 61
load/save memory 225, 228
OnCE features 232
operating 214, 219
problems with behavior 321
savelrestore registers 230-232
setting preferences 52

setting up for Flash programming 251
system level connect 244, 245
toolbar 55
using 52
debugger protocol 200
Debugger Settings panel 68
debugging 36, 197
connecting to aloaded target 245
flash memory 249
per file 50
projects 53
supported remote connections 197-205
target settings 207
watchpoint status 232
See also IDE User Guide
Debugging aloaded target 245
defining an inline assembly function 157
definition
BSS 310
heap 310
stack 310
development tools 36
diaog boxes
fill memory 228, 230
|oad/save memory 225, 228
savelrestore registers 230-232
Directive
XDEF 324
directories, installation 24
Disable Deadstripping checkbox 90
_ div 178
__div_Is 179
DO instructions, alowing 87
Domain Technologies SB-56K
installing 27
double size 139
downloading code, problems 321
DSP
code and data storage 149-150
installing hardware 24
linker 154
DSP hardware
system requirements 19
DSP56800

350 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

calling conventions 139
fixed-point formats 139
floating-point formats 138
integer formats 137

stack frame 143

E

editing
code 34
project contents 52
source files 52
Scealso IDE User Guide

editor, of IDE 52

ELF Disassembler settings panel 83
Show Addresses and Object Code

checkbox 85
Show Code Modules checkbox 85
Show Comments checkbox 85
Show Data Modules checkbox 85
Show Debug Info checkbox 86
Show Headers checkbox 84
Show Relocations checkbox 84
Show Source Code checkbox 85
Show Symbol and String Tables
checkbox 84

Use Extended Mnemonics checkbox 85
Verbose Info checkbox 84

Enable Debugger command 36

enabling the debugger 50

Exporting and importing panel optionsto XML

Files 66
expressions, in LCF 269

__extract_h 176
__extract_| 177
F

F 268

failed service startup in Windows 320
File Mappings panel 68
fill memory dialog box 228, 230
fixed type 139
fixed__ 139

171
__fixed2long 171

__fixed2short 172
fixed-point formats, for DSP 56800 139
fixed 139
long fixed 139
short fixed 139
fixed-point formats, for DSP 56800short
fixed 139
flash configuration file format 99
flash debugger commands
add_hfm_unit 250
set_hfm_base 250
set_hfm_config_base 250
set_hfm_erase mode 250
set_hfm_verify_erase 251
set_hfm_verify _program 251
set_hfmclkd 249
flash memory debugging 249
Flash ROM
debugger configuration 251
initializing variablesin P or X memory 271
programming tips 253
ROM to RAM copy 271-273
float size 138
floating-point formats, for DSP 56800 138
Force Active Symbolstext box 92
force_active 264, 267, 277
format, flash configuration file 99
fractiona arithmetic 163
equation for converting 163
Freescale Documentation 17
FSTART
troubleshooting entry point 318
fstart 311

G

Generate ELF Symbol Table checkbox 91

Generate Link Map checkbox 89

Generate Listing File checkbox 83

Generate S-Record File checkbox 91

Generate Symbolic Info checkbox 88

generating debug info 50

GLOBAL directive 324

GLOBAL directive, assembly function
definitions 160

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

351

Global Optimizations settings panel 68
global variables
linker command file 268

H

hardware breakpoints
watchpoints 232
heap size 273

I
IDE
using 37
IDE, CodeWarrior 14
IDE, installing 24
IDE, installing and registering 20
implied fractional value 163
include 277
inline assembler
for DSP 155-175
inline assembly
defining functions 157
function-level 156
instructions 157
statement-level 157
syntax 156
Inline Assembly Language, general notes 155
installation directories 24
installed beans overview window 120
installing
SB-56K Emulator 27
installing and registering the CodeWarrior
IDE 20
installing the CodeWarrior IDE 24
Instruction Scheduling checkbox 87
int size 138
__int2fixed 172
integer formats, for DSP56800 137
integral types, in LCF 268
intrinsic functions
absolute/negate 166
__abs 166
_L_negate 167
__hegate 166
addition/subtraction 167

__add 167
_L_add 169
_L_sub 169
__sub 168
control 170
__Stop 170
conversion 170
_ fixed2int 171
__fixed2long 171
__fixed2short 172
__int2fixed 172
_ labs 173
__long2fixed 174
__short2fixed 174
copy 174
__memcpy 175
__strepy 175
deposit/extract 176
__extract_h 176
__extract_| 177
_L_deposit_h 177
_L_deposit_| 178
division 178
_ div 178
__div_Is 179
multiplicatio/MAC 179
_L_mac 183
L _msu 184
_L_mult 184
__mac r 180
__msu_r 181
__mult 181
__mult_r 182
normalization 185
__norm_| 186
__norm_s 186
rounding 187
__round 187
shifting 188
_L_shl 190
_L_shr 191
_L_shrr 192
__shl 188
_ shr 189

352 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

_shr_r 190
multiplicatio/MAC
_L_mult_Is 185
introduction
to CodeWarrior 13
introduction to the CodeWarrior IDE 13

J

JTAG chain, debug other chips 248

JTAG initialization file 247

JTAG initialization file with a generic device 248

K

keep_section 265, 267, 277
Kill command 61

L
_L_add 169
_L_deposit_h 177
_L_deposit_| 178
_L_mac 183
L _msu 184
_L_mult 184
_L_mult_Is 185
_L_negate 167
_L_shl 190
_L_shr 191
_L_shr r 192
labels, M56800 assembly 158
__labs 173
libraries
MSL for DSP 307
support for DSP 307
using MSL 307
Library option, of Project Type pop-up menu 71
linear addressing 311
link order 154
linker
for DSP 154
link order 154
settings 88
linker command files
access permission flags 264, 278

addr 275
after 278
aign 276
dignall 276
aignment 266
arithmetic operations 266
comments 267
compress 279
deadstripping prevention 267
expressions 269
file selection 270
force_active 277
function selection 270
heap size 273
include 277
integral types 268
keep_section 277
memory 263, 277-279
memory attributes 264
object 270, 279
ref_include 279
sections 265, 280
sizeof 281
stack size 273
symbols 268
variables 268
writeb 282
writeh 282
writew 283
writing data 273
Linker pop-up menu 69
linking 36
See also IDE User Guide
List Unused Objects checkbox 89
load/save memory dialog box 225, 228
loading .elf file 243
long double size 139
long fixed type 139
long size 138
__long2fixed 174
longfixed 139
_L_sub 169

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual 353

A
M memory map window 117,119
MO01 311 memory, viewing 219-225

M56800 Assembler settings panel 82-83
Case Insengitive ldentifiers checkbox 83
Generate Listing File checkbox 83
Prefix File 83

M56800 Linker
Disable Deadstripping checkbox 90
Force Active Symbolstext box 92
Generate ELF Symbol Table checkbox 91
Generate Symbolic Info checkbox 88
List Unused Objects checkbox 89
Show Transitive Closure checkbox 90
Store Full Path Names checkbox 89

M56800 Linker option, in Linker pop-up

menu 70

M56800 Linker settings panel 88
Generate Link Map checkbox 89
Generate S-Record File checkbox 91
Max Record Length field 91
S-Record EOL Character list menu 92
Suppress Warning Messages checkbox 91

M56800 Processor settings panel 86-87
Allow DO Instructions 87
Allow Rep Instructions checkbox 87
Create Assembly Output checkbox 87
Instruction Scheduling checkbox 87
Make Strings Read-Only checkbox 87

M56800 Settings command 52

M56800 Target Settings 48, 49, 52
Use Flash Config File option 252

M56800 Target Settings panel 94

M56800 Target settings panel
Output File Name 71
Project Type 71

M56800 Target settings panels 70

__mac r 180

Make command 36

Make Strings Read-Only checkbox 87

makefiles 34

__memcpy 175

memory 277-279
P 264
X 264

Metrowerks Standard Library (MSL)
for DSP 307
using 307

modifier register 311

modulo addressing 311

__msu_r 181

__mult 181

__mult_r 182

N
navigating code 55
__hegate 166
New Project window 44
New window 42
None option
in Post-Linker pop-up menu 70
in Pre-Linker pop-up menu 70
non-volatile registers 140, 151
__nhorm_| 186
__nhorm_s 186
number formats, for DSP 137, 139

@)
OBJECT 270
object 270, 279
OnCE debugger features 232
operating the debugger 214, 219
optimizing

page O register assignment 151
ORG directive 160

memory space location 160
Output Directory field 70
overview, target settings 65

P

P memory 264

P memory, viewing 221-225

page O register assignment 151
non-volatile registers 151
volatileregisters 151

panels

354 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

C/C++ warnings 77-81
remote debug options 99, 100
remote debugging 92-94
peripherals usage inspector window 121
plug-in error 319
porting issues 323
Post-Linker option 70
Prefix File 83
Prefix Filefield 83
Pre-Linker pop-up menu 70
Preprocess command 36
preprocessing 36
Seealso IDE User Guide
Processor Expert
beans 103-105
code generation 102-103
menu 105-109
overview 101-109
page 103
tutorial 122-136
Processor Expert interface 101-136
Processor Expert windows 109-122
bean inspector 110, 112
bean selector 109-110
CPU types overview 119
installed beans overview 120
memory map 117,119
peripherals usage inspector 121
resource meter 120
target CPU 112-117
Project Files versus Makefiles 34
project stationery 41, 44
Project Type pop-up menu 71
Project window 45
projects
debugging 53
editing contents of 52
stationery 41, 44
protocals, setting 53

R

rebuild alert 318
REF_INCLUDE 267
ref_include 265, 267, 279

references 17
Freescale Documentation 17
register detailswindow 225, 242
register values 218, 219
registers
display contents 56, 58, 60
function parameters 139
non-volatile 140
specia-purpose 56, 58, 60
stack pointer 144
volatile 140
regservers.bat 319
remote debug options panel 99, 100
remote debugging panel 92-94
rep instruction
problemsin debugger 318
REP instructions, allowing 87
resource meter window 120
Restoring Target Settings 67
ROM to RAM copy 271-273
__round 187
runtime
ROM to RAM copy 272
runtime initialization 311

S

Sample Initialization File 311

savelrestore registers dialog box 230-232

Saving new target settings

stationery files 67

SB-56K Emulator, installing 27

SECTION mapping, in assembly language 160

sections 265, 280

segment |ocation specifier 280

set_hflkd flash debugger command 249

set_hfm_base flash debugger command 250

set_hfm_config_base flash debugger
command 250

set_hfm_erase_mode flash debugger
command 250

set_hfm_verify_erase flash debugger
command 251

set_hfm_verify_program flash debugger
command 251

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

355

C/C++ warnings 77-81
Custom Keywords 68
Debugger Settings 68
ELF Disassembler 83
File Mappings 68
Global Optimizations 68
M56800 Assembler 82-83
M56800 Linker 88
M56800 Processor 86-87
M56800 Target 70
M56800 Target Settings 94
remote debug options 99, 100
remote debugging 92-94
Source Trees 68

Settingswindow 47

__shl 188

short double size 138

short fixed type 139

short size 138

__short2fixed 174

Show Addresses and Object Code checkbox 85

Show Code Modules checkbox 85
Show Comments checkbox 85
Show Data Modules checkbox 85
Show Debug Info checkbox 86
Show Headers checkbox 84
Show Relocations checkbox 84
Show Source Code checkbox 85

Show Symbol and String Tables checkbox 84

Show Transitive Closure checkbox 90
__shr 189
__shr_r 190
signed char size 138
simulator 240
sizeof 281
source files
editing 52

A
setting Source Trees settings panel 68
abuild target 69 specia-purpose registers 56, 58, 60
breakpoints 56 S-record 91
debugger preferences 52 S-Record EOL Character list box 92
settings panels S-Record, Max Record Length field 91
Access Paths 68 stack frame, for DSP56800 143
Build Extras 68 stack pointer register 144

stack size 273
statement-level inline assembly 157
stationery

saving new target settings 67
__Stop 170
storage of code and datafor DSP 149-150
Store Full Path Names checkbox 89
__strepy 175
__sub 168
Suite56 toolset 323
support, web page 35
Suppress Warning Messages checkbox 91
symbols, in LCF 268
syntax, inline assembly language 156
system level connect 244, 245
system requirements

for DSP hardware 19

T
target CPU window 112-117
Target Namefield 69
target settings
overview 65
Target Settings panel
Linker 69
Output Directory field 70
Post-Linker 70
Pre-Linker 70
Target Name 69
Target Settings panels
Access Paths 68
Build Extras 68
Custom Keywords 68
Debugger Settings 68
File Mappings 68
Global Optimizations 68
M56800 Linker 88

356 56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

M56800 Processor 86-87
M56800 Target Settings 94
M56800 Target settings 70
Source Trees 68
Target Settingswindow 47, 66
Troubleshooting
Parallel Port Converter on Windows
2000 322
troubleshooting 317-322
communications with target board 320
downloading code 321
entry point errors 318
FSTART 318
ORG and memory addresses 319
plug-in error 319
rebuild dert 318
rep instruction and breakpoints 318
tutorial, core tools 37-61
tutorial, Processor Expert 122-136

U

unsigned char sSize 138
unsigned int size 138
unsigned long size 138
unsigned short size 138
unused code and data, deadstripping 154
Use Extended Mnemonics checkbox 85
Use Flash Config File checkbox 252
using

the CodeWarrior debugger 52

the CodeWarrior IDE 37
using comments in M56800 assembly 159

V
values, register 218, 219
variables, in LCF 268

Variables, Stationery Linker Command Files 310

Verbose Info checkbox 84
viewing memory 219-225
volatile registers 140, 151
page O register assignment 151

W

watchpoint status 232

watchpoints 217

web site 17

Windows
failed service startup error 320

windows
bean inspector 105, 110, 112
bean selector 104, 109-110
CPU types overview 119
installed beans overview 120
memory map 117,119
peripherals usage inspector 121
Processor Expert 109-122
register details 225, 242
resource meter 120
target CPU 112-117

writeb 273, 282

writeh 273, 282

writew 273,283

X

X memory 264

X memory, viewing 219-221
XDEF directive 324

XML files

exporting and importing panel options 66

XREF directive 324

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

g |

358

56800/E Digital Signal Controllers: DSP56F80x/DSP56F82x Targeting Manual

	Introduction
	CodeWarrior IDE
	Freescale 56800/E Digital Signal Controllers
	References

	Getting Started
	System Requirements
	DSP56800 Hardware Requirements

	Installing and Registering the CodeWarrior IDE
	Installing DSP56800 Hardware
	Using Parallel Port
	Installing the PCI Command Converter

	Development Studio Overview
	CodeWarrior IDE
	CodeWarrior Compiler for DSP56800
	CodeWarrior Assembler for DSP56800
	CodeWarrior Linker for DSP56800
	CodeWarrior Debugger for DSP56800
	Metrowerks Standard Library

	Development Process
	Project Files versus Makefiles
	Editing Code
	Compiling
	Linking
	Debugging
	Viewing Preprocessor Output

	Tutorial
	CodeWarrior Development Studio for Freescale 56800 Tutorial
	Creating a Project
	Working with the Debugger
	References

	Target Settings
	Target Settings Overview
	Target Setting Panels
	Changing Target Settings
	Exporting and Importing Panel Options to XML Files
	Restoring Target Settings

	CodeWarrior IDE Target Settings Panels
	DSP56800-Specific Target Settings Panels
	Target Settings
	M56800 Target
	C/C++ Language (C only)
	C/C++ Preprocessor
	C/C++ Warnings
	M56800 Assembler
	ELF Disassembler
	M56800 Processor
	M56800 Linker
	Remote Debugging
	M56800 Target (Debugging)
	Remote Debug Options

	Processor Expert Interface
	Processor Expert Overview
	Processor Expert Code Generation
	Processor Expert Beans
	Processor Expert Menu

	Processor Expert Windows
	Bean Selector
	Bean Inspector
	Target CPU Window
	Memory Map Window
	CPU Types Overview
	Resource Meter
	Installed Beans Overview
	Peripherals Usage Inspector

	Processor Expert Tutorial

	C for DSP56800
	General Notes on C
	Number Formats
	DSP56800 Integer Formats
	DSP56800 Floating-Point Formats
	DSP56800 Fixed-Point Formats

	Calling Conventions, Stack Frames
	Calling Conventions
	Volatile and Non-Volatile Registers
	Stack Frame

	User Stack Allocation
	Sections Generated by the Compiler
	OMR Settings
	Optimizing Code
	Page 0 Register Assignment
	Array Optimizations
	Multiply and Accumulate (MAC) Optimizations

	Compiler or Linker Interactions
	Deadstripping Unused Code and Data
	Link Order

	Inline Assembly Language and Intrinsic Functions
	Working With DSP56800 Assembly Language
	Inline Assembly Language Syntax for DSP56800
	Adding Assembly Language to C Source Code
	General Notes on Inline Assembly Language
	Creating Labels for M56800 Inline Assembly
	Using Comments in M56800 Inline Assembly

	Calling Assembly Language Functions from C Code
	Calling Inline Assembly Language Functions
	Calling Stand-alone Assembly Language Functions

	Calling Functions from Assembly Language
	Intrinsic Functions for DSP56800
	An Overview of Intrinsic Functions
	Fractional Arithmetic
	Macros Used with Intrinsics

	List of Intrinsic Functions: Definitions and Examples
	Absolute/Negate
	__abs
	__negate
	_L_negate
	Addition/Subtraction
	__add
	__sub
	_L_add
	_L_sub
	Control
	__stop
	Conversion
	__fixed2int
	__fixed2long
	__fixed2short
	__int2fixed
	__labs
	__long2fixed
	__short2fixed
	Copy
	__memcpy
	__strcpy
	Deposit/ Extract
	__extract_h
	__extract_l
	_L_deposit_h
	_L_deposit_I
	Division
	__div
	__div_ls
	Multiplication/ MAC
	__mac_r
	__msu_r
	__mult
	__mult_r
	_L_mac
	_L_msu
	_L_mult
	_L_mult_ls
	Normalization
	__norm_l
	__norm_s
	Rounding
	__round
	Shifting
	__shl
	__shr
	__shr_r
	_L_shl
	_L_shr
	_L_shr_r

	Pipeline Restrictions

	Debugging for DSP56800
	Using Remote Connections
	Accessing Remote Connections
	Understanding Remote Connections
	Editing Remote Connections

	Target Settings for Debugging
	Command Converter Server
	Essential Target Settings for Command Converter Server
	Changing the Command Converter Server Protocol to Parallel Port
	Changing the Command Converter Server Protocol to HTI
	Changing the Command Converter Server Protocol to PCI
	Setting Up a Remote Connection
	Debugging a Remote Target Board

	Launching and Operating the Debugger
	Setting Breakpoints
	Setting Watchpoints
	Viewing and Editing Register Values
	Viewing X: Memory
	Viewing P: Memory

	Load/Save Memory
	Fill Memory
	Save/Restore Registers
	OnCE Debugger Features
	Watchpoints and Breakpoints
	Trace Buffer

	Using the 56800 Simulator
	Cycle/Instruction Count
	Memory Map

	Register Details Window
	Loading a .elf File without a Project
	Using the Command Window
	System-Level Connect
	Debugging on a Complex Scan Chain
	Setting Up
	JTAG Initialization File

	Debugging in the Flash Memory
	Flash Memory Commands
	set_hfmclkd <value>
	set_hfm_base <address>
	set_hfm_config_base <address>
	add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <pageSize> <progMem> <boot> <interleaved>
	set_hfm_erase_mode units | pages | all
	set_hfm_verify_erase 1 | 0
	set_hfm_verify_program 1 | 0

	Setting up the Debugger for Flash Programming
	Use Flash Config File

	Notes for Debugging on Hardware
	Flash Programming the Reset and Interrupt Vectors

	Data Visualization
	Starting Data Visualization
	Data Target Dialog Boxes
	Memory
	Registers
	Variables

	Graph Window Properties

	Profiler
	ELF Linker
	Structure of Linker Command Files
	Memory Segment
	Closure Blocks
	Sections Segment

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Deadstrip Prevention
	Variables, Expressions and Integral Types
	File Selection
	Function Selection
	ROM to RAM Copying
	Stack and Heap
	Writing Data Directly to Memory

	Linker Command File Keyword Listing
	. (location counter)
	ADDR
	ALIGN
	ALIGNALL
	FORCE_ACTIVE
	INCLUDE
	KEEP_SECTION
	MEMORY
	OBJECT
	REF_INCLUDE
	SECTIONS
	SIZEOF
	SIZEOFW
	WRITEB
	WRITEH
	WRITES
	WRITEW

	Sample M56800 Linker Command File

	Command-Line Tools
	Usage
	Response File
	Sample Build Script
	Arguments
	General Command-Line Options
	Linker
	Assembler

	Libraries and Runtime Code
	MSL for DSP56800
	Using MSL for DSP56800
	Allocating Stacks and Heaps for the DSP56800

	Runtime Initialization

	Troubleshooting
	Troubleshooting Tips
	The Debugger Crashes or Freezes When Stepping Through a REP Statement
	"Can’t Locate Program Entry On Start" or "Fstart.c Undefined"
	When Opening a Recent Project, the CodeWarrior IDE Asks If My Target Needs To Be Rebuilt
	"Timing values not found in FLASH configuration file. Please upgrade your configuration file. On-chip timing values will be used which may result in programming errors"
	IDE Closes Immediately After Opening
	Errors When Assigning Physical Addresses With The Org Directive
	The Debugger Reports a Plug-in Error
	Windows Reports a Failed Service Startup
	No Communication With The Target Board
	Downloading Code to DSP Hardware Fails
	The CodeWarrior IDE Crashes When Running My Code
	The Debugger Acts Strangely
	Problems With Notebook Computers
	How to make Parallel Port Command Converter work on Windows® 2000 Machines

	Porting Issues
	Converting the DSP56800 Projects from Previous Versions
	Removing “illegal object_c on pragma directive” Warning
	Setting-up Debugging Connections
	Using XDEF and XREF Directives
	Using the ORG Directive

	DSP56800x New Project Wizard
	Overview
	Page Rules
	Resulting Target Rules
	Rule Notes

	DSP56800x New Project Wizard Graphical User Interface
	Invoking the New Project Wizard
	New Project Dialog Box
	Target Pages
	Program Choice Page
	Data Memory Model Page
	External/Internal Memory Page
	Finish Page

	Index

